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Abstract

Background: In the Mexican Caribbean, the exotic lionfish Pterois volitans has become a species of great concern because of
their predatory habits and rapid expansion onto the Mesoamerican coral reef, the second largest continuous reef system in
the world. This is the first report of DNA identification of stomach contents of lionfish using the barcode of life reference
database (BOLD).

Methodology/Principal Findings: We confirm with barcoding that only Pterois volitans is apparently present in the Mexican
Caribbean. We analyzed the stomach contents of 157 specimens of P. volitans from various locations in the region. Based on
DNA matches in the Barcode of Life Database (BOLD) and GenBank, we identified fishes from five orders, 14 families, 22
genera and 34 species in the stomach contents. The families with the most species represented were Gobiidae and
Apogonidae. Some prey taxa are commercially important species. Seven species were new records for the Mexican
Caribbean: Apogon mosavi, Coryphopterus venezuelae, C. thrix, C. tortugae, Lythrypnus minimus, Starksia langi and S. ocellata.
DNA matches, as well as the presence of intact lionfish in the stomach contents, indicate some degree of cannibalism, a
behavior confirmed in this species by the first time. We obtained 45 distinct crustacean prey sequences, from which only 20
taxa could be identified from the BOLD and GenBank databases. The matches were primarily to Decapoda but only a single
taxon could be identified to the species level, Euphausia americana.

Conclusions/Significance: This technique proved to be an efficient and useful method, especially since prey species could
be identified from partially-digested remains. The primary limitation is the lack of comprehensive coverage of potential prey
species in the region in the BOLD and GenBank databases, especially among invertebrates.
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Introduction

Since the first appearance of the exotic lionfish in the western

Atlantic [1], there has been great concern about the potential

impact on coral reefs in the Caribbean region. A number of studies

have recently been published on the lionfish invasion, in

particular, the geographical distribution [2], the feeding behavior

in the Bahamas [3], an analysis of cytochrome B mtDNA

sequences to examine founder effects and for species identifications

[4], establishing a molecular phylogeny [5], use of nursery habitats

such as mangroves, [6], and evaluating native predator species [7].

Two species of lionfishes have been recorded as invaders in the

western Atlantic: Pterois volitans (Linneo, 1758) and Pterois miles

(Bennet, 1828). Although once considered to be synonyms,

sequence differences in cytochrome b have confirmed the

separation of the two species [8]. Nevertheless, despite cytochrome

b is an important marker for species determination and it was

successfully used to discriminate both, the barcodes, based in

sequences of the cytochrome oxidase I, are becoming a wider

standard in species identification (see www.fishbol.org).

At present, the lionfish invasion has spread to all along the

coastal Yucatan Peninsula, including the entire Mesoamerican

coral reef and has been recorded throughout the Caribbean as far

as Venezuela [2,9]. Recently, and for the first time, a larval lionfish

was collected and reported in the Atlantic Ocean [10]. In the

beginning, seem to this species was introduced as an ornamental

fish, and later it escaped from an aquarium located in Florida

[1,2,11].

DNA barcodes have proven to be more than 90% successful in

the identification of marine fish species in studies from Australia

[12] and Mexico, where they also were used to connect
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developmental stages unidentified with adults [13]. One of the first

and more important applications of this technique has been to

detect exotic species in a fast, reliable and cost-effective way [14].

For example, exotic moths have been detected among field-caught

populations [15] and an invasive microcrustacean, as the

cladoceran Daphnia lumholtzi, has been discovered in Mexican

freshwaters [16]. Another useful application of this method is the

analysis of dietary habits. This approach has recently been used for

an analysis of bat feces, since DNA barcoding permits the

identification of prey in the absence of morphological evidence

after digestion [17]. In case of fishes, two previous studies have

used this technique, one to analyze herbivorous fish diets [18], and

the other confirming the utility of the technique for piscivorous

fishes, but in the laboratory [19].

In this study, we apply the DNA barcoding method to analyze

the prey composition for the carnivorous lionfish. The material

studied comes from several collections of lionfish in Cozumel,

along the Mexican portion of the Mesoamerican Coral Reef. Our

primary goals were to establish, based on DNA barcodes, which

species of Pterois is present on the Mexican Caribbean reef and

which species comprise the diet of lionfish, based on the analysis of

stomach contents.

Results

This study is the first report of the application of DNA

barcoding to determine the prey composition for the invasive

lionfish in the Atlantic Ocean. Partially-degraded biological

material, such as stomach contents, can yield small PCR DNA

fragments, sometimes less than 200 bp in length. Nevertheless,

DNA barcoding can identify species with fragments as short as

100 bp with at least 90% efficiency [20]. The development of

these mini-barcodes permits the species identification. This opens

a great possibility to obtain sequences from short DNA fragments,

quickly and cheaply [21].

DNA Barcode Identification of Lionfish Adults
Pterois volitans and P. miles overlap in most morphological and

meristic characters but do have different DNA sequences [8]. All

sequences we obtained from 30 adult lionfish in the Mexican

Caribbean matched with Indo-Pacific Pterois volitans with over 99%

similarity. The average K2P distance among individuals was

0.054%.The mean sequence composition was guanine 19.75%,

cytosine 26.98%, adenine 23.22%, tyrosine 30.06%, GC 46.73%.

GC% Codon position 1, 56.07, GC% Codon position 2, 42.81

and GC% Codon position 3, 40.83 (Table 1).

Identification of Prey Based in DNA Barcoding
Of the 157 stomachs examined, 144 had measurable contents

(Table 2). In total 330 prey items were obtained but about 90%

were mostly digested specimens. These included fish, typically only

body parts or fragments of skeleton and tissue. As a result, most

prey items were impossible to visually identify, even to order level.

Some crustaceans were almost complete and could be identified

before barcoding. All of the prey tissue fragments were barcoded,

but only 168 yielded readable sequences. The read lengths in the

majority (85%) were more than 600 bp long, while the remaining

sequences had segments between 500 and 300 bp (mainly

crustaceans) and only two sequences were less than 200 bp. There

were no insertions, deletions or stop codons in any sequence. The

sequences were compared to the reference library of sequences in

the Barcode of Life Database (BOLD). Of the 168 sequences, 125

matched with fishes and 43 with crustaceans. In case of the fish

sequences, 94% matched with greater than 99.38% similarity to

reference sequences in BOLD, allowing identification to the

species level. The remaining 6% could be identified only to genus

(Table 3).

Five orders of fishes comprising 14 families, 22 genera and 34

species were identified. The families with the greatest number of

species were Gobiidae (7) and Apogonidae (6) followed by

Scaridae (4), Labrisomidae (3), Labridae, Pomacentridae, Tripter-

ygiidae, Serranidae (2), Holocentridae, Grammatidae, Haemuli-

dae, Scorpaenidae, and Monacanthidae (1) (Figure 1, Table 3).

The total fishes species identified in the stomach contents

(Table 3, Figure 1) include 27 species previously reported in the

Table 1. Pterois volitans COI sequences composition (from 30
samples).

Sequence composition (%) Min Mean Max SE

Guanine 18.96 19.75 20.19 0.028

Citocyne 26.66 26.98 27.01 0.009

Adenine 23.16 23.22 23.61 0.017

Tyrosine 29.7 30.06 30.41 0.013

Guanine-Citocyne 45.97 46.73 46.97 0.024

Guanine-Citocyne codon position 1 54.2 56.07 56.13 0.047

Guanine-Citocyne codon position 2 41.86 42.81 44.01 0.041

Guanine-Citocyne codon position 3 40.03 40.83 41.52 0.047

doi:10.1371/journal.pone.0036636.t001

Table 2. Lionfish (Pterois volitans) specimens collected in the different localities from Mexican Caribbean.

Locality
Specimens
collected

Specimens with
stomach content

Collecting date
(year)

Min-Max length of
the specimens (mm)

Cozumel 58 47 2009 28–216

Xcalak 59 54 2009, 2010 40–262

Mahahual 35 21 2010 70–320

Isla Contoy 10 6 No data 10–90

Banco Chinchorro 13 11 2009 60–282

Puerto Morelos 1 1 2009 76–308

Playa del Carmen 2 1 2009 330

Isla Mujeres 9 3 No data 20–70

doi:10.1371/journal.pone.0036636.t002

Lionfish Prey Barcoding in Mexican Caribbean
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Mexican Caribbean: Sargocentron coruscum, Apogon lachneri, A.

maculatus, A. townsendi, Astrapogon puncticulatus, Coryphopterus eidolon,

C. hyalinus, Priolepis hipoliti, Gramma loreto, Haemulon flavolineatum,

Halichoeres garnoti, Thalassoma bifasciatum, Malacoctenus triangulatus,

Abudefduf saxatilis, Stegastes partitus, Scarus iseri, S. taeniopterus, Sparisoma

aurofrenatum, S. viride, Cephalopholis cruentata, Liopropoma rubre,

Enneanectes altivelis, Enneanectes boehlkei, Bothus lunatus, Pterois volitans,

Monacanthus tuckeri, and seven species unreported before: Apogon

mosavi, Coryphopterus venezuelae, C. thrix, C. tortugae, Lythrypnus minimus,

Starkia langi and S. ocellata.

In terms of percent composition by number (%N) fishes

dominated the lionfish diet (74.4%). The fish families with highest

%N were Labridae (26.4%), comprising Halichoeres garnoti (17.6%)

and Thalassoma bifasciatum (8.8%); Gobiidae (20%), comprising

Coryphopterus venezuelae (4.8%), C. tortugae (4.8%) Lythrypnus (4.8%), C.

eilodon (1.6%), C. hyalinus (1.6%), C. thrix (0.8%), and Priolepis hipoliti

(0.8%); Scorpaenidae (12.8%) comprised the one species Pterois

volitans; and Scaridae (10.4%) comprising Sparisoma aurofrenatum

(6.4%) Scarus iseri (1.6%), S. viride (1.6%), and S. taeniopterus (0.8%).

The overall percent composition by number of crustaceans in

lionfish stomach contents was 25.6%, with Decapoda the most

frequent prey (93%) followed by Stomatopoda (4.6%) and

Euphausiacea (2.4%). Of the 43 crustacean prey sequences, we

identified 20 different taxa of which twelve were decapods. Only

four showed more than a 90% similarity to reference sequences on

BOLD, while the remainder showed similarities between 79 and

89% (Table 4). Three crustacean orders were identified:

Euphausiacea with only one species, Euphausia americana; Stoma-

Table 3. List of fishes prey identified in the stomach contest of lionfish (Pterois volitans) by DNA barcoding analysis.

Order Family Genus Species
No. of
specimens Similarity (%)

Beryciformes Holocentridae Sargocentron Sargocentron coruscum 1 100

Perciformes Apogonidae Apogon Apogon lachneri 2 100

Perciformes Apogonidae Apogon Apogon maculatus 2 100

Perciformes Apogonidae Apogon Apogon mosavi* 1 99.68

Perciformes Apogonidae Apogon Apogon townsendi 2 100

Perciformes Apogonidae Astrapogon No match found 1

Perciformes Apogonidae Astrapogon Astrapogon puncticulatus 1 99.84

Perciformes Gobiidae Coryphopterus Coryphopterus venezuelae* 6 99.69

Perciformes Gobiidae Coryphopterus Coryphopterus eidolon 2 100

Perciformes Gobiidae Coryphopterus Coryphopterus hyalinus 2 100

Perciformes Gobiidae Coryphopterus Coryphopterus thrix* 2 99.85

Perciformes Gobiidae Coryphopterus Coryphopterus tortugae* 6 100

Perciformes Gobiidae Priolepis Priolepis hipoliti 1 99.69

Perciformes Gobiidae Lythrypnus* Lythrypnus minimus* 6 99

Perciformes Grammatidae Gramma Gramma loreto 3 99.84

Perciformes Haemulidae Haemulon Haemulon flavolineatum 3 100

Perciformes Labridae Halichoeres Halichoeres garnoti 22 100

Perciformes Labridae Thalassoma Thalassoma bifasciatum 11 100

Perciformes Labrisomidae Malacoctenus Malacoctenus triangulates 2 99.69

Perciformes Labrisomidae Starksia Starksia ocellata* 1 99.38

Perciformes Labrisomidae Starksia Starksia langi* 1 99

Perciformes Pomacentridae Abudefduf Abudefduf saxatilis 1 100

Perciformes Pomacentridae Stegastes Stegastes partitus 6 99.85

Perciformes Scaridae Scarus Scarus iseri 2 100

Perciformes Scaridae Scarus Scarus taeniopterus 1 100

Perciformes Scaridae Sparisoma Sparisoma aurofrenatum 8 100

Perciformes Scaridae Sparisoma Sparisoma viride 2 100

Perciformes Serranidae Cephalopholis Cephalopholis cruentata 3 100

Perciformes Serranidae Liopropoma Liopropoma rubre 2 100

Perciformes Tripterygiidae Enneanectes Enneanectes altivelis 3 100

Perciformes Tripterygiidae Enneanectes Enneanectes boehlkei 1 100

Pleuronectiformes Bothidae Bothus Bothus lunatus 1 100

Scorpaeniformes Scorpaenidae Pterois Pterois volitans 16 100

Tetraodontiformes Monacanthidae Monacanthus Monacanthus tuckeri 1 100

Also is showing percent of closest matches to reference sequences on BOLD.
*New range extension for Mexican Caribbean.
doi:10.1371/journal.pone.0036636.t003
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topoda with two samples that apparently belong to Gonodacty-

lidae and Pseudosquillidae, and the remaining matches were all to

Decapoda Among the latter, one specimen matched the genus

Synalpheus, another matched to Hippolytidae and two groups, of

three and seven specimens respectively, matched to two clades

within Palemonidae. All remaining taxa could not be resolved to a

finer level beyond Decapoda (Figure 2).

Discussion

Adults
It is possible to distinguish nine species of Pterois, including

P. miles and P. volitans from the reference sequences of COI

mtDNA in the BOLD database. All of our specimens matched

with Pterois volitans and the low divergence values among them are

consistent with a recent invasion from a small number of

specimens. Our results supports the idea that P. volitans is the

only species which has spread into the Caribbean, including the

Mexican region [4,9,10,22–24].

Prey Composition
In the Mexican Caribbean the lionfish (Pterois volitans) feeds on a

wide diversity of prey, primarily reef-fish species and secondarily

crustaceans. These results are concordant with the findings for

prey composition of lionfish in the Bahamas [3,22,25].

Our values of %N in fishes and crustaceans are similar to those

reported by Morris and Adkins in the Bahamas, who found that

fishes comprised 71% of the prey items and crustaceans comprised

28.5% [3].

Seven of the identified species constitute range extensions into

this area: Apogon mosavi, Coryphopterus venezuelae, C. thrix, C. tortugae,

Lythrypnus minimus, Starksia langi and S. ocellata. The first five species

are listed for the western and eastern Caribbean even in Belize

[26–28], so their presence in this region is expected. The lionfish

Figure 1. Neighbour joining tree for 34 fish species found in the stomach contents of the lionfish. Tree is based on genetic distances
(K2P) for the COI gene; the base of the triangle gives a rough idea of the most consumed preys.
doi:10.1371/journal.pone.0036636.g001
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whose stomach contents included C. tortugae were collected from

Banco Chinchorro and Xcalak. Recently we collected two adults

of this specie in the same locality confirming the presence of this

species here. Coryphopterus venezuelae were detected in three lionfish

stomachs from Xcalak. Vásquez Yeomans (Pers. comm.) collected

a larva of this species in 2006 in East Cayo Centro, Chinchorro,

confirming the presence of this fish in this area. Our six specimens

of Lythrypnus matched in BOLD with L. minimus, one adult from

Dominica (LIDMA 726-11) identified by Benjamin Victor (Pers.

comm.) and 62 more Lythrypnus unidentified sequences. S. langi was

described recently and is the Belizean species for the species

complex of S. sluiteri [29] therefore their presence in the Mexican

Caribbean is also expected. Finally, Starksia ocellata is part of a

species complex, named S. occidentalis in the Caribbean and the

Western Caribbean [30]. This species is a representative with a

known range from North Carolina to Florida and the northern

Gulf of Mexico. In Mexico there is only a single report in the

literature, from Isla Contoy, but there is no voucher specimen.

[31].

In the list of prey species, there are five fishes economically

important in local markets: Haemulon flavolineatum (Chak-chi or

French grunt), Scarus iseri (loro listado or striped parrotfish),

Sparisoma aurofrenatum (loro manchado or red band parrotfish),

S. viride (loro brilloso or stoplight parrotfish) and Cephalopholis

cruentata (cabrilla, cherna enjambre or graysby). Although these

species have not high value in the markets, they are an important

source of food for local people.

The yellowhead wrasse, Halichoeres garnoti was the most frequent

species in the analyzed stomachs, no doubt reflecting its common

occurrence in the region [31]. In contrast, Coryphopterus hyalinus and

Gramma loreto have been reported as the most frequent prey of

lionfish in the Bahamas, likely reflecting habitat differences in the

two locations. [3].

The barcoding of prey species revealed 16 specimens of Pterois

volitans, although the majority of the samples showed a high degree

of digestion (incomplete skeletons with little tissue). Nevertheless,

we found one specimen (MXIV868) almost completely intact and

morphologically identifiable as Pterois. This is the first confirmation

of cannibalism among invasive lionfish, a phenomenon that had

been previously suggested as likely but with an absence of evidence

[22]. The lionfish specimens found in the stomachs were small the

intact specimen measured 25 mm SL indicating a preference for

juveniles (Figure 3).

Only one specimen in the prey list did not match to any species

in the BOLD or GenBank databases. It could be identified to the

genus Astrapogon. This genus is represented in the Caribbean by

three species, all are sequenced in BOLD: A. punticulatus was found

in the prey samples in this study and the other species, A. stellatus

and A. alutus did not match our sequence, raising the possibility of

a cryptic species of Astrapogon in the region.

Prior studies in the Bahamas recorded 50 species of fishes in the

diet of lionfish based on morphological examination of stomach

contents as well as field observations [3,22,23]. We found 31 of

those species and 17 not previously recorded. Considering the

sampling effort for morphological and behavioral analyses, it is

evident that DNA barcoding is a more efficient technique, limited

for the present only by the incompleteness of the reference

databases.

Among crustaceans, the only euphausiid identified was Eu-

phausia americana (CRU124.1) from a fish collected in Mahahual

(Figure 2). This species has been reported from Xcalak to north of

Cozumel Island [32,33].Two specimens were identified as

stomatopods. The sample CRU198 from Playa del Carmen,

Table 4. List of crustaceans prey identified in the stomach contest of lionfish (Pterois volitans) by DNA barcoding analysis.

Order Family Genus Specie Similarity (%)

Decapoda Alpheidae Synalpheus * 99.24

Decapoda Hyppolytidae Thor * 93.18

Decapoda Palaemonidae * * 88

Decapoda Palaemonidae * * 88.24

Decapoda * * * 84.30

Decapoda * * * 84

Decapoda * * * 85.71

Decapoda * * * 86.2

Decapoda * * * 85.63

Decapoda * * * 85.34

Decapoda * * * 83.3

Decapoda * * * 82.83

Decapoda * * * 82.82

Decapoda * * * 96.52

Decapoda * * * *

Decapoda * * * 79.22

Euphausiacea Euphausiidae Euphausia Euphausia americana 100

Stomatopoda Gonodactylidae * * 87.2

Stomatopoda Pseudosquillidae Pseudosquilla * 95.39

Also is showing percent of closest matches to reference sequences on BOLD.
*Unable to match with any records in BOLD database.
doi:10.1371/journal.pone.0036636.t004
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matched (95% similarity) near the species Pseudosquilla ciliate, but

with more than 3% divergence, the specimen was considered

Pseudosquilla sp. The species reported in the Mexican Caribbean

are P. ciliate [34,35] and P. oculata (IBUNAM:CNCR: CR10740) in

the database of the National Collection of Crustaceans from the

National Autonomous University of Mexico (UNAM, http://test.

unibio.unam.mx), therefore it is possible that this specimen

represents P. oculata. The other stomatopod (CRU238 from

Contoy Island), matched 87.2% nearest to the Gonodactylidae.

There are three species reported in the literature of this family in

Quintana Roo [34,35] and the National Collection of Crustaceans

in UNAM, Neogonodactylus bredini and N. oerstedii are in the BOLD

database but do not match this sequence, therefore the specimen

may represent the third species N. spinulosus.

The most frequent crustacean order preyed on by lionfish was

decapods, comprising 95% of the crustaceans. Most of the

decapods sequences did not match closely to sequences in the

reference databases (Table 3), in which case we applied ‘‘strict

criteria’’ [36]. Only one sample (CRU 118) was 93% similar to

Thor amboinensis, and thus considered Thor sp. Four species of this

genus have been reported in the Mexican Caribbean: T.

amboinensis, T. dobkini, T. floridanus and T. manningi [34,37,38].

The sample CRU120 was assigned to the snapping shrimp genus

Synalpheus (with 99% of similarity), in the Mexican Caribbean there

are six species: Synalpheus fritzmuelleri, S. hemphilli, S. longicarpus, S.

minus, S. townsendi and S. apioceros [35,39]. There are 19 genera of

snapping shrimps in BOLD, none of which matched with our

specimen. Two sets of sequences matched to Palemonidae with

88% similarity (CRU136, 138 and 140 and CRU 107, 153, 155,

202,101,141,213). Little is known of the palaemonid fauna of this

region and about 32 species of these shrimps have been reported

from the shallow waters from Quintana Roo [38].

Crustaceans are an important component of stomach contents

studied in most marine fishes, but their identification using

morphology is difficult. For example, from 264 crustaceans found

in lionfish stomachs from the Bahamas, 246 could not be identified

[3]. In contrast, we could identify our 45 crustacean samples to at

least the order level. Species level identifications are usually not

feasible because of the present incomplete state of the reference

databases.

In this study, the methodology yielded 51% efficiency for

sequencing. However, most specimens of lionfish were placed into

ethanol, with no injection into the viscera or thick muscle. Then,

tissues of stomach contents were subsampled one year later, for pcr

amplification. In contrast, from 35 tissues taken directly from fresh

stomach contents, 29 of them gave good quality sequences, i.e.

83% efficiency, indicating the importance of the fixation process

for the samples.

Our results suggest that lionfish are mostly opportunistic

predators, eating any prey of appropriate size, consistent with

findings from the native range in the Indo-Pacific [40,25] and

including cannibalistic predation on smaller conspecifics as well.

Figure 2. Neighbour joining tree for 20 clades representing
crustaceans in the stomach contents of the lionfish. Each clade
represents a different species, only one could be identified with no
doubts; the base of the triangle gives a rough idea of the most
consumed crustaceans.
doi:10.1371/journal.pone.0036636.g002

Figure 3. Specimen morphologically identifiable as a lionfish, from the stomach content.
doi:10.1371/journal.pone.0036636.g003

Lionfish Prey Barcoding in Mexican Caribbean
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Materials and Methods

For determination of the Pterois species, a small piece (about 1–

3 mm3) of muscle was removed from 30 specimens collected from

Cozumel (25), Xcalak (2), Puerto Morelos (2) and Playa del

Carmen (1) and placed in 100% ethanol. To avoid DNA

contamination, all tools were flame sterilized before sampling

each specimen. The remainder of each fish was retained as a

reference voucher in the Fish Collection of El Colegio de la

Frontera Sur, Chetumal Unit (ECOCHP).

For the stomach contents analysis, we extracted the stomach

from 122 lionfish from whole specimens previously fixed in

alcohol, from Banco Chinchorro, Cozumel, Isla Contoy, Isla

Mujeres, Puerto Morelos, Playa del Carmen, Xcalak. In case of

Mahahual, the digestive tract from 35 fresh lionfish were dissected

and placed in 96% ethanol and kept on ice. In total 157 stomachs

were analyzed (Table 2). The specimens were collected by

personnel from Secretarı́a del Medio Ambiente y Recursos

Naturales (SEMARNAT, Mexico) working in protected areas or

volunteers. Collecting methods varied from hand nets, harpoons to

plastic bags.

From all stomach contents 1 mm3 tissue plugs were extracted

from all recognizable material as a prey item under a binocular

microscope, after that, the tissue was cleaned with alcohol to avoid

contamination from other material.

To extract DNA, the plugs were placed in vertebrate lysis buffer

with Proteinase K and digested overnight at 56uC. Genomic DNA

was subsequently extracted using a membrane-based approach on

the Biomek FX� liquid handling station and AcroPrep 96,1 mL

filter plates with 1.0 mM PALL glass fiber media [41]. A 652–

658 bp segment of COI was amplified using different fish primers:

FishF1, FishR1, FishF2, FishR2 (Ward et al. 2005) or a M13-tailed

fish primer cocktail [42].

The 12.5 mL PCR reaction mixes included 6.25 mL of 10%

trehalose, 2 mL of ultrapure water, 1.25 mL of 106 PCR buffer,

0.625 mL of MgCl2 (50 mM), 0.125 mL of each primer (0.01 mM),

0.0625 mL of dNTP mix (10 mM), 0.625 mL of Taq polymerase

(New England Biolabs or Invitrogen), and 2.0 mL of DNA

template. Amplification protocols followed those described in

earlier publications [43]. PCR products were visualized on pre-

cast agarose gels (E-Gels�, Invitrogen) and the positives,

represented by a band were selected for sequencing.

Products were labelled by using the BigDye� Terminator v.3.1

Cycle Sequencing Kit (Applied Biosystems, Inc.) as described [43]

and sequenced bidirectionally using an ABI 3730 capillary

sequencer following manufacturer’s instructions. Sequence data,

electropherograms, trace files, primer details, photographs and

collection localities for specimens are available within the project

MXLionfish in BOLD (http://www.barcodinglife.org). Sequenc-

ing protocols were carried out at the Canadian Centre for DNA

Barcoding using standard protocols [43]. Sequences were aligned

using SEQSCAPE v.2.1.1 software (Applied Biosystems, Inc.). All

COI sequences have also been deposited in GenBank (http://

www.ncbi.nlm.nih.gov/, See Table S1 for accession numbers).

The sequences obtained were submitted and identified with the

ID engine provided in the Barcode of Life Database (BOLD;

www.boldsystems.org) to establish whenever possible the identifi-

cation of the ingested material. Sequence divergences were

calculated using the tools provided by BOLD, the Kimura two

parameter (K2P) distance model [44]. Neighbour–joining (NJ)

trees based on K2P distances were created to provide a graphic

representation of the patterning of divergence between species

[45] and a simplified tree was constructed using the MEGA 3

software [46]. The criteria to assign identification to a specie level,

was based on less than 3% divergence between the unknown and

the reference sequence.

When a sequence match was not found in the DNA barcode

reference library, we applied the method for visualization of two

trees and based our taxonomical assignment following the strict

criteria proposed, and consist in nesting the ‘‘unknown’’ within a

clade comprising of members of a single taxon. This criterion was

used previously only with moths and 75% of the queries were

correctly assigned to genus [36].

Supporting Information

Table S1 accession codes from specimens of the public
database in BOLD and GenBank (XLS).

(XLS)
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35. Garcı́a-Madrigal MS, Campos-Vázquez C, González NE (2002) Sección de
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