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Diabetes is a worldwide epidemic that has led to a rise in diabetic kidney disease (DKD). Over the past two decades, there has
been significant clarification of the various pathways implicated in the pathogenesis of DKD. Nonetheless, very little has changed
in the way clinicians manage patients with this disorder. Indeed, treatment is primarily centered on controlling hyperglycemia and
hypertension and inhibiting the renin-angiotensin system. The purpose of this review is to describe the current understanding of
how the hemodynamic, metabolic, inflammatory, and alternative pathways are all entangled in pathogenesis of DKD and detail the
various therapeutic targets that may one day play a role in quelling this epidemic.

1. Introduction

Diabetes has long been a growing epidemic in the United
States (US) and around the world. In 2011, there were
20.8 million people aged 18 years and older who carried a
diagnosis of diabetes in theUS alone [1].Thenumber of adults
aged 18–79 in theUS that were newly diagnosedwith diabetes
hasmore than tripled from 493,000 in 1980 to over 1.5million
in 2011 [2]. The increased prevalence of diabetes has also led
to an increase in the number of macro- and microvascular
complications of diabetes such as coronary heart disease,
stroke, visual impairment, diabetic kidney disease (DKD),
and end stage renal disease (ESRD). Additionally, diabetes
remains the most common reason for progressing to end
stage renal disease in the US and in many parts of the world
[3–5]. The number of people initiating treatment for ESRD
related to diabetes was 48,374 people in 2008, more than 18-
fold what it was in 1980 [6]. DKD was previously known
as diabetic nephropathy and is defined as diabetes with
albuminuria (ratio of urine albumin to creatinine ≥ 30mg/g),
impaired glomerular filtration rate (<60mL/min/1.73m2),
or both and is the single strongest predictor of mortality
in patients with diabetes [7]. Today, DKD encompasses not

only diabetic nephropathy but also atheroembolic disease,
ischemic nephropathy, and interstitial fibrosis that occurs as
a direct result of diabetes.

Glycemic control and RAAS inhibition have long been
mainstays of therapy in patients with DKD. Multiple large
trials have demonstrated that improved glycemic control in
patients with type 1 and 2 diabetes reducedmicroalbuminuria
[8, 9], macroalbuminuria [8, 9], and progression to DKD and
ESRD [9, 10]. RAAS inhibition with angiotensin converting
enzyme inhibitors (ACEIs) and angiotensin receptor blockers
(ARBs) also reduces microalbuminuria and progression to
DKD and ESRD [11–14]. Their benefit is largely attributed
to reduced vasoconstriction of the efferent arteriole which
consequently reduces hyperfiltration. Although regression of
microalbuminuria has been documented in patients with
both type 1 and type 2 diabetes, it has been demonstrated to
be irreversible in African Americans [15]. Finally, ACEIs are
currently recommended for primary prevention in patients
with diabetes even in those without evidence of chronic
kidney disease (CKD) [16, 17]. Beyond these widely known
recommendations, clinicians have little else to offer patients
with DKD.
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Figure 1: (a) Lightmicroscopy with hematoxylin-eosin staining reveals extensivemesangial expansionwithoutmarked increase in cellularity.
A Kimmelstiel-Wilson (KW) lesion is shown here and refers to the nodular glomerulosclerosis that can be seen in late disease but is not as
common as diffuse diabetic glomerulosclerosis. KW lesions are usually spherical and eosinophilic and have a central hypocellular or acellular
area. Mesangial expansion and KW lesions are both due to increased extracellular matrix production. (b) Electron microscopy reveals a
thickened basement membrane and podocyte foot process effacement.

2. Histopathology of DKD

The histopathologic changes of DKD have been well docu-
mented previously and will not be described in detail here.
Mesangial expansion caused by increased matrix secretion
and cell enlargement is the first change seen on light
microscopy, whereas electron microscopy demonstrates a
thickened basement membrane and podocyte effacement
(Figures 1(a) and 1(b)) [7]. In the vessels, intimal hyaline
thickening is present initially and later progresses to arterial
hyalinosis of the afferent and efferent arterioles which later
leads to glomerular hyperfiltration [18, 19]. Diffuse diabetic
glomerulosclerosis and Kimmelstiel-Wilson nodules (nodu-
lar glomerulosclerosis) are seen only later in the disease,
although the latter is not always seen on biopsy as is classically
taught [20]. Ultrastructurally, podocytes suffer hypertrophy
and then foot process effacement which leads to functional
changes such as increased albumin excretion [7, 18]. It should
be noted that, in patients with type 2 diabetes, GFR loss
can occur independently of albuminuria [19, 21, 22] and it
has been demonstrated that microalbuminuria is observed
in only 45% of this population [23]. The histopathologic
change of DKD has been attributed to diabetic macroan-
giopathy as opposed solely to microangiopathy and has also
been attributed to aging, atherosclerosis, hypertension, and
episodes of acute kidney injury [19, 22, 24].

3. Pathways of DKD

Previously, the above histopathologic changes were attributed
primarily tometabolic and hemodynamic derangements seen
in diabetes, the latter referring to the hyperfiltration which
occurs as a result of efferent arteriolar vasoconstriction due to
an activated renin-angiotensin-aldosterone system (RAAS).
However, it has become increasingly evident over the years
that hyperglycemia in and of itself is not the sole cause
of DKD, although inarguably, it plays a major role. Several
pathophysiologic pathways are involved in the development

of DKD, and this review will attempt to elucidate those
pathways and hopefully shed some light on therapeutic
options that may one day play a role in quelling the epidemic
of DKD and suppressing progression to ESRD.

