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Abstract

Background: Unambiguous identification of nontypeable Haemophilus influenzae (NTHi) is not possible by conventional
microbiology. Molecular characterisation of phenotypically defined NTHi isolates suggests that up to 40% are Haemophilus
haemolyticus (Hh); however, the genetic similarity of NTHi and Hh limits the power of simple molecular techniques such as
PCR for species discrimination.

Methodology/Principal Findings: Here we assess the ability of previously published and novel PCR-based assays to identify
true NTHi. Sixty phenotypic NTHi isolates, classified by a dual 16S rRNA gene PCR algorithm as NTHi (n = 22), Hh (n = 27) or
equivocal (n = 11), were further characterised by sequencing of the 16S rRNA and recA genes then interrogated by PCR-
based assays targeting the omp P2, omp P6, lgtC, hpd, 16S rRNA, fucK and iga genes. The sequencing data and PCR results
were used to define NTHi for this study. Two hpd real time PCR assays (hpd#1 and hpd#3) and the conventional iga PCR
assay were equally efficient at differentiating study-defined NTHi from Hh, each with a receiver operator characteristic curve
area of 0.90 [0.83; 0.98]. The hpd#1 and hpd#3 assays were completely specific against a panel of common respiratory
bacteria, unlike the iga PCR, and the hpd#3 assay was able to detect below 10 copies per reaction.

Conclusions/Significance: Our data suggest an evolutionary continuum between NTHi and Hh and therefore no single
gene target could completely differentiate NTHi from Hh. The hpd#3 real time PCR assay proved to be the superior method
for discrimination of NTHi from closely related Haemophilus species with the added potential for quantification of H.
influenzae directly from specimens. We suggest the hpd#3 assay would be suitable for routine NTHi surveillance and to
assess the impact of antibiotics and vaccines, on H. influenzae carriage rates, carriage density, and disease.
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Introduction

Globally, respiratory diseases cause an estimated 1.9 million

deaths per year [1]. One of the most important aetiological

organisms of both adult and childhood respiratory disease is non-

typeable Haemophilus influenzae (NTHi) [2]. NTHi is frequently

isolated from the respiratory tract during episodes of sinusitis, otitis

media and pneumonia and is the most common cause of chronic

obstructive pulmonary disease and bronchiectasis exacerbations

[2,3,4].

Traditionally, Haemophilus species have been differentiated by

growth requirements, including X (Hemin) and V (Nicotinamide)

factors, and phenotypic traits such as hydrogen sulphide

production, ornithine decarboxylase production and haemolytic

activity [5]. Serological methods such as latex and slide

agglutination, or PCR assays targeting genes involved with capsule

production such as the bex genes [6], are used to identify

encapsulated strains of H. influenzae. Unfortunately, conventional

microbiology does not readily distinguish NTHi from its close

relative Haemophilus haemolyticus (Hh). Haemolysis of horse or rabbit

blood agar plates provides the simplest phenotypic difference,

although the use of these blood plates for NTHi identification is

not commonplace. Furthermore, with the discovery of the non-

haemolytic Haemophilus haemolyticus phenotype [5], accurate

identification of NTHi has become increasingly difficult.

Outside whole genome sequencing, multilocus sequence

analysis provides the most accurate identification of true NTHi

[7,8]. However, this technique is both expensive and labour

intensive and is not practical for routine screening. The

identification of a single gene target for simple consistent

identification of NTHi from Hh and variant species would be

useful for surveillance and intervention studies to determine the
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true burden of disease caused by NTHi; however, absolute

discrimination of these species may not be possible with this simple

strategy.

Several gene targets have been explored for speciation of NTHi,

Hh and closely related variants, with varying results. These include

the lipo-oligosaccharide gene lgtC [7], the IgA protease gene iga

[7,8], the fuculose kinase gene fucK [9], the pilus gene pilA [10] and

the 16S rRNA gene [11]. Recently, Wang et al. exploited the

species heterogeneity of the protein D gene (hpd) to develop two

probe-based real time PCR assays (hpd#1 and hpd#3). These

hpd#1 and hpd#3 assays demonstrated excellent sensitivity against

a clinically diverse collection of 102 NTHi isolates (96% and 98%

respectively) [12]. Two outer membrane protein genes of NTHi

(omp P6 and omp P2), are well conserved and have also been used as

PCR targets. However, a real time PCR assay targeting the omp P6

gene was unable to differentiate NTHi from Hh [13], and a recent

study demonstrated limited NTHi sensitivity of an omp P2 real time

PCR [12].

