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A B S T R A C T

Purpose
BRAFV600 mutations are frequently found in several glioma subtypes, including pleomorphic
xanthoastrocytoma (PXA) and ganglioglioma and much less commonly in glioblastoma. We sought
to determine the activity of vemurafenib, a selective inhibitor of BRAFV600, in patients with gliomas
that harbor this mutation.

Patients and Methods
The VE-BASKET study was an open-label, nonrandomized, multicohort study for BRAFV600-mutant
nonmelanoma cancers. Patients with BRAFV600-mutant glioma received vemurafenib 960 mg twice
per day continuously until disease progression, withdrawal, or intolerable adverse effects. Key end
points included confirmed objective response rate by RECIST version 1.1, progression-free survival,
overall survival, and safety.

Results
Twenty-four patients (median age, 32 years; 18 female and six male patients) with glioma, including
malignant diffuse glioma (n = 11; six glioblastoma and five anaplastic astrocytoma), PXA (n = 7),
anaplastic ganglioglioma (n = 3), pilocytic astrocytoma (n = 2), and high-grade glioma, not otherwise
specified (n = 1), were treated. Confirmed objective response ratewas 25% (95%CI, 10% to 47%) and
median progression-free survival was 5.5 months (95% CI, 3.7 to 9.6 months). In malignant diffuse
glioma, best response included one partial response and five patientswith stable disease, two ofwhom
had disease stabilization that lasted more than 1 year. In PXA, best response included one complete
response, two partial responses, and three patients with stable disease. Additional partial responses
were observed in patients with pilocytic astrocytoma and anaplastic ganglioglioma (one each). The
safety profile of vemurafenib was generally consistent with that of previously published studies.

Conclusion
Vemurafenib demonstrated evidence of durable antitumor activity in some patients with BRAFV600-
mutant gliomas, although efficacy seemed to vary qualitatively by histologic subtype. Additional
study is needed to determine the optimal use of vemurafenib in patients with primary brain tumors
and to identify the mechanisms driving differential responses across histologic subsets.
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INTRODUCTION

Gliomas represent a heterogeneous group of tu-
mors with a range of behaviors.1 Aggressive
malignant diffuse gliomas include WHO grade IV
glioblastoma (GBM) and WHO grade III iso-
citrate dehydrogenase (IDH) 1/2 wild-type ana-
plastic gliomas.1 For decades, standard of care for
GBM, including surgery, chemoradiation with
temozolomide, and bevacizumab at recurrence
has not significantly improved median overall

survival (OS) of 14 to 18 months.2-4 Recurrent
GBM is highly resistant, with a historical median
progression-free survival (PFS) of 9 weeks and
a 6-month PFS of 5% to 15% for nonbevacizumab
therapies.5,6 Patients with recurrent grade III ma-
lignant diffuse gliomas fare only slightly bet-
ter, with a median PFS of 13 weeks and 31%
6-month PFS in patients with recurrent anaplastic
astrocytoma.5

Patients with IDH1/2-mutant grade II as-
trocytomas and oligodendrogliomas have better
prognoses, although these tumors eventually
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progress and transform into malignant diffuse gliomas.1 Low-grade
gliomas also encompass rarer IDH1/2 wild-type histologies, in-
cluding pilocytic astrocytoma (PA), pleomorphic xanthoas-
trocytoma (PXA), and ganglioglioma. These are more indolent,
usually occur in younger patients, and can sometimes be cured
with surgery and radiation1; however, a subset of tumors exhibit
higher-grade histologic features or aggressive biology at initial
presentation or relapse. There is no standard effective treatment
for these patients.

Irrespective of glioma subtype, radiographic volumetric re-
sponse to conventional chemotherapies is rare, occurring in 6% of
patients with GBM and in 14% with of patients with anaplastic
gliomas.5,6 Bevacizumab seems to delay disease progression and
ameliorate neurologic symptoms in patients with GBM but
provides no survival advantage.4,7,8 Radiographic response rates
with bevacizumab may be up to 40%,9,10 but these are often
pseudoresponses that result from blood–brain barrier reconstitution
and decreased enhancement on magnetic resonance imaging, rather
than an indication of true antitumor effects.11