4. Hemodynamic Pathways of DKD

Activation of the RAS leads to increased angiotensin II levels
which subsequently cause efferent arteriolar vasoconstric-
tion. Elevated levels of angiotensin II are associated with
increased albuminuria and nephropathy in both humans and
mice [18, 25, 26]. ACEIs and ARBs have a long track record
in reducing the doubling rate of creatinine, albuminuria, and
progression to nephropathy, ESRD, and death [11, 13, 14, 27].
Another potent vasoconstrictor of the efferent arteriole is
endothelin-1 (ET-1). ET-1 has various physiologic functions
in the kidney that mimic RAS including mediating vasocon-
striction and hence playing a role in hypertension, endothe-
lial dysfunction, inflammation, and fibrosis [28]. Addition-
ally, increased ET-1 expression activates a signaling cascade
which leads to mesangial cell hypertrophy and proliferation
as well as extracellular matrix (ECM) production. It is also
thought to activate receptors that directly increase glomerular
permeability, hence leading to worsening albuminuria and
progression of DKD [28].

5. Metabolic Pathways of DKD

This pathway was first detailed by Brownlee in Nature in
2001 [29]. He helped clarify that hyperglycemia leads to
increased glycolysis which then upregulates four distinct
entities: the polyol pathway, hexosamine pathway, production
of advanced glycation end products (AGEs), and activation
of protein kinase C (PKC). Before going into the details
of each of the above pathways, a review of glycolysis is
worthwhile. Glycolysis is the biochemical pathway in which
glucose is broken down by cells to make energy. Intracellular
glucose is first broken down into glucose-6-phosphate and
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Figure 2: (a) Glycolysis is the biochemical pathway in which glucose is broken down by cells to make energy. In a normoglycemic
environment, that is, in patients without diabetes, glycolysis proceeds down its well described path without shunting into the polyol pathway,
hexosamine pathway, or pathways that would lead to AGE production or PKC activation. (b) In a hyperglycemic environment, as would be
seen in patients with either type 1 or type 2 diabetes, high glucose conditions lead to activation of excess superoxide which then inhibits
the enzyme GADPH. This prevents glycolysis from proceeding down its natural course and creates a backlog of glycolysis precursors.
Increased levels of glucose upregulate the polyol pathway whereas increased levels of fructose-6-phosphate upregulate the hexosamine
pathway. Increased levels of glyceraldehyde-3-phosphate upregulate both AGE precursors and DAG, the latter being a cofactor for PKC
activation.

then fructose-6-phosphate. One step later glyceraldehyde-
3-phosphate becomes 1,3-diphosphoglycerate with the help
of glyceraldehyde-3-phosphate dehydrogenase (GADPH)
(Figure 2(a)). This is important because GADPH is inhibited

by excess superoxide produced by the electron-transport
chain which occurs in the setting of hyperglycemia [29–
31]. Inhibition of GADPH prevents glycolysis from taking
place and causes an upregulation of upstream components
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of glycolysis, specifically glucose, glucose-6-phosphate, and
fructose-6-phosphate (Figure 2(b), hyperglycemia).

5.1. The Polyol Pathway. The polyol pathway is upregulated
as a result of excess of hyperglycemia. Glucose is first
converted to sorbitol via the NADPH-dependent enzyme,
aldose reductase; sorbitol is then converted to fructose using
NAD+ as a cofactor [29] (Figure 2(b)). The reduction of
glucose to sorbitol results in decreased intracellular NADPH
levels, a cofactor involved in regenerating the antioxidant,
reduced glutathione (GSH). Decreased levels of GSH are
thought to contribute to increased intracellular oxidative
stress which in turn causes increased cell stress and apoptosis
[32]. Additionally, the oxidation of sorbitol to fructose results
in an increased intracellular NADH : NAD+ ratio which also
inhibits GADPH activity, thus propagating the inhibition of
glycolysis. The increased NADH :NAD+ ratio also increases
formation of methylglyoxal and diacylglycerol, precursors of
the AGE and PKC pathways which are discussed below [29].
Finally, the end product of the polyol pathway, fructose, has
also recently emerged as a potential nephrotoxin. In a diabetic
murine model, endogenous production of fructose through
the polyol pathway led to increased proteinuria, reduced
GFR, and increased glomerular and proximal tubular injury
when compared to mice with lower levels of endogenous
fructose. Additionally, these mice also expressed more super-
oxide levels and the inflammatory cytokine NF-𝜅B [32, 33],
the importance of which will also be discussed below.

5.2. The Hexosamine Pathway. The hexosamine pathway
stems from the third step of glycolysis, fructose-6-phosphate,
which is converted to glucosamine-6-phosphate by the
enzyme glutamine: fructose-6-phosphate amidotransferase
(GFAT) (Figure 2(b)). Glucosamine-6-phosphate is then
used as a substrate to increase transcription of inflammatory
cytokines tumor necrosis factor-𝛼 (TNF-𝛼) and transforming
growth factor-𝛽1 (TGF-𝛽1) [29]. Increased TGF-𝛽1 levels
are known to promote renal cell hypertrophy and increase
mesangial matrix components, two pathologic hallmarks of
DKD [34, 35], whereas TNF-𝛼 is an inflammatory cytokine
discussed in greater detail below.