Molecular analysis of NTHi collections has revealed a

significant presence of Hh in some studies. Among phenotypic

NTHi isolates obtained from adult chronic obstructive pulmonary

disease patients in the United States, 27% (n = 44) from the

nasopharynx and 40% (n = 258) from sputum were found to be

Hh using 16S rRNA gene PCR [11]. The same method was used

to scrutinise 266 phenotypically-defined NTHi isolates obtained

from the nasopharynx of otitis prone and control children (aged 6

to 36 months) in Western Australia. In this study, 79% were

designated true NTHi, 12% were Hh and 9% were indeterminate

[14]. In contrast, a Danish study re-examined 480 predominantly

non-invasive but clinically-associated H. influenzae isolates identi-

fied by dominant microbiological growth, using probe hybridisa-

tion with fucK, the adherence and penetration protein gene hap and

the superoxide dismutase gene sodC gene, and had only to

reclassify 0.4% (2/480) as Hh [9]. Of the 250 middle ear isolates

cultured in the aforementioned studies, none were demonstrated

to be Hh or variant strains [9,11,14].

In remote Indigenous communities of the Northern Territory,

otitis media affects approximately 90% of children less than 2

years of age [15], and 20% of children are hospitalised with an

acute lower respiratory infection in their first year of life [16]. In

this population NTHi is a more dominant pathogen in terms of

prevalence than either Streptococcus pneumoniae or Moraxella catarrhalis

[17,18] with nasopharyngeal isolation in up to 80% of Indigenous

children 3–7 years of age [19], and ear discharge isolation in 21%

of Indigenous children with chronic suppurative otitis media

(mean age 8 years) [20]. Where there is a high burden of

respiratory disease, it is of particular interest to be able to

determine the relative contribution of true NTHi and Hh.

Although numerous potential gene targets have been evaluated,

definitive identification of NTHi from Hh and variant species with

a single gene target has not been demonstrated. Furthermore,

there has been no direct comparison of many of the targets

investigated to date. In this paper, we assess and compare the

ability of a selection of existing and novel PCR-based assays to

identify true NTHi from a genetically diverse selection of

phenotypic NTHi isolates.

Results

Sixty phenotypic NTHi isolates, classified by 16S rRNA gene

PCR [11] as NTHi (n = 22), Hh (n = 27) or equivocal (n = 11),

were further characterised by sequencing of the 16S rRNA and

recombinase A (recA) genes then interrogated with a selection of

PCR-based assays designed to exclusively identify NTHi.

Sequence phylogeny
Sequencing of the 16S rRNA and recA genes was performed on

the 60 study isolates and 2 reference isolates (H. influenzae - ATCC

19418, and H. haemolyticus - ATCC 33390) respectively yielding

598 and 543 unambiguous bases. Accession numbers are provided

in Table S1. Using the Neighbour-Joining algorithm, radial

phylogenetic trees (Figure 1) were constructed from the individual

and concatenated 16S rRNA and recA gene sequences. Six

Genbank sequences (Table 1) were included for reference and

all trees were rooted by the Genbank reference sequence of

Haemophilus parainfluenzae – T3T1.

For each tree, distally discrete clusters of NTHi and Hh were

evident, interspersed by less well defined isolates as shown in

Figure 1. The sequenced H. influenzae reference strain (ATCC

19418) grouped with the strict cluster of NTHi’s by recA sequence

but was less well defined by the 16S rRNA gene sequence;

however, its sequence similarity across both 16S rRNA and recA

gene sequences was sufficient to place it with the strict NTHi’s on

the concatenated tree. Also on the concatenated tree two study

isolates (40 and 41) diverged toward the H. parainfluenzae (T3T1)

root isolate, and one isolate (38) grouped with the T3T1 root

isolate (Figure 1). The diversity revealed in the phylogeny

precluded complete dichotomous speciation.