Selective targeting of oncogenic mutations has revolutionized
the treatment of genomically defined subtypes of non–small-cell
lung cancer (NSCLC), breast, gastric, and ovarian cancers, mel-
anoma, and other solid and hematologic cancers.12 Targeted ap-
proaches include selective inhibition of the BRAFV600 oncogene,
which is the standard treatment of melanoma, NSCLC, anaplastic
thyroid cancer, and Erdheim–Chester disease.13-18 BRAFV600 in-
hibition has shown promise in BRAFV600-mutant papillary thyroid
cancer,19 colorectal cancer,20 and hairy cell leukemia.21 Of im-
portance, BRAFV600 mutations have been identified in several
glioma subtypes, specifically in select rare IDH1/2 wild-type gli-
omas, including PXAs (38% to 100%), gangliogliomas (18% to
57%), anaplastic gangliogliomas (AGGs; 50%), PAs (9%), and less
commonly (, 3%) in high-grade gliomas, including GBM.22-26

Despite the BRAFV600 mutation being a recurrent genomic event
across multiple glioma subtypes, to our knowledge no prospective
therapeutic study has investigated targeted therapy in this setting,
although retrospective case series provide some evidence for the
activity of RAF inhibitors with or without MEK inhibitors.27-32

Vemurafenib is a selective oral inhibitor of the oncogenic
BRAFV600 kinase approved globally for the treatment of patients
with BRAFV600-mutant metastatic or unresectable melanoma and
in the United States for patients with Erdheim–Chester disease.
The VE-BASKETstudy was a nonrandomized, open-label, histology-
agnostic, basket study for patients with nonmelanoma solid tumors
and myeloma that harbors BRAFV600 mutations.33 VE-BASKET
enrolled 24 patients with glioma. We now report the final efficacy
and safety of vemurafenib in this cohort.

PATIENTS AND METHODS

Study Design and Population
The phase II, histology-independent VE-BASKET study was con-

ducted at 23 centers worldwide in patients with a range of BRAFV600

mutation–positive tumor types. Nine centers enrolled one or more pa-
tients with glioma. The study design has been described in full else-
where.33 In brief, the study included six cohorts of patients with
prespecified cancers—NSCLC, ovarian, colorectal, and breast cancers,
cholangiocarcinoma, and multiple myeloma—as well as a seventh cohort

of patients with other BRAFV600 mutation–positive cancers. The other
cohort permitted enrollment of patients with cancer types not otherwise
specified, including gliomas. As this cohort was anticipated to enroll
a heterogeneous patient group, no maximum cohort size was specified.
Rather, the cohort remained open until the last disease prespecified cohort
closed. Written informed consent was obtained from all participants. The
study was performed in accordance with provisions of the Declaration of
Helsinki and Good Clinical Practice guidelines. The protocol was approved
by institutional review boards or human research ethics committees at each
participating center. Eligibility was confirmed by the sponsor on all
patients.

Patients with brain tumors were required to have histologically
confirmed glioma (any grade) and confirmation of BRAFV600 mutation in
tumor material obtained at any point in treatment. Testing for BRAFV600

mutation was performed according to local testing procedures in a Clinical
Laboratories Improvement Amendment–accredited laboratory or equiv-
alent for sites outside the United States. Central pathologic confirmation of
locally reported glioma subtypes and BRAF mutation was not performed.
As the clinical trial database did not capture glioma-specific biomarkers
(methylguanine-DNA-methyltransferase [MGMT] promoter methylation,
IDH1 mutation, or CDKN2A/B deletion), these data, when available, were
extracted directly from pathology reports without source verification by
the study sponsor. All patients had recurrent disease after standard therapy;
there was no limit on the number of prior therapies, and prior bev-
acizumab was permitted. Patients had measurable disease (Response
Evaluation Criteria in Solid Tumors [RECIST] version 1.134), were
age $ 16 years, with Eastern Cooperative Oncology Group performance
status of 0 to 2 and acceptable laboratory parameters. Patients were ex-
cluded if they had prior treatment with a BRAF or MEK inhibitor, were
unable to swallow pills, had intractable vomiting, a corrected QT interval
of 450 milliseconds or more, or known leptomeningeal metastases.

