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From ancient Greece to nowadays, research on posture control was guided and

shaped by many concepts. Equilibrium control is often considered part of postural

control. However, two different levels have become increasingly apparent in the postural

control system, one level sets a distribution of tonic muscle activity (“posture”) and the

other is assigned to compensate for internal or external perturbations (“equilibrium”).

While the two levels are inherently interrelated, both neurophysiological and functional

considerations point toward distinct neuromuscular underpinnings. Disturbances of

muscle tone may in turn affect movement performance. The unique structure,

specialization and properties of skeletal muscles should also be taken into account

for understanding important peripheral contributors to postural regulation. Here, we

will consider the neuromechanical basis of habitual posture and various concepts that

were rather influential in many experimental studies and mathematical models of human

posture control.

Keywords: posture control, equilibrium, muscle tone, postural reflexes, multisensory interactions, postural body

scheme

INTRODUCTION

Life evolved in the presence of gravity and it has long been recognized, from ancient Greece
to our days, that posture is maintained by tonic muscle contractions acting against gravity and
stabilizing the positions of body segments. The Greek physician Galen of Pergamon was, probably,
the first to introduce the concept of muscle tone in his work “De motu musculorum” (Galen,
1549). From clinical observations, it has long been known that lesions of the central nervous system
may result in pronounced changes in posture. Systematic experimental studies of the physiological
mechanisms of postural regulation only began a century ago by Sherrington (1906, 1915) and were
further developed by Magnus (Magnus and de Klein, 1912; Magnus, 1924) and Rademaker (1931).
Various biomechanical and neurophysiological approaches have been used for understanding the
mechanisms of balance control (Horak and Macpherson, 1995).

We start this review with an influential scheme of the upright posture control based on the idea
of the inverted pendulum and the presence of center of pressure (CoP) oscillations, as important
measure of postural stability. In the simplified inverted pendulum model of the upright human
posture, the center of body mass (CoM) is the single controlled variable (Winter et al., 2003). In
quiet standing, CoP oscillates either side of CoM to keep it in a fairly constant position between
the two feet (Figure 1C). Since the center of body mass (CoM) is located relatively high (in the
trunk, ∼1m above the ankles that determines the length of the inverted pendulum) and the base
of support is relatively small, the posture is inherently unstable. Accordingly, one might conclude

Abbreviations: CoM, centre of body mass; CoP, centre of pressure.
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FIGURE 1 | Center of pressure (CoP) fluctuations during quiet standing in the cat (A), dog (B) and human (C). Examples of the CoP traces (lower) are adapted from

MacPherson and Horak (2012) with permission in (A), redrawn from Brookhart et al. (1965) in (B) and modified from Ivanenko et al. (1999) in (C). The size of the base

of support is schematically depicted in the middle panels. Note comparable CoP oscillations (∼2 cm) in quadrupeds with regard to human despite the 5-fold difference

in the height of the center of body mass over the support.

that the higher the CoM location, the larger the CoP oscillations.
However, this statement is a simplification and appears to be
misleading. For instance, Figure 1 illustrates typical examples of
the center of pressure fluctuations during quiet standing in the
cat, dog and human. Note the similar CoP oscillations (∼1–2 cm)
despite substantial differences in the height of the center of body
mass over the support. Comparable (∼1 cm CoP) body sway was
also observed in horses (Clayton and Nauwelaerts, 2014) and in
rats (∼2 cm CoP) trained to stand bipedally (Sato et al., 2015).
Therefore, the simple scheme “the lower the CoM, the smaller the
CoP oscillations” is deceptive, or at least it cannot be generalized
to animals of different size. In addition, the amplitude of CoP
oscillations is much smaller than the actual base of support
(schematically depicted in Figure 1, middle panels) and would
likely provide stability even if it were larger.

Thus, it is important to stress that simple biomechanical
considerations can explain the postural behavior only to some
extent. Furthermore, the CoP oscillations reflect only an
operative level of posture control related to stabilization of
specific postural body segments’ orientations. However, what
are the principles determining habitual postural configurations
and tonic muscle activity along the body axis? Postural tone
(often associated with antigravity support) represents the tonic

activation of muscles in order to provide specific postural
attitude and generate force against the ground to keep the
limbs extended. The habitual stance vary across animals and
may include extended limbs or semiflexed posture. Antigravity
support in humans is partly provided by passive bone-on-
bone forces in joints, stretched ligaments and muscles, but it
also requires active contraction in lower limb, trunk, and neck
extensors. The control of postural tone is not simple and requires
specialized neural circuitry. Detailed information is required
about underlying neural circuitry, as well as about underlying
cellular processes in generating prolonged muscle force and
stiffness. It is worth noting that postural attitude in different
individuals is determined by both individual morphology and
specific low-level muscle activity, which can be significantly
affected also by different pathological conditions. Integration of
several sensory and motor areas has developed through millions
of years of life evolution with the purpose of providing accurate
regulation of body orientation in the gravity field.