PCR of study isolates
The 60 phenotypic NTHi study isolates were subsequently

screened with 6 conventional PCR assays targeting the omp P2, omp

P6, lgtC, 16S rRNA, fucK and iga genes, 2 real time PCR assays

targeting the hpd gene, and a single PCR high resolution melt

(PCR-HRM) assay designed to exploit a single nucleotide

polymorphism (SNP) in the omp P6 gene (omp P6-HRM) as shown

in Figure 2. Overall the PCR assays revealed positivity ranging

from 47% (16S rRNA) to 72% (omp P6). The omp P6-HRM

separated the isolates into two distinct melt curves (Figure 2). The

upper group of curves included the H. influenzae reference strain

ATCC 19418 and the lower group of curves included the Hh

reference strain ATCC 33390. The inclusion of standards in the

real time PCR assays allowed an estimation of the limit of

detection (LOD). For the hpd#3 assay the LOD was below 10

copies per reaction at approximately cycle 36. The PCR results are

displayed in conjunction with the 16S rRNA and recA concate-

nated phylogeny in Figure 3.

Strict definition of NTHi
When assessed by the strict phylogenetic definition of NTHi

shown in Figure 3 (Strict NTHi cluster), most PCR assays returned

positive results. Only lgtC (4 negatives), iga (2 negatives), hpd#1 and

hpd#3 (1 negative each) had less than 100% sensitivity. Against

this strict definition, the 16S rRNA gene PCR assay demonstrated

the greatest combination of sensitivity and specificity with a

receiver operator characteristic (ROC) curve area of 91%, whereas

all other assays had poor specificity (44%–70%). The inability of

the 16S rRNA gene and recA sequence data to separate isolates

into distinct species, and the detection of multiple NTHi target

genes outside the strict NTHi group, led to the designation of

several isolates as ‘‘fuzzy species’’ (Figure 3).

Study-defined NTHi
For pragmatic assessment of the PCR assays, we enforced a

study definition of NTHi. Isolates were interpreted as NTHi if

they demonstrated a distinct phylogenetic grouping (16S rRNA

and recA concatenated sequences), had approximately 97% DNA

similarity or greater with the strict NTHi isolate 86-028NP (16S

Molecular Detection of Haemophilus influenzae
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rRNA and recA concatenated sequences) and possessed most of the

target genes (PCR results). Figure 3 displays our study-defined

NTHi isolates which includes both the strict NTHi cluster and the

fuzzy species.

Assessment of PCR assays against study-defined NTHi
Sensitivity, specificity and ROC curve areas were calculated for

each assay against study-defined NTHi. The hpd#1, hpd#3 and iga

PCR assays were equally most accurate, each returning a

sensitivity, specificity and ROC curve area of 89%, 92% and

90% respectively (Table 2). The omp P2 and lgtC assays had ROC

curve areas of 86% and 88% respectively. The remainder of assays

had ROC curve areas below 81%.

Reference isolates
Screening of the reference isolates showed that the omp P2, omp

P6, omp P6-HRM, lgtC, hpd#1 and hpd#3 PCR-based assays were

exclusively positive for the 2 reference H. influenzae strains (Table 3).

Figure 1. Sequencing phylogeny of study NTHi isolates. Radiation trees are presented for (A) 598 bases of the 16S rRNA gene, (B) 545 bases of
the recA gene, and (C) the concatenation of these sequences (1143 bases). The trees are rooted by H. parainfluenzae T3T1 as indicated by yellow dots.
Blue dots represent isolates that cluster with H. influenzae reference strains, orange dots represent closely related phylogenetic variants, red dots
represent likely Hh isolates and green dots represent variants related to H. parainfluenzae. Colours were assigned based on the phylogenetic
grouping of the concatenated sequences in radial tree C.
doi:10.1371/journal.pone.0034083.g001

Table 1. Genbank reference strains.