5.3. Advanced Glycation End Products. Advanced glycation
end products (AGEs) are the result of irreversible glycation
of proteins that occurs in the presence of intracellular
hyperglycemia [18, 29, 36]. Three pathways are primarily
responsible for the production of AGE precursors: oxidation
of glucose to make glyoxal, degradation of Amadori prod-
ucts, and aberrant glycolysis which shunts glyceraldehyde-
3-phosphate into forming methylglyoxal (Figure 2(b)) [37].
Once formed, AGEs damage cells by modifying or impairing
the function of both intracellular and extracellular proteins
[36]. For example, AGE modifies both laminin and type
IV collagen and was shown to increase the permeability
of the glomerular basement membrane (GBM) [38–41].
Additionally increased concentrations of AGE are known
to dose-dependently increase expression of fibronectin and
collagen types I and IV which are thought to lead to
increased density and expansion of the extracellular matrix

in the kidney [38, 42–46]. AGEs themselves can bind various
proinflammatory receptors which then activate downstream
production cytokines such as IL-1, IL-6, and TNF-𝛼, growth
factors such a TGF-B1, vascular endothelial growth factor
(VEGF), platelet-derived growth factor subunit B (PDGF-
B), connective tissue growth factor (CTGF), and increased
generation of reactive oxygen species (ROS) [19, 38, 47, 48].
VEGF is necessary for survival of endothelial cells, podocytes,
andmesangial cells whereas CTGF is a profibrotic agent; both
have been implicated in diabetic nephropathy [38, 49, 50].

5.4.The PKC Pathway. The PKC pathway, like the AGE path-
way, stems from the fourth step in glycolysis (Figure 2(b)).
Hyperglycemia drives the conversion of glyceraldehyde-3-
phosphate into dihydroxyacetone phosphate (DHAP) and
ultimately diacylglycerol (DAG) which is a cofactor for PKC
activation [51]. In the presence of hyperglycemia, DAG is
chronically upregulated and contributes to sustained PKC
activation [52]. PKC is thought to contribute to DKD in
various ways. It increases activity levels of prostaglandin
E
2
and nitric oxide [53–55] leading to vasodilation of the

afferent arteriole and augmentation of angiotensin II’s actions
on the efferent arteriole [56, 57]; these actions collectively
contribute to glomerular hyperfiltration [51]. In the later
stages of diabetic nephropathy, there is a state of progressive
deficiency in nitric oxide which has been associated with
severe proteinuria, declining renal function, and hyperten-
sion [58, 59]. PKCalsomediatesVEGFwhich, as noted above,
is linked to abnormal intrarenal blood flow and capillary
permeability and is thought to play a role in the development
of microalbuminuria [51, 60]. PKC activation also increases
CTGF and TGF-𝛽 levels as well as production of fibronectin
and type IV collagen and contributes to GBM thickening and
ECM accumulation [51].

6. Inflammatory Pathways of DKD

The inflammatory pathway supports the idea that DKD is
not solely a result of uncontrolled hemodynamics and hyper-
glycemia but is also a consequence of a chronically activated
innate immune system and a low-grade inflammatory state in
patients with diabetes [61, 62]. Inflammatory-mediated renal
injury was reviewed recently and is summarized here [61].

NF-𝜅B is a transcription factor that regulates the expres-
sion of multiple genes related to inflammation, immunity,
apoptosis, and chemoattractant protein-1, amongst others
[63, 64], and localizes to glomerular, interstitial, and tubular
epithelial cells in the human kidney. Hyperglycemic condi-
tions are known to increase expression of NF-𝜅B [65]. In
DKD [63, 66], NF-𝜅B activation correlates with proteinuria
and interstitial cell infiltration [63, 64, 66]. Proteinuria
is known to further stimulate NF-𝜅B and contributes to
persistent proteinuria in a cyclic fashion [64].

The Janus kinase/signal transducers and activators of
transcription (JAK/STAT) signaling pathway is a way for
chemical signals outside of a cell to be relayed to gene promot-
ers at the DNA level. JAK2 is present in renal and vascular tis-
sue [67]. It is activated byROS caused by hyperglycemic states
and is associated with hypertrophy of mesangial cells [61].
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Berthier et al. demonstrated that JAK2mRNA levels inversely
correlatedwith estimated glomerular filtration rate (eGFR) in
patients with diabetic nephropathy [68].

Inflammatory cytokines such as TNF-𝛼 and interleukins
1, 6, and 18 (IL-1, IL-6, and IL-18, resp.) are expressed in
greater proportions in the kidneys of diabetic models when
compared to nondiabetic controls [69, 70]. In diabetic rat
models, increased expression of TNF-𝛼 and IL-6 was also
associated with increased kidney weight and urine albumin
excretion [69]. In patients withDKD, serum IL-18 andTNF-𝛼
levels were higher in patients with diabetes than nondiabetic
controls. IL-18 and TNF-𝛼 levels also correlated positively
with the degree of albuminuria in the patients with diabetes
[71, 72]. At the cellular level, these cytokines are thought
to increase vascular endothelial cell permeability, contribute
to glomerular hypercellularity and GBM thickening, induce
apoptosis of endothelial cells, and can be directly toxic to
renal cells [73–81].