Here we review the experimental challenges that affect the
way we define and consider the mechanisms of muscle tone
and postural regulation. In the first section, we briefly discuss
structural and functional complexity of postural muscles because
any reflection on muscle tone and its control should consider
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the knowledge of the unique structure and properties of skeletal
muscles. In the following sections, we discuss the ideas and
approaches that represent or represented important conceptual
frameworks for investigating human posture control.

STRUCTURAL AND FUNCTIONAL
COMPLEXITY OF POSTURAL SKELETAL
MUSCLES

The structure and function of skeletal muscle allow wide range
of activities, from rapid production of forces and movement
to long-lasting maintenance of body segment orientation
relative to gravity. In addition, task-specific activation of
functionally different types of muscle fibers that compose
a given muscle can accomplish a rich repertoire of muscle
contractions and energetics of force production. Postural tone
is commonly viewed as low-level muscle tension observed in
both distal and proximal (trunk and neck) skeletal muscles.
Nevertheless, one cannot reflect upon postural tone by
considering only the neural input from the sub-cortical and
cortical structures. Recent biochemical and biomechanical
findings have forced a serious re-evaluation of structural and
functional muscle complexity (Knight, 2016). In particular,
the sliding filament theory for muscle contraction has been
expanded to include regulatory and cytoskeletal proteins that are
responsible for the viscoelastic properties of muscle and economy
of force production—the key peripheral contributions to postural
regulation.

The sliding filament theory is based on the model, where actin
and myosin filaments slide past each other, and it was introduced
in 1954 independently by the two groups (Huxley and Hanson,
1954; Huxley and Niedergerke, 1954). Hugh Huxley formally
proposed the mechanism for sliding filament that is called cross-
bridge model. According to his model, filament sliding occurs by
cyclic attachment and detachment of myosin on actin filaments.
Contraction occurs when the myosin pulls the actin filament
toward the center of the A band, detaches from actin and creates
a force (stroke) to bind to the next actin molecule. However, the
modern views on the mechanism of muscle contraction include
three sliding filaments, namely, actin, myosin and titin (Knight,
2016). It is important to note that, in addition to the links to
the sarcolemma via T-tubules and the sarcoplasmic reticulum,
sarcomeres are linked by other extra-sarcomeric cytoskeletal
structures at the Z-disk and M-band. This structure undergoes
reversible axial and transverse conformational changes in the
contracting sarcomere. The cytoskeletal sarcomeric structure
plays a key role in the sliding filament theory (Gautel and
Djinović-Carugo, 2016).

In the context of postural function of skeletal muscles
and stabilization of body segments, elastic properties of the
skeletal musculature and muscle tension are tightly related
to regulatory and cytoskeletal proteins. Even though postural
muscular activity is rather small, it is worth stressing that
any posture is not passive and specific small activity of neck,
trunk and limb muscles determines resting tension, axial tone,
individual postural attitudes, facial expression, etc. (Jankovic,

2003; Gurfinkel et al., 2006; Wright et al., 2007; Caneiro et al.,
2010). Long-lasting maintenance of postural muscle activity
(minutes or even hours) is associated with low energy cost.
Postural activity normally engages slow muscle fibers, which
are more resistant to fatigue. How to control this machinery
during posture and small movements that are often present
during posture maintenance? In addition to the selective
activation of appropriate muscle fibers, a poorly understood,
but intriguing, aspect of postural muscle tone encompasses the
mechanisms of muscle elasticity, force enhancement and energy
conservation.

For instance, static stiffness relies on calcium-dependent
stiffening of the activated fibers, independent of crossbridge
formation, and titin appears to have all the characteristics
required to account for the static stiffness properties (Colombini
et al., 2016). Force enhancement may also result from an
interaction between an elastic element in muscle sarcomeres
and the cross-bridges, which, in turn, interact with the elastic
elements to regulate their length and stiffness. A muscle
model based on the winding filament hypothesis can predict
residual force augmentation in muscles (Nishikawa, 2016).
The giant protein nebulin is one of the important regulatory
proteins and was proposed to function as a “molecular ruler”
to specify the lengths of the thin filaments, which plays a
role in numerous cellular processes including regulation of
muscle contraction, viscoelastic properties, Z-disc formation,
and myofibril assembly (Chu et al., 2016). Interaction
between titin and nebulin is still uncertain. Finally, use-
dependent changes in muscle fiber composition (Hoppeler,
2016) and progressive decreases in muscle contraction
time during child development along with maturation of
the central nervous system in the control of posture and
movement (Dayanidhi et al., 2013) reflect the functional
benefits of such continual maturation and point toward
the important role of muscle phenotypic plasticity. The
abovementioned topics were traditionally overlooked although
the progress in elucidating the molecular mechanisms of muscle
contraction opens new avenues in understanding important
peripheral contributors to postural regulation and muscle
plasticity.

CONCEPTUAL FRAMEWORKS AND
APPROACHES FOR INVESTIGATING
POSTURAL CONTROL

Upright bipedal stance is traditionally described to depend on
sensory (vision, vestibular, and somatosensory) input to provide
postural equilibrium and a proper alignment of body segments
with respect to gravity. The nature of multisensory interactions
has been the subject of a plethora of studies. From the conceptual
viewpoint, we will consider below the three myths of postural
regulation that have been rather influential in many experimental
studies and mathematical models of human posture control:
(1) the posture control system is linear, (2) posture control is
determined by reflexes, and (3) posture control is equilibrium
control.
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Non-linear Properties of the Posture
Control System
Small movements accompany the maintenance of any posture.
Typically, unless human posture is unstable, body segment
oscillations do not exceed 1–2◦ of joint movements and the CoP
oscillations are about 1–2 cm. The fact that postural oscillations
are small supports the assumption that the system is linear
within a limited range of movements and, therefore, linear
computational models and analyses can be applied (Winter et al.,
2003; Mergner, 2007; Kiemel et al., 2008; Assländer and Peterka,
2014). While this assumption is valid to some extent and many
studies provided very important information about postural
strategies and the contribution of different sensory inputs to
balance control, one should have in mind that there is also
substantial non-linearity in the postural control system, which is
often overlooked.

First of all, some non-linearity exists already at the level of
muscles, since their resistance to small angular perturbations
(∼1◦, corresponding to about 1% changes in the muscle fiber
length, so-called “short range stiffness,” Rack andWestbury, 1974)
is much higher than the resistance to larger perturbations. Even
though the short range stiffness of active calf muscles might not
be sufficient to fully compensate the body sway during quiet
standing (Morasso and Schieppati, 1999; Loram et al., 2007),
its contribution is definitely essential (Gurfinkel et al., 1995).
Thixotropy of skeletal muscles (Gurfinkel et al., 1989a) further
contributes to the time-dependent augmentation of muscle
stiffness for long-sustained postural movements. Indeed, the
short-range stiffness component is smaller during periods of high
postural sway. Thus, there is a significant reduction (up to 43%)
in intrinsic ankle stiffness during conditions of increased baseline
sway (Sakanaka et al., 2016), indicating remarkable effects of sway
history. Intrafusal fibers of muscle spindles also show thixotropic
behavior, implying history-related proprioceptive gain (Proske
et al., 1993). In sum, ignoring the non-linear dependence of ankle
stiffness on sway size may lead to serious misinterpretation of
the results of experiments that use mechanical perturbations or
sensory manipulations such as eye closure, movable or unstable
support surfaces, sway-referencing, etc. (Loram et al., 2007).

Second, since postural oscillations are small, there are
considerable non-linear redistributions of internal displacements
of muscle fibers, tendons and soft tissues inside the body.
For instance, due to the compliant Achilles tendons, there is
paradoxical shortening of soleus and gastrocnemius muscles
when the body sways forward and lengthening when the body
returns, leaving uncertain the postural role of the numerous calf
muscle spindles in the detection of body sway (Loram et al.,
2004). Furthermore, the control of equilibrium and internal
displacements (of muscle fibers, ligaments and soft tissues) are
not restricted to distal joints. For instance, postural disturbances
may result from respiratory movements of the thorax and
abdomen and should be compensated by movement of the
lower limbs and pelvis (Hodges et al., 2002). Moreover, postural
stability requires constant activity of axial muscles to stabilize
the trunk (and head) and to compensate for movements of the
distal parts of the body, if necessary. Finally, the human foot

is subjected to considerable deformations during quiet standing
due to small CoM displacements and deformations of the soft
tissues and the arch of the foot. It is worth stressing that∼0.5mm
vertical oscillations of the calcaneus (and forefoot) observed
during quiet standing in healthy adult individuals (Gurfinkel
et al., 1994) produce about 0.5◦ of body tilt (∼0.7 cm CoP
displacements) even in the absence of ankle joint displacements.
In young children, these deformations and their