Genbank nucleotide position

Reference Sequence Serotype Accession 16S (598 bp) recA (543 bp)

H. influenzae 86-028NP NTHi CP000057 193310–193907 685751–686294

H. influenzae Rd KW20 d L42023 127271–127868 621954–622498

H. influenzae 10810 b FQ312006 179410–180007 731026–730483

H. influenzae PittGG NTHi CP000672 443167–443764 1141114–1141657

H. influenzae PittEE NTHi CP000671 377847–377250 1805263–1805807

H. parainfluenzae T3T1 na FQ31200 2078840–2079437 662626–663168

Sequence information was obtained from 6 reference strains (www.ncbi.nlm.nih.gov – December 2010) to facilitate phylogenetic speciation. na = not applicable.
doi:10.1371/journal.pone.0034083.t001
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The 16S rRNA, fucK and iga PCR assays were less specific,

returning positive results for other organisms in the panel

including Haemophilus species, Pasteurella multocida, Neisseria meningi-

tidis and Pseudomonas aeruginosa. Interestingly, the iga PCR assay was

positive for reference H. parainfluenzae (ATCC 7901) but not for

study isolate 38, revealed to be H. parainfluenzae upon repeat

microbiological examination.

Discussion

Overview and significance
Accurate identification of NTHi is important to establish the

relationship of this pathogen with carriage and infection. In the

Northern Territory of Australia, where NTHi is a major cause of

respiratory disease and otitis media, several randomised controlled

trials are underway to assess the effect of antibiotics such as

azithromycin, and vaccines including the pneumococcal H.

influenzae protein D conjugate vaccine (PHiD-10CV; SynflorixH),

on NTHi carriage. These studies rely on conventional microbi-

ology. Failure to discriminate NTHi from its non-pathogenic

relatives can result in a mismatch of cause (NTHi) and effect

(respiratory disease and otitis media). We recommend the hpd#3

assay for confirmation and future assessment of NTHi in carriage

and disease.

Sequence phylogeny
To challenge the PCR assays we selected phenotypic NTHi

isolates with significant 16S rRNA gene variability as indicated by

Murphy’s 16S rRNA PCR [11] and this diversity was confirmed

by the 16S rRNA and recA sequencing. The Neighbour-Joining

radial phylogenetic trees in Figure 1 demonstrate an evolutionary

continuum between NTHi and Hh that was unchanged using the

alternative algorithms, Minimum Evolution or Maximum Parsi-

mony. This ‘‘fuzziness’’ between species suggests that it may be

impossible to differentiate NTHi from Hh without broader genetic

interrogation. Other studies have used multilocus sequence

analysis for improved Haemophilus species delineation [7,8].

Considering NTHi and Hh are close evolutionary relatives that

continue to inhabit an overlapping niche, maintaining their

potential for genetic recombination, the lack of genetic distinction

between these species is not surprising. The only obvious feature of

the phylogeny is the strict cluster of NTHi isolates which might

indicate that NTHi has a successful genetic formula for causing

infection that Hh does not. This is supported by the finding that

isolates collected as a consequence of clinical examination or from

sterile sites are predominantly NTHi [8,11,14]. In this clinical

context current microbiological techniques are generally adequate,

however there have been recent reports of invasive disease caused

by Hh [21].

Novel PCR assays
The two novel assays that were designed for this study targeted

omp P6 and omp P2. The omp P6-HRM was set up to speciate NTHi

from Hh via a SNP in the omp P6 gene. Unfortunately, like the omp

P6 PCR, the omp P6-HRM over-represented NTHi. The apparent

bimodal nature of the chosen omp P6 SNP was not consistent with

the overall genetic diversity that defined NTHi and Hh in this

study. PCR-HRM is a powerful and cost effective method of

identifying amplicon heterogeneity and careful target selection can

allow successful species resolution [22]; a combination of several

Figure 2. Differentiation of study isolates using omp P6-HRM. Analysis of publically available sequence identified a SNP in the omp P6 genes
of NTHi (G) and Hh (T) corresponding to nucleotide position 402465 of H. influenzae Rd KW20, Accession No. L42023. HRM of the 40 base pair
amplicon (402446–402485) surrounding the SNP revealed 2 discrete melt profiles; one that clustered with reference H. influenzae (ATCC 19418) and
another that clustered with reference Hh (ATCC 33390).
doi:10.1371/journal.pone.0034083.g002
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PCR-HRM assays might provide enhanced discrimination. The

omp P2 PCR assay was more accurate for detecting our study-

defined NTHi with 81% sensitivity and 92% specificity and was

among the best assays tested. This is comparable with a previous

study, where omp P2 PCR demonstrated 85% sensitivity for NTHi

[12].