7. Alternative Pathways of DKD

Autophagy is a highly conserved protective mechanism that
allows cells and organisms to maintain homeostasis during
periods of cell starvation or oxidative stress [82, 83]. It
involves intracellular degradation of cytotoxic proteins and
organelles by lysosomes whenever a cell is experiencing stress
[83, 84]. Decreased autophagic activity has been demon-
strated in both obesity and diabetes [85–87] suggesting that
autophagy is hampered in the setting of hypernutrition
[88]. Podocytes are known to have a high basal level of
autophagy [87]. In vitro studies of podocytes exposed to
high glucose conditions demonstrated defective autophagy
which resulted in podocyte injury [87]. On renal biopsy of
obese patients, autophagic activity was decreased in proximal
tubular epithelial cells when compared to nonobese patients
suggesting that obese patients with diabetes may be prone
to renal injury due to suppressed autophagy [88]. Dietary
restriction in rats was shown to improve urinary albumin
excretion and creatinine clearance and increase levels of Sirt1,
a positive regulator of autophagy [89].

Another conserved evolutionary mechanism is linked to
the sodium-glucose transporter 2 (SLGT2) in the proximal
tubule. SLGT2 is a low-affinity and high-capacity transporter
and is responsible for >90% of glucose reabsorption in
the proximal tubule [37, 90, 91]. Animals with a genetic
deficiency of SLGT2 lose approximately 60% of their filtered
glucose into the urine [90]. In settings of hyperglycemia, there
is upregulation of SLGT2 expression which is believed to be
of evolutionary benefit as it allows for glucose reabsorption
and hence energy conservation for both the body and brain
[90, 92]. Unfortunately, in settings of hyperglycemia due to
diabetes, this mechanism is counterproductive and further
contributes to a hyperglycemic state.

8. Therapeutic Agents Targeting
the Hemodynamic Pathway

ET-1 antagonists first showed promise in diabetic rat models
when they were compared to ACEI and had significantly

decreased renal glomerular diameter and deposition of
eosinophilic material within glomeruli [93]. In another
experimental model, the ET-1 antagonist avosentan demon-
strated attenuated mesangial and glomerular matrix protein
accumulation as well as normalization in creatinine clear-
ance; these findings were comparable or superior to mice
that had been randomized to ACEI [94]. The ASCEND
trial was a multinational, double-blind, placebo-controlled
trial which randomized patients with type 2 diabetes with
overt nephropathy to avosentan or placebo in addition to
continued RAS-inhibition. Although the trial was stopped
prematurely due to an excess of cardiovascular events in the
intervention group, there was a dose-dependent reduction in
albuminuria in the avosentan group [95] when compared to
the placebo arm. A post hoc analysis of the ASCEND trial
found that the increased events of congestive heart failure
(CHF) were preceded by increases in body weight and that
future trials with ET-1 receptor antagonists would benefit
from close monitoring of body weight to sooner identify any
potential CHF development [96]. In a more recent study,
data from two-phase 2b, randomized, double-blind, placebo-
controlled trials in patients with type 2 diabetes with overt
nephropathy were pooled to compare concomitant atrasen-
tan and RAS-inhibitor use with a placebo group. Compared
to placebo, the atrasentan/RAS inhibitor group had a dose-
dependent improvement in albuminuria. While there was
also a significant increase in body weight, the rates of cardio-
vascular events did not differ between the groups [97]. The
SONAR trial is currently undergoing large-scale recruitment
and will evaluate the effect of concomitant administration
of atrasentan and RAS inhibitor on firm clinical endpoints
such as the first occurrence to a composite renal endpoint,
doubling of serum creatinine, or the onset of ESRD [98].

9. Therapeutic Agents Targeting
the Metabolic Pathway

Aldose reductase inhibitors prevent the conversion of glu-
cose to sorbitol by inhibiting the enzyme aldose reductase.
Epalrestat was shown to prevent mesangial expansion and
improve urine albumin excretion in diabetic rats [99, 100]. In
patients with type 2 diabetes, patients allocated to 5 years of
epalrestat therapy had noworsening of albuminuria and their
kidney function decreased at a slower rate when compared
to controls [101]. In patients with insulin dependent diabetes,
tolrestat decreased eGFR, filtration fraction, and urinary
albumin excretion rate when compared to controls, a finding
thought to counteract the early changes found in DKD [102].
Tolrestat was later removed from the worldwide market due
to its association with hepatic necrosis [103].

Very few hexosamine pathway inhibitors have been stud-
ied in DKD. Azaserine is an inhibitor of the rate-limiting
enzyme, GFAT. In in vitro studies, azaserine decreased
VCAM-1 and ICAM-1 expression in hyperglycemic states and
enhanced expression of the antioxidant manganese super-
oxide dismutase levels [104]. This study demonstrated that
hyperglycemia independently impaired endothelial cell func-
tion via oxidative stress and not solely via the hexosamine
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pathway; it also demonstrated that azaserine was capable of
decreasing GFAT activity but more importantly had antioxi-
dant effects. Rhein is an anthraquinone derived from rhubarb
known to decrease hexosamine pathway activity [105]. In a
rat mesangial cell line that replicates a diabetic state, rhein
decreased TGF-𝛽1 and p21 expression and contributed to
decreased cellular hypertrophy and ECM synthesis [106].
Benfotiamine is a synthetic thiamine that converts fructose-
6-phosphate, AGE precursors, and PKC precursors into
pentose-5-phosphate and thus diverts activity from the hex-
osamine pathway and decreases AGE production and PCK
activation [107, 108]. Diabetic rats treated with benfotiamine
had suppressed AGE accumulation and decreased vascular
endothelial dysfunction and attenuation of nephropathy
[109, 110]. However, in a double-blind, randomized, placebo-
controlled clinical trial evaluating the effect of benfotiamine
on patients with type 2 diabetes and microalbuminuria
despite ACEI or ARB therapy, there was no significant dif-
ference in urinary albumin excretion between benfotiamine
and the placebo-control group [111].