Treatment
Patients received vemurafenib 960 mg twice per day continuously in

28-day cycles until they experienced disease progression, unacceptable
toxicity, or withdrew. The vemurafenib dose could be reduced on the basis
of toxicity in decrements of 240 mg at each dose administration to
a minimum permitted dose of 480 mg twice per day. Patients who were
unable to tolerate this minimum dose were removed from the study.
Patients were assessed for response by magnetic resonance imaging and
clinical examination every two cycles. As VE-BASKETwas not specifically
designed for the treatment of primary brain tumors, responses were
determined using RECIST.34 Treatment toxicities were evaluated using
National Cancer Institute Common Terminology Criteria, version 4.0.35

Patients were required to have dermatologic assessments at baseline, after
cycle 1, then every 12 weeks to evaluate for cutaneous squamous cell
carcinoma (SCC), keratoacanthoma, basal cell carcinoma, and any other
malignancy. Head and neck examinations were performed at baseline and
every 12 weeks thereafter to evaluate for noncutaneous SCC. All patients
were required to undergo chest computed tomography at baseline and at
least every 6 months thereafter to evaluate for noncutaneous SCC.

Statistical Analysis
The primary end point of the study was unconfirmed objective

radiographic response rate at week 8 or first assessment, as assessed by
individual investigators using RECIST version 1.1. Secondary end points
included confirmed objective response rate (ORR), clinical benefit rate
(defined as confirmed complete response [CR] or partial response [PR] of
any duration or stable disease [SD] lasting $ 6 months), PFS, OS, and
toxicity. PFS and OS were estimated using the Kaplan–Meier method and
95% CIs (Clopper–Pearson method). The protocol used an adaptive Si-
mon two-stage design36 for all tumor-specific cohorts to minimize the
number of patients treated if vemurafenib was deemed to be ineffective for
a specific tumor type. A response rate of 15% at week 8 was considered low,
a response rate of 45%was considered high, and a response rate of 35%was
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considered low but still desirable and indicative of efficacy. Assuming
response rates as specified in the hypothesis testing, a power of 80% for
a high response rate and 70% for the low but still desirable response rate,
and a two-sided a level of .1, seven, 13, or 19 patients were required in each
cohort, depending on results obtained. However, this analysis only applied
to prespecified tumor cohorts 1 to 6. As patients with glioma enrolled in
cohort 7 (other solid tumors) were considered an exploratory group,
response and survival end points were analyzed and reported descriptively.
The study was permanently closed and the final data lock performed on
January 12, 2017.

RESULTS

Twenty-four patients with gliomas (median age, 32 years; 18 female
patients) were enrolled, including 11 withmalignant diffuse glioma
(six with GBM and five with anaplastic astrocytoma), seven with
PXA, two with PA, three with AGG, and one with a high-grade
glioma, not otherwise specified (Table 1). Of the 11 patients with
malignant diffuse glioma, four had MGMT testing and all were
unmethylated. Across the entire cohort, 18 patients had IDH1
testing (all wild type) and 10 CDKN2A/B testing (nine deleted and
one wild type). Of the six patients with GBM, all had received prior
temozolomide and two had received bevacizumab. Four of five
patients with anaplastic astrocytoma had received prior temozo-
lomide. Among the 13 remaining patients with lower-grade gli-
oma, eight had received prior temozolomide and one had received
bevacizumab.

Aggregate clinical efficacy data are summarized in Table 2.
One CR was observed in a patient with PXA, and five patients

achieved PR—two with PXA and one each with anaplastic as-
trocytoma, AGG, and PA—for a confirmed ORR in the overall
group of 25% (95% CI, 10% to 47%; Table 2). CR lasted
25.9 months or more (censored at last assessment), and PRs lasted
13.1, 9.9, 7.5, 3.4, and 2.4 months. An additional three patients
achieved SD that lasted 6 months or more (12.9, 14.9, and 24.8
[censored at last assessment] months), one each with anaplastic
astrocytoma, GBM, and PXA, for an overall confirmed clinical
benefit rate of 38% (95% CI, 19% to 59%).

Efficacy data at the individual patient level are shown in
Figure 1. In patients with PXA (n = 7), best response included
one patient with CR, two with PR, three with SD (one that
lasted$ 6 months), and one with progressive disease, which yielded
a confirmed clinical benefit rate of 57% (95%CI, 18% to 90%). Best
response in patients withmalignant diffuse glioma (n = 11) included
one patient with PR, five with SD (two of whom had SD that
lasted $ 6 months, thus meeting the definition for clinical benefit),
three with progressive disease, and response data unavailable for two
as a result of early withdrawal. This yielded a clinical benefit rate of
27% (95% CI, 6% to 61%). In the six patients with GBM, best
response was SD in three patients, with two experiencing pro-
gression at 3.6 months (censored at the last assessment) and
3.7 months, and one with prolonged SD until 12.9 months. One of
five patients with anaplastic astrocytoma achieved PR and two had
SD that progressed after 14.9 and 5.6 months. Responses among
patients with other tumor types included PR in one patient with PA
who was treated for 15.3 months and PR in one patient with AGG
whowas treated for 13.8 months for a confirmed clinical benefit rate
of 33% (95% CI, 4.3% to 77.7%).