PCR results
Six of the 9 PCR assays gave comparable results; the omp P2,

lgtC, hpd#1, hpd#3, fucK and iga assays were positive for 50%–57%

of isolates. The omp P6 and omp P6-HRM assays tended to over

represent NTHi (positive for 70% and 72% respectively) while the

16S rRNA gene assay detected only 47% of isolates producing

Figure 3. Neighbour-Joining dendogram and PCR results. The Neighbour-Joining dendogram of the concatenated 16S rRNA and recA gene
sequences is displayed in conjunction with the PCR results and the percent DNA similarity (compared to H. influenzae 86-028NP). The tree is rooted by
H. parainfluenzae as indicated by the yellow dots. The blue dots represent the strict NTHi group, the orange dots represent closely related
phylogenetic variants, the red dots represent likely Hh isolates and the green dots represent variants related to H. parainfluenzae. Study-defined NTHi
was based collectively on the phylogeny, PCR data and DNA similarity as is indicated on the right (3 = NTHi or 7 = Hh).
doi:10.1371/journal.pone.0034083.g003
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results more aligned to the strict NTHi phylogeny. Most of the

assays were positive for isolates beyond the strict NTHi cluster

suggesting these fuzzy isolates were genetically more similar to

NTHi than Hh. Thus, the study definition of NTHi considered the

PCR results in addition to the phylogeny and similarity of the

concatenated sequences (Figure 3).

Assessment of each PCR assay against the study definition of

NTHi demonstrated that the 3 PCR assays, hpd#1, hpd#3 and iga,

were equally sensitive and specific against the 60 study isolates;

however the iga PCR assay lacked specificity against the panel of

reference organisms (Table 3). It should be noted that significant

diversity exists among isolates of Haemophilus species and the results

from the reference panel, comprising only 2 strains of NTHi and

single strains of the other Haemophilus species, should be interpreted

with caution.

In the recent publication by Wang et al. [12], the hpd#3 assay

was demonstrated to be highly specific but did detect 1 of 2 H.

aphrophilus isolates among a reference panel of 61 respiratory

organisms representing 21 different species. The reported LOD

was 70 copies per PCR reaction when limited to 35 cycles. In our

study, the hpd#3 PCR assay did not detect any of the 12 non-H.

influenzae reference organisms tested, including 1 H. aphrophilus

isolate, and we consistently achieved a LOD of 10 copies per PCR

reaction. When applied to predominantly invasive NTHi isolates,

Wang showed that the hpd#3 assay had a sensitivity of 98% (100/

102). For our genetically diverse selection of study-defined NTHi

isolates, the hpd#3 assay was positive for 89% (33/37).

Conclusion
In summary, no single gene target tested was able to

unequivocally differentiate NTHi and Hh. Comparative genomic

studies are required to identify the genetic determinants that

enable NTHi to successfully invade sterile sites and cause disease.

The hpd#3 probe-based real time PCR assay was the best assay

tested, having a superior combination of sensitivity, specificity and

LOD for NTHi. Furthermore, this assay has applicability to both

clinical isolates and clinical specimens and can be used to quantify

bacterial density making it a valuable tool for more accurate

monitoring of NTHi in nasopharyngeal carriage, otitis media and

respiratory infection.

Materials and Methods

Study isolates
This study tested DNA extracted from stored isolates obtained

during a hospital-based surveillance study conducted in Western

Australia from 2007 to 2009 [23]. Nasopharyngeal swabs were

collected from children 6–36 months of age who had been

anaesthetized for either tympanostomy tube insertion or general

surgery. NTHi was identified by colony morphology and

dependence on X and V growth factors. Isolates were defined as

non-typeable based on a lack of agglutination with typing sera

(Bactus AB). DNA was extracted using the Wizard SV gDNA kit

according to manufacturer’s instructions (Promega). The 60

isolates included in this study were defined by Murphy’s dual

16S rRNA gene PCR algorithm [11] as NTHi (n = 22), Hh

Table 2. Sensitivity, specificity and ROC curve areas of PCR assays for study-defined NTHi.