AGE inhibitors were initially encouraging but newer
compounds have not been pursued in recent years [37]. The
prototype AGE inhibitor, aminoguanidine, reacts with AGE
precursors and prevents their formation [112]. It was ini-
tially promising in diabetic rat models which demonstrated
that aminoguanidine reduced the rise in albuminuria and
prevented mesangial expansion when compared to diabetic
controls [113]. ACTION I was a randomized, double-blinded,
placebo-controlled study in patients with type 1 diabetes with
nephropathy. In patients randomized to aminoguanidine,
there was a reduction in 24-hour total urine protein (𝑃 ≤
0.001) and a trend toward a slower decline in eGFR (𝑃 =
0.05) [114]. ACTION II was a randomized, double-blind,
placebo-controlled trial in patients with type 2 diabetes
with renal disease; however it was terminated early due
to safety concerns and apparent lack of efficacy [115, 116].
Pyridoxamine is derived from the vitamin B family and
inhibits AGE formation and prevents AGE-dependent oxida-
tive damage [18, 117]. In phase II trials of patients with type
1 and type 2 diabetes with overt nephropathy, pyridoxamine
significantly reduced the change from baseline in serum
creatinine (𝑃 < 0.03) [118]. Although these findings were
not replicated in a randomized, double-blinded, placebo-
controlled trial of 317 patients with type 2 diabetes with pro-
teinuric nephropathy, it did find that patients with less renal
impairment at baseline experienced a trend toward lower
change in serum creatinine from baseline when randomized
to pyridoxamine (𝑃 = 0.05) [119]. Additionally, PIONEER
is a phase 3 randomized, double-blind, placebo-controlled,
multicenter study currently recruiting patients with type 2
diabetes with nephropathy (defined as urine protein ration >
1200mg/g) that will compare the time to ≥50% increase in
serum creatinine from baseline or time to ESRD in patients
randomized to pyridoxamine versus placebo [120].

Other therapeutics have targeted the downstream prod-
ucts of AGEs such as ROS, TGF-B1, and CTGF. Bardoxolone
is a potent activator of the nuclear factor erythroid-derived
factor 2-related factor 2 (Nrf2) pathway which is a cellular
regulator against oxidative species [121]. Bardoxolone was

initially evaluated in the BEAM study, a phase 2 randomized,
double-blind, placebo-controlled trial in patients with type 2
diabetes with CKD. It demonstrated that bardoxolone signif-
icantly improved eGFR in a dose-dependent manner when
compared to placebo [122]. The BEACON study was a larger
phase 3 study with 2,185 patients with type 2 diabetes and
stage 4 CKD which confirmed that bardoxolone improved
eGFR, blood pressure, and albuminuria. However it did not
reduce progression to ESRD, and unfortunately, bardoxolone
also caused an increase in the rate of cardiovascular events
and the study was terminated prematurely [123].

Sevelamer is thought to reduce oxidative stress by bind-
ing AGEs in the gastrointestinal tract. In a single-center,
randomized study which compared administration of cal-
cium carbonate to sevelamer in patients with diabetes with
stage 2-4 CKD, sevelamer significantly decreased markers
of inflammation and oxidative stress (TNF-𝛼, FGF-23, and
methylglyoxal levels) and increased antioxidant markers.
There was no significant change in eGFR or proteinuria [124].
While the authors concluded that sevelamer may one day
be used as an early therapeutic in DKD, this remains to be
validated in larger trials.

Sulodexide is a glycosaminoglycan which is thought to
inhibit ROS production and TGF-𝛽1 expression [18]. It also
is an inhibitor of the heparanase enzyme, an enzyme respon-
sible for cleaving heparan sulfate, the main polysaccharide of
theGBM [125, 126]. A decreased amount of heparan sulfate in
theGBM is thought to alter its selectivity and allow negatively
charged macromolecules such as albumin to pass into the
urinary space [127]. Overexpression of heparanase in diabetic
mouse models increased TNF-𝛼 expression in kidney tissue
and activated kidney-damaging macrophages, whereas hep-
aranase knockout mice with diabetes demonstrated reduced
albuminuria [126, 128]. Sulodexide first showed promise in
the dose-range finding DiNAS trial which demonstrated that
it reduced micro- and macroalbuminuria in patients with
both type 1 and 2 diabetes [129]. The Sun-MICRO study
was a multicenter placebo-controlled double-blinded study
performed in patients with type 2 diabetes with microalbu-
minuria that failed to show that sulodexide decreased albu-
minuria [130]. When these results became available, the Sun-
MACRO study which was evaluating the effect of sulodexide
on patients with type 2 diabetes with overt proteinuria
(>900mg/d) was terminated early. At the time of its termi-
nation, 1,029 person-years of follow-up had not detected a
significant difference between sulodexide and placebo in pro-
gression to ESRD or change in creatinine from baseline [131].