Table 1. Baseline Characteristics

Characteristic PXA (n = 7) Malignant Diffuse Glioma* (n = 11) Other† (n = 6) All Patients (n = 24)

Sex, No. (%)
Male 1 (14) 3 (27) 2 (33) 6 (25)
Female 6 (86) 8 (73) 4 (67) 18 (75)

Median age, years (range) 29 (18-57) 42 (23-57) 25.5 (21-81) 32 (18-81)
ECOG performance status, No. (%)
0 5 (71) 5 (45) 2 (33) 12 (50)
1 1 (14) 4 (36) 1 (17) 6 (25)
2 0 2 (18) 2 (33) 4 (17)
Missing 1 (14) 0 1 (17) 2 (8)

Prior radiotherapy, No. (%) 6 (86) 11 (100) 6 (100) 23 (96)
No. of prior systemic therapies, No. (%)
0 3 (43) 1 (9) 2 (33) 6 (25)
1 3 (43) 5 (45) 2 (33) 10 (42)
2 0 2 (18) 1 (17) 3 (13)
$ 3 1 (14) 3 (27) 1 (17) 5 (21)

Median time from first diagnosis to enrollment,
months (range)

18.0 (4.0-76.8) 13.4 (3.7-110.0) 30.9 (5.6-141.0) 15.7 (3.7-141.0)

BRAF assay, No. (%)
Sanger 2 (29) 3 (27) 3 8 (33)
Sequenom 3 (43) 3 (27) 0 6 (25)
PCR 2 (29) 1 (9) 1 (17) 4 (17)
NGS 0 1 (9) 1 (17) 2 (8)
SNaPshot 0 1 (9) 1 (17) 2 (8)
IHC 0 1 (9) 0 1 (4)
Unknown 0 1 (9) 0 1 (4)

Abbreviations: ECOG, Eastern Cooperative Oncology Group; IHC, immunohistochemistry; NGS, next-generation sequencing; PCR, polymerase chain reaction; PXA,
pleomorphic xanthoastrocytoma.
*Anaplastic astrocytoma, n = 5; glioblastoma, n = 6.
†Pilocytic astrocytoma, n = 2; anaplastic ganglioglioma, n = 3; high-grade glioma, not otherwise specified, n = 1.
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Overall median PFS for all patients was 5.5 months (95% CI,
3.7 to 9.6 months; Fig 2). Median PFS durations for the PXA,
malignant diffuse gliomas, and other cohorts were 5.7 months
(95% CI, 3.0 months to not reached [NR]), 5.3 months (95% CI,
1.8 to 12.9 months), and 3.7 months (95% CI, 2.0 to 13.6 months),
respectively. Median OS for all patients was 28.2 months (95% CI,
9.6 to 40.1 months). Median OS durations for PXA, malignant

diffuse glioma, and other cohorts were NR (95% CI, 5.0 months to
NR), 11.9 months (95% CI, 8.3 to 40.1 months), and 28.2 months
(95% CI, 12.8 to 31.6 months), respectively. The longest treatment
duration was 39.1 months in a patient with PXA, which was
ongoing at study closure (Fig 3) —this was the only patient who
had received no radiotherapy or temozolomide before protocol
initiation. All patients discontinued the study. Three patients with

Table 2. Efficacy Summary

Outcome PXA (n = 7) Malignant Diffuse Glioma* (n = 11) Other† (n = 6) All Patients (n = 24)

Confirmed objective response rate, % (95% CI) 42.9 (9.9 to 81.6) 9.1 (0.2 to 41.3) 33.3 (4.3 to 77.7) 25.0 (9.8 to 46.7)
Best overall response, No. (%)
Complete response 1 (14.3) 0 0 1 (4.2)
Partial response 2 (28.6) 1 (9.1) 2 (33.3) 5 (20.8)
Stable disease 3 (42.9) 5 (45.5) 2 (33.3) 10 (41.7)
Progressive disease 1 (14.3) 3 (27.3) 1 (16.7) 5 (20.8)
Missing/not evaluable 0 2 (18.2) 1 (16.7) 3 (12.5)