n = 60 omp P2 omp P6 omp P6 HRM lgtC hpd#1 hpd#3 16S fucK iga

Sensitivity 80.6 94.4 94.4 80.6 88.9 88.9 69.4 75 88.9

Specificity 91.7 62.5 66.7 94.8 91.7 91.7 87.5 75 91.7

ROC area 0.86 0.78 0.81 0.88 0.90 0.90 0.78 0.75 0.90

[95% CI] [0.77; 0.94] [0.68; 0.89] [0.70; 0.91] [0.80; 0.96] [0.83; 0.98] [0.83; 0.98] [0.68; 0.89] [0.63; 0.86] [0.83; 0.98]

doi:10.1371/journal.pone.0034083.t002

Table 3. PCR screening of respiratory reference isolates.

Reference strain (ATCC) omp P2 omp P6 omp P6 HRM lgtC hpd#1 hpd#3 16S fucK iga

Haemophilus influenzae (19418 & 49274) + + + + + + + + +

Haemophilus haemolyticus (33390)

Haemophilus parahaemolyticus (10014) +

Haemophilus parainfluenzae (7901) + +

Haemophilus aphrophilus (19415) +

Pasteurella multocida (12945) + +

Neisseria meningitidis (13090) +

Pseudomonas aeruginosa (9027) +

Streptococcus pneumoniae (49619)

Moraxella catarrhalis (8176)

Streptococcus pyogenes (Local*)

Klebsiella pneumoniae (Local*)

Staphylococcus aureus (Local*)

*Sourced from isolate collection at Menzies School of Health Research, Darwin, NT, Australia.
doi:10.1371/journal.pone.0034083.t003

Molecular Detection of Haemophilus influenzae

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e34083



(n = 27), or equivocal (n = 11). This dual assay generates equivocal

results in approximately 10% of clinical and surveillance isolates

[11,14].

Sequence phylogeny
Partial sequencing of the 16S rRNA and recA genes, both

commonly used for bacterial classification [7,8,24], was performed

on the 60 clinical isolates and 2 reference strains (H. influenzae -

ATCC 19418, and H. haemolyticus - ATCC 33390) to assist

speciation. A complete 16S rRNA gene amplicon of approxi-

mately 1500 bp and a partial recA amplicon of approximately

600 bp were generated using PCR primers and methodology

described elsewhere [11,24]. Each amplicon was sequenced in

singlicate using the reverse primer from the PCR. All sequencing

was carried out by Macrogen, Korea. Six reference sequences

were downloaded from Genbank [25] (www.ncbi.nlm.nih.gov –

December 2010) to facilitate species identification (Table 1).

Sequencing traces were assessed, cropped and exported for further

analysis using the Lasergene software (DNASTAR, USA).

Sequence alignments (ClustalW) and phylogenetic analyses

(Neighbour-Joining, Minimum Evolution and Maximum Parsi-

mony) were conducted using MEGA version 4 [26].

Established PCR assays
A literature search was conducted to identify gene target

candidates from established PCR-based assays with a high degree

of accuracy for identification of NTHi, including discrimination

from Hh. Seven targets were chosen on the basis of their

demonstrated sensitivity and specificity for NTHi, and the PCR

assays were conducted based on the published methods (Table 4).

DNA for standards was extracted from the reference strain ATCC

19418 and a dilution series ranging from 10 to 100000 genome

copies per reaction was used to estimate the LOD of real time

PCR assays.

Novel PCR assays
Publically available sequence data [25] (www.ncbi.nlm.nih.gov

– September 2010) was utilised to design novel assays targeting the

two outer membrane protein genes, omp P2 and omp P6.

omp P2 PCR
Primers (Table 4) were selected from the conserved regions of

omp P2 to generate a 186 base pair amplicon corresponding to

nucleotide region 154223–154408 of the H. influenzae Rd KW20

complete genome, accession number L42023. PCR was

performed using standard Taq PCR Core Kit reagents (Qiagen)

with 0.5 mM of each primer and 1 ml of DNA extraction

template in each 25 ml reaction. The annealing temperature was

55uC and cycling was repeated 35 times. PCR products were

isolated by agarose gel electrophoresis, stained using SYBRH
Safe DNA gel stain (Invitrogen), and visualised with the Gel Doc

XR system in conjunction with Quantity One software (Bio-

Rad).