Nicorandil is a known antianginal agent that dilates
vessels by opening the ATP-dependent K channel and donat-
ing nitric oxide. This same ATP-dependent K channel is
expressed in podocytes. Nicorandil is thought to prevent
reduced levels of manganese superoxide dismutase and
sirtuin-3 (Sirt3), a regulator of the mitochondrial adaptive
response to stress, in injured kidneys [132, 133]. In diabetic
mouse models, nicorandil was shown to significantly reduce
proteinuria, pathologic features of glomerular injury, and
protected against podocyte loss [134]. There are no studies to
date of nicorandil use in patients with diabetes.
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Cilostazol is a phosphodiesterase III inhibitor used to
relieve symptoms of claudication in patients with peripheral
vascular disease. It has also been shown to decrease ROS in
situ [135]. In diabetic rats, cilostazol not only significantly
decreased ROS, but also significantly decreased albuminuria,
glomerular size, and expression of TGF-𝛽 and NF-𝜅B [136].
In patients with type 2 diabetes randomized to cilostazol,
there was a significant decrease in albuminuria as well as a
decreased expression of inflammatory markers and adhesion
molecules [137, 138] suggesting that cilostazol likely has
several favorable effects in the diabetic kidney which remain
to be delineated.

Pirfenidone is another TGF-𝛽 inhibitor that first showed
promise in a diabetic murine model. In diabetic mice ran-
domized to pirfenidone, there was a reduction in TGF-𝛽 pro-
duction andmesangialmatrix expansion, althoughno change
in albuminuria was noted [139]. In a randomized, double-
blind, placebo-controlled study in 77 patients with diabetic
nephropathy, patients that received low-dose pirfenidone had
significantly improved eGFR and decreased markers of fibro-
sis (TNF, soluble TNF receptor 1, andfibroblast growth factor-
23) when compared to placebo whereas no difference was
noted in the high-dose group or in albuminuria [140]. The
authors suggested that the improvement in eGFR may have
been due to a reduction in fibrosis and that antifibrotics may
be able to halt and potentially reverse a degree of renal injury.

Tranilast is another antifibrotic agent thought to inter-
fere with the effects of TGF-𝛽. It was shown to decrease
albuminuria and urinary type IV collagen excretion in
patients with diabetes with albuminuria [141]. An analog of
tranilast (FT061) is currently undergoing phase I enrollment
inAustralia.There is also an ongoing phase 2 study evaluating
the effects of an anti-TGF-𝛽 antibody (LY2382770) on the
change in serum creatinine levels from baseline to 12 months
in patients with type 1 and type 2 diabetes with diabetic
nephropathy, the results of which have not yet been reported
[142].

FG-3019 is an anti-CTGF monoclonal antibody which
demonstrated a non-dose-dependent reduction in albumin-
uria in phase 1 trails in patients with diabetes with microal-
buminuria [143]. Phase 2 trials were halted due to suboptimal
study design [144]; however a second phase 1 study of FG-
3019 in patients with diabetic nephropathy on background
ACEI or ARB has been completed although the results have
not yet been reported [142, 145].

Ruboxistaurin is a selective inhibitor of the PKC-𝛽 iso-
form and was also promising in diabetic rat models demon-
strating improvement in eGFR, albumin excretion rate,
and mesangial expansion rate when compared to controls
[146, 147]. In a phase 2, randomized, double-blind, placebo-
controlled study of ruboxistaurin in patients with type 2
diabetes and persistent albuminuria, patients randomized
to ruboxistaurin had a significant decrease in albuminuria
while maintaining a stable eGFR and urinary TGF-𝛽 level,
whereas those randomized to placebo had an increase in their
albuminuria and urinary TGF-𝛽 levels as well as a decrease
in their eGFR [148, 149]. In larger and longer term studies
looking at ruboxistaurin in diabetic retinopathy, the agent
was confirmed to have a good safety profile; unfortunately,

baseline albuminuria was not measured in this population so
it is not possible to know how many patients in this study
started out with DKD. Although these early studies were
promising enough to support a phase 3 trial of ruboxistaurin
evaluating clinical endpoints as mortality, ESRD, and DKD
progression, this was halted for business considerations and
further development has been postponed [19, 37, 150].

10. Therapeutics Targeting
the Inflammatory Pathway

As noted above, NF-𝜅B expression in the kidney is associated
with inflammation and cell death and leads to interstitial cell
infiltration and proteinuria. In diabetic rat models, the thi-
azolidinedione, pioglitazone, was shown to decrease expres-
sion of TGF-𝛽, type IV collagen, and ICAM-1, the infiltration
of macrophages in kidneys, and albuminuria and glomerular
hypertrophy [65]. A recent study looked at the effect of
another thiazolidinedione, rosiglitazone, in 28 patients with
type 2 diabetes with overt nephropathy. Patients randomized
to rosiglitazone had a significant reduction in proteinuria
although there was no change in eGFR [151]. There is
currently an ongoing phase 4 study evaluating the long-term
effects of thiazolidinediones in patients with type 2 diabetes
with microalbuminuria to see if the onset of overt nephropa-
thy is significantly delayed when compared to controls [152].

1,25-Dihydroxyvitamin D3 has been shown to block
hyperglycemia-induced renal injury by inhibiting NF-𝜅B
activation in vitro [153]. In humans, there have also been vari-
ous small studies showing that vitaminD3 has an antiprotein-
uric effect in patients with diabetes [154–156]. It remains to
be seen whether the antiproteinuric effect is due primarily to
NF-𝜅B inhibition or a combination of effects from vitamin D.