Confirmed clinical benefit‡, % (95% CI) 57.1 (18.4 to 90.1) 27.3 (6.0 to 61.0) 33.3 (4.3 to 77.7) 37.5 (18.8 to 59.4)
Unconfirmed response rate (ORR8§), No. (%) 3 (42.86) 1 (9.09) 1 (16.67) 5 (20.83)

Abbreviations: ORR8, overall response rate at week 8; PXA, pleomorphic xanthoastrocytoma.
*Glioblastoma, n = 6; anaplastic astrocytoma, n = 5.
†Pilocytic astrocytoma, n = 2; anaplastic ganglioglioma, n = 3; high-grade glioma, not otherwise specified, n = 1.
‡Clinical benefit includes patients whose best response was confirmed complete response, partial response, or stable disease that lasted $ 6 months.
§Unconfirmed response rate at week 8 or at first available response assessment.
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Fig 1. Integrated efficacy and treatment duration by patient. Maximal decrease in sum of the longest diameters (SLD), confirmed best response, treatment duration, and
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3480 © 2018 by American Society of Clinical Oncology JOURNAL OF CLINICAL ONCOLOGY

Kaley et al



PXA were enrolled in an extension trial to continue vemurafenib
because of ongoing response or SD at the closure of the VE-BASKET
study.

Adverse events, occurring in 20% or more of patients, re-
gardless of cause, are listed in Table 3. Arthralgia (16 of 24 patients;

67%), melanocytic nevus (nine of 24 patients; 38%), palmar-
plantar erythrodysesthesia (nine of 24 patients; 38%), and pho-
tosensitivity reaction (nine of 24 patients; 38%) were the most
common adverse events. Maculopapular rash was the most
common grade 3 and 4 event (three of 24 patients; 13%). No grade
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5 treatment-related events occurred, and no new vemurafenib
safety signals were identified. Ten patients required one or more
vemurafenib dose reduction and one discontinued as a result of
intolerable adverse effects.

DISCUSSION

Our data suggest that vemurafenib may have clinically meaningful
activity in patients with BRAFV600-mutant gliomas but that this
activity varies by histologic subtype. The highest response rate was
observed in patients with low-grade tumors, particularly PXA,
a histology in which BRAFV600 mutations seem to be a common
and early genomic event. In the overall population, including
tumors of all grades and histologic subtypes, confirmed ORR was
25% and the clinical benefit rate was 38%—rates numerically
higher than those historically observed with other agents used in
unselected patients with refractory glioma.37 Although encour-
aging, these results should be interpreted with caution given the
limited number of patients and the descriptive nature of the
analysis. These data, however, justify the continued pursuit of this
therapeutic strategy through additional dedicated glioma studies.

Although the efficacy reported here is encouraging, the
greatest degree of activity was observed in patients with IDH1/2
wild-type low-grade gliomas, specifically PXAs. Historically, PXAs
are associated with a better prognosis than GBMs and have been
managed with curative intent by surgery, sometimes followed by
radiotherapy. For a subset of patients with higher-grade histology
or refractory disease, including those enrolled in this study, there is
no established standard of care or effective chemotherapy regimen.
In our patients, vemurafenib achieved a radiographic response or
prolonged stabilization in more than 50% of patients with PXA,
which suggests that this strategy may be associated with clinically
meaningful benefit. Although one durable response was observed

in a patient with PA, only two such patients were enrolled, which
precludes the interpretation of efficacy within in this histology.

The 11 patients with high-grade gliomas experienced a more
variable response, with PR in one and SD of 6 months or more in
two other patients. Although the overall clinical benefit rate was
lower than in patients with PXA, AGG, or PA, patients with high-
grade glioma were more heavily pretreated, which makes the
observed responses even more notable. In addition, patients with
PXA, AGG, and PA were younger than those in the high-grade
glioma group. The incidence of BRAFV600 mutations is age de-
pendent in patients with gangliogliomas,1 although the etiology
that underlies this association is unclear.