Table 4. Study primers and probes.

NTHi Target Gene Sequence (59 - 39) Length (bp) [Primer/Probe] (nM) Amplicon (bp) Ref

Established Assays

fucK F ACCACTTTCGGCGTGGATGG 20 500 343 [24]

R AAGATTTCCCAGGTGCCAGA 20 500

iga F GTTCCACCACCTGCGCCTGCTAC 23 500 813* [27]

R GTTATATTGCCCCTCGTTATTCA 23 500

omp P6 F CGGTTTTGATAAATATGACATTACT 25 300 182 [28]

R CTAAATAACCTTTAACTGCATCT 23 300

lgtC F CGGACTGTCAGTCAGACAATG 21 500 839 [7]

R CTCAAAATGATCATACCAAGATG 23 500

hpd#1 F AGATTGGAAAGAAACACAAGAAAAAGA 27 300 113 [12]

R CACCATCGGCATATTTAACCACT 23 100

P AAACATCCAATCG‘‘T’’AATTATAGTTTACCCAATAACCC** 37 200

hpd#3 F GGTTAAATATGCCGATGGTGTTG 23 100 151 [12]

R TGCATCTTTACGCACGGTGTA 21 300

P TTGTGTACACTCCGT ‘‘T’’ GGTAAAAGAACTTGCAC** 33 100

16S F TGACATCCTAAGAAGAGC 18 500 513 [11]

R GCAGGTTCCCTACGGTTA 18 500

Novel Assays

omp P2 F GTTCACGTTTCCACATTAAAGC 22 500 186 This study

R CACGACCAAGTTTTACTTCAC 21 500

omp P6(HRM) F CTTTTGGCGGTTACTCTGTT 20 500 40 This study

R TAACGTTGTTGAAGATCAG 19 500

All product sizes are based on the NTHi Rd KW20 genome.
*product size varies considerably across strains.
**hpd probes were labelled with Hex at 59-end, SpC3 at 39-end, and Black Hole Quencher (BHQ) at the internal ‘‘T’’. F (forward primer); R (reverse primer); P (probe); HRM
(high resolution melt).
doi:10.1371/journal.pone.0034083.t004
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omp P6-HRM
The omp P6 primers (Table 4) for PCR-HRM were selected

around a conserved SNP (G for NTHi and T for Hh; as shown in

Figure 2) corresponding to nucleotide 402465 (amplicon 402446–

402485) of the H. influenzae Rd KW20 complete genome, accession

number L42023. Real time PCR was performed using 5 ml of the

26 SensiMixTM SYBRH Green No-ROX reaction buffer

(Quantace), 0.5 mM of each primer and 1 ml of DNA extraction

template in each 10 ml reaction. Annealing was set at 58uC.

Following 35 cycles of PCR, HRM was performed between 66uC
and 76uC in 0.1uC increments for 2 seconds each. All thermo-

cycling was done with the Rotor-Gene 6000 real time platform

(Qiagen).

Reference isolates
The PCR assays were also conducted on a panel of reference

isolates of common respiratory bacterial species to determine their

broader specificity. The following species were included: H.

influenzae, H. haemolyticus, H. parahaemolyticus, H. parainfluenzae, H.

aphrophilus, P. multocida, N. meningitidis, P. aeruginosa, Streptococcus

pneumoniae, Moraxella catarrhalis, Streptococcus pyogenes, Klebsiella

pneumonia and Staphylococcus aureus. Reference strains were sourced

from either Microbiologics (Minnesota, USA) or locally from the

culture collection at the Menzies School of Health Research

(Northern Territory, Australia) as shown in Table 3.

Statistical Analysis
Sequence phylogeny, PCR results, and DNA similarity were

used to define NTHi for this study. The sensitivity and specificity

of each PCR method for study NTHi was calculated and assessed

by the area under the ROC curve. Analyses were conducted using

STATA IC version 11 (StataCorp, Texas, USA).
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(DOC)
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