The JAK/STAT pathway was shown to be inhibited by
suppressors of cytokine signaling (SOCS) proteins. Increased
expression of SOCS1 and SOCS3 was seen in biopsies of
patients with DKD when compared to those with minimal
change disease [157]. When SOCS1 and SOC3 adenovirus
were delivered into the kidneys of diabetic rats, their renal
function significantly improved; they had decreased mesan-
gial expansion, fibrosis, and influx of macrophages, as well
as decreased expression of inflammatory and profibrotic
proteins [157]. It is unclear if the JAK/STAT pathway will
ever be a reasonable target for therapeutics in DKD given its
ubiquitous presence in the body and the potential for adverse
effects [61]. However, JAK/STAT pathway inhibitors have a
long history of safety and efficacy in autoimmune diseases
such as rheumatoid arthritis. Baricitinib (LY3009104) is a
JAK1/JAK2 inhibitor that initially developed to treat rheuma-
toid arthritis and is now also being evaluated in a phase 2
study for patients with DKD [158].

The inflammatory cytokines also have far-reaching effects
in the body which unfortunately limit their therapeu-
tic targeting. For example, mycophenolate mofetil (MMF)
is an immunosuppressant which decreased albuminuria,
glomerular macrophage and lymphocyte infiltration, and
glomerulosclerosis in diabetic rats [159, 160]. Etanercept
and infliximab both inhibit TNF-𝛼 and also decreased uri-
nary excretion of both albumin and TNF-𝛼 in diabetic rat
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models [161, 162]. However, at this time, the use of potent
agents such as MMF, etanercept, or infliximab, which carry
their own potentially lethal side effects, seems unethical in
the treatment of a progressive disease such as DKD.

Like cilostazol, pentoxifylline is a phosphodiesterase
inhibitor which also has anti-inflammatory properties. In
animal models it decreased expression of TNF-𝛼, IL1, IL-6,
and interferon-𝜆 [61, 69]. In diabetic rats treated with pen-
toxifylline, there was decreased GBM thickening, podocyte
flattening, loss of fenestration in the endothelial cell layer, and
albuminuria when compared to controls [69, 163]. Various
studies in patients with type 1 and type 2 diabetes have
demonstrated the antiproteinuric effects of pentoxifylline
[164–166]. A meta-analysis determined that the decrease in
proteinuriawith pentoxifyllinewas similar to that of captopril
[167, 168] and that the combination of pentoxifylline with
an ACEI or ARB had significantly additive antiproteinuric
effects [169, 170]. Despite the promising results of pentox-
ifylline, no large-scale randomized clinical trials have been
performed to date that analyze relevant clinical endpoints
such as mortality or progression to DKD or ESRD [19]. Until
data is available to support the use of pentoxifylline alone or
combined with an ACEI or ARB, it is unlikely to become a
mainstream therapeutic for DKD.

Interestingly, various complementary therapeutics have
been pursued in the quest for improving DKD, including
milk thistle, turmeric, and green tea. Silymarin is the main
active component found in seeds of milk thistle and has
been used since ancient times for a variety of ailments; it
is thought to have powerful anti-inflammatory, antioxidant,
and antifibrotic properties [171]. In a randomized, double-
blind, placebo-controlled trial of 60 patients with type 2
diabetes with macroalbuminuria, silymarin was found to
significantly reduce albuminuria and urinary and serum
levels of TNF-𝛼 and malondialdehyde, the latter being a
marker of oxidative stress, when compared to controls [171].
Turmeric is a popular South Asian spice of the ginger
family and has been shown in experimental models to
reduce expression of both TGF-𝛽 and IL-8 [172, 173]. In
a randomized, double-blind, placebo-controlled trial of 40
patients with type 2 diabetes with overt nephropathy, those
randomized to curcumin, the active ingredient in turmeric,
were noted to have significantly decreased proteinuria, serum
levels of TGF-𝛽, and serum and urinary levels of IL-8 when
compared to controls [174]. Additionally, the antioxidant
derived from green tea, epigallocatechin gallate, is currently
recruiting patients for a clinical trial to evaluate its effect
on albuminuria and oxidative stress in patients with diabetic
nephropathy [18, 175]. The therapeutic agents involved in the
inflammatory pathway are delineated in Figure 3.

11. Therapeutics Targeting
the Alternative Pathway

The loss of autophagy appears to be mendable in experi-
mental models. As mentioned above, dietary restriction in
diabetic rats improved albuminuria, mesangial expansion,
renal fibrosis, expression of TGF-𝛽1, fibronectin, collagen

type IV, ICAM-1, NF-𝜅B, and Sirt1, the latter being a positive
regulator of autophagy [89]. In this particular study, the
diabetic rat models were given a 40% restriction of food
consumption which lasted 24 weeks. Although such a study
in humans has not been reproduced on a large-scale, a recent
small study suggested that caloric restriction does play a
role in ameliorating DKD. Six obese patients with advanced
diabetic nephropathy who were already on an ACEI or ARB
were assigned to a 12-week very low calorie ketogenic weight
reduction diet and were encouraged to exercise. The patients
had a 12% reduction in weight and a significant improvement
in serum creatinine and eGFR. Although patients had a non-
statistically significant reduction in albuminuria, the authors
argue that the trend toward improvement is notable given
that the patients were already on a renin-aldosterone axis
inhibitor [176]. Although recommending a severe dietary
restriction to patients with diabetes may not be a reasonable
solution in today’s hyperphagic society, targeting autophagy
remains a viable option [177]. Sirt1 activators such as resver-
atrol have been studied in diabetic rat models and were
shown to improve proteinuria and renal dysfunction and
decreaseROSwhen compared to controls [178–180].Whether
resveratrol and other activators of Sirt1 will play a role inDKD
remains to be seen.

Finally, sodium-glucose cotransporter 2 (SGLT2) inhibi-
tors are of potential therapeutic benefit in DKD.They inhibit
the reabsorption of glucose in the proximal tubule, reduce
HbA1c levels by 0.5–1% [90], and contribute to weight loss as
a result of glucosuria and improve systolic and diastolic blood
pressures as a result of osmotic diuresis [181, 182]. In diabetic
mouse models, dapagliflozin, a SGLT2 inhibitor, reduced
hyperglycemia, albuminuria, the expression of inflammatory
cytokines and oxidative stress, glomerular mesangial expan-
sion, and interstitial fibrosis when compared to controls. Cur-
rently, two gliflozins, canagliflozin and dapagliflozin, have
been approved by the FDA for use in the treatment of type
2 diabetes. Unfortunately, the gliflozin trials understandably
focus on diabetic markers of disease and there is little infor-
mation on the benefits that these medications may exert on
the kidney. To date, there have been five randomized, double-
blind, placebo-controlled trials that have evaluated the effect
of gliflozins on eGFR and the results aremixed. Of three trials
on dapagliflozin, eGFR was unchanged in a 12-week study
when compared to controls [183] whereas in a second study
serum creatinine, creatinine clearance, and eGFR decreased
over a 48-week period when compared to controls [184]. In
the third study, eGFR decreased over the first week but then
stabilized and at the end of the 104-week follow-up, there
was no significant difference in serum creatinine or eGFR
when compared to controls. Additionally, albuminuria and
proteinuria were slightly improved in the dapagliflozin group
when compared to controls [185]. The first canagliflozin trial
demonstrated a reduction in eGFR after 52 weeks compared
to baseline; however the reduction was less than that in the
glimepiride control group [186]. The second canagliflozin
trial also noted a reduction in eGFR after 52 weeks when
compared to placebo, but this was only significant in the high
dose canagliflozin arm.Additionally, therewas a trend toward
improvement in albuminuria, although this was again only
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Figure 3: A schematic summary of the therapeutics that have been identified in the inflammatory pathway. The inflammatory state occurs
as a result of hyperglycemia and is seen in patients with both type 1 and 2 diabetes.
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Figure 4: A schematic summary of the various therapeutic agents that have been identified in themetabolic and alternative pathways is shown
below. As noted in Figure 2(b), a hyperglycemic milieu shunts glucose metabolism away from the classic glycolysis pathway as is typically
seen in patients with type 1 and type 2 diabetes. Sodium-glucose cotransport (SLGT2) inhibitors and Sirt1 activators play a role in alternative
pathway and are noted in the upper left. SLGT2 inhibitors combat hyperglycemia by inducing glucosuria, whereas Sirt1 activators are thought
to upregulate the highly conserved mechanism, autophagy.

seen in the high dose canagliflozin arm [187]. At this time,
it remains unknown what effect, if any, gliflozins have on
mitigatingDKD. It is possible that the reduction in eGFR that
is seen early on with their treatment is a result of osmotic
diuresis and the consequent intravascular volume depletion

that they cause. It will be possible that future long-term
studies may demonstrate a similarity to ACEIs and ARBs in
that they cause an initial decline in eGFR but have long-term
renoprotective effects. The therapeutic agents involved in the
alternative pathway are shown in Figure 4.
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12. Commentary

Despite the tremendous advancement in delineating the
pathways that contribute to DKD, clinicians are still a long
way away from having a new drug in their prescribing
arsenal. Many of the above therapeutics have been successful
in experimental models, yet few have proven sufficiently
efficacious to be brought into the mainstream management
of DKD. Perhaps one of the reasons that finding a new
drug for DKD has proven difficult is that there still is not a
perfectmarker forDKD.While albuminuria is considered the
gold standard for diagnosing DKD and remains the strongest
predictor of mortality in diabetes, it does not detect almost
half of patients with diabetes that progress to DKD whilst
remaining normoalbuminuric [23, 188]. Perhaps the prolific
research in tubular biomarkers will reveal one that is more
specific for DKD than albuminuria. It would be more useful
yet to find amarker of DKD that precedes the histopathologic
damage that has already occurred once albuminuria is noted.
A study by Lurbe et al. demonstrated that an increase in
systolic blood pressure during sleep preceded the develop-
ment of microalbuminuria in patients with type 1 diabetes
[189]. It would be remarkable to find that an inexpensive
and noninvasivemaneuver such asmeasuring blood pressure
during sleep could identify future cases of DKD before they
develop. It would certainly be less expensive and noninvasive
than performing more kidney biopsies in patients with
diabetes. However, performing kidney biopsy in this setting
may also be beneficial to patients and clinicians alike. In a
retrospective study of 620 patients with type 1 and type 2
diabetes that had undergone biopsy, only 37% had isolated
DKD. Thirty-six percent of patients had nondiabetic renal
disease, which included glomerulonephritides, acute tubular
necrosis, and hypertensive nephrosclerosis; the remaining
27% had nondiabetic renal disease superimposed on DKD
[18, 190]. Until clinicians are better at discerning the cause of
kidney disease in their patients, obtaining a histopathologic
diagnosismay prove fruitful as it would allow them to identify
those patients with or without DKD and guide their care
accordingly.

Ultimately, the treatment of DKD will likely require
a multifaceted approach given the numerous pathways
involved in the diabetic kidney. Perhaps one day, “triple ther-
apy” will also refer to the multipronged approach necessary
to tackle DKD.
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