The lack of a detailed genomic characterization of the tumors
of patients enrolled in this study is a limitation. An important
consideration when targeting any oncogene in glioma is whether
the previously detected oncogenic alteration is present at the time
of treatment and whether, if present, the mutation occurs as the
dominant clone. As BRAFV600 mutation status was not confirmed
by biopsy immediately before enrollment in the VE-BASKETstudy,
it is unclear whether the mutation was present in the tumors of all
patients at the start of vemurafenib treatment. Moreover, GBMs
demonstrate substantial temporal and spatial intratumoral het-
erogeneity,38 and it is possible that in some primary GBMs,
BRAFV600 mutations are subclonal or among multiple mutations
present and driving tumor growth. These factors, at least in part,
may account for the variable efficacy of vemurafenib monotherapy
in this subgroup. Of interest, the one patient with GBM who
achieved prolonged SD that lasted 12.9 months had a secondary
GBM that evolved from a prior low-grade lesion, in keeping with
our observation that lower-grade BRAFV600-mutant gliomas seem
to be more sensitive to vemurafenib. Another consideration is that
the BRAF mutation may not be present in all components of the
tumor. This latter mechanism has been potentially implicated in
gangliogliomas in which a subset of BRAFV600-mutant ganglio-
gliomas had expression in both neuronal and glial tumor
components.39

Of note, as a multihistology basket trial, several characteristics
of the VE-BASKET study were suboptimal for the evaluation and
treatment of patients with gliomas. The clinical trial was not
designed to collect glioma biomarkers, such as MGMT promoter
methylation, IDH mutation, or CDKN2A/B deletion status, al-
though we were ultimately able to gather available data on most
patients. It is possible that complete biomarker status may have
helped provide additional context to the differential activity
observed.40-42 MGMT promoter methylation testing is only rou-
tine in malignant diffuse gliomas, where it is important for
prognostication and in the evaluation of pseudoprogression after
chemoradiation. There are no data to suggest that MGMT pro-
moter methylation status would influence radiographic response
or PFS with BRAF inhibitors. IDHmutation testing is not currently
recommended for PXA, AGG, or PA. Moreover, prior studies have
demonstrated mutual exclusivity between IDH and BRAFV600

mutations in gliomas,23,43,44 which indicates that this biomarker
might not be relevant in our cohort. Accordingly, IDH1 mutation
status was available for 18 (75%) of 24 patients in this study, all of
whom all had wild-type IDH1 tumors.

The current study used RECIST, which is designed primarily
for the assessment of solid tumors, instead of dedicated brain

Table 3. Treatment-Emergent Adverse Events With an Incidence of $ 20%,
Irrespective of Causality (n = 24)

Adverse Event All Grades Grade 3 and 4

Arthralgia 16 (67) 0
Melanocytic nevus 9 (38) 0
Palmar-plantar erythrodysesthesia 9 (38) 0
Photosensitivity reaction 9 (38) 0
Alopecia 8 (33) 0
Fatigue 7 (29) 1 (4)
Pruritus 7 (29) 0
Rash 7 (29) 0
Rash maculopapular 7 (29) 3 (13)
Skin papilloma 7 (29) 0
Asthenia 6 (25) 0
Folliculitis 6 (25) 0
Headache 6 (25) 0
Hyperkeratosis 6 (25) 0
Keratosis pilaris 6 (25) 0
Constipation 5 (21) 0
Diarrhea 5 (21) 0
Nausea 5 (21) 0
Decreased appetite 5 (21) 0

NOTE. Data are given as No. (%).
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tumor response criteria, such as the Macdonald or Response
Assessment in Neuro-Oncology criteria.11 However, prior studies
showed similarity in response assessments between one-
dimensional and two-dimensional measurement methods in pa-
tients with high-grade gliomas.45,46 Moreover, given the lack of
a substantial antiangiogenic effect of vemurafenib, it is unlikely that
pseudoresponses might have occurred in our patients. Another
limitation is the lack of central review of investigator-reported
response assessments. In summary, although the inclusion of
patients with primary brain tumors in this study provided the
opportunity to evaluate genomically targeted therapy in this
relatively large, prospectively accrued group of patients with
BRAFV600-mutant gliomas, future histology-agnostic studies should
be designed to address brain tumor–specific considerations to
optimize the interpretation of the findings.

Despite its shortcomings, the current study serves as an initial
proof of concept that BRAFV600 is a targetable oncogene in at least
a subset of patients with primary brain tumors. Responses were
observed across all glioma subsets, with the strongest signal ob-
served in patients with lower-grade gliomas, particularly the PXA
subgroup. Additional evaluation is needed to clarify the precise use
of RAF and MEK inhibitors—alone or in combination—in pa-
tients with primary brain tumors. Several such studies that permit
the enrollment of pediatric or adult patients with glioma are
currently ongoing (ClinicalTrials.gov identifiers: NCT01748149,
NCT01677741, NCT02124772, NCT02684058, NCT02285439,
and NCT03429803). These studies may also help elucidate the

underlying mechanisms that drive the differential responses across
histologic subsets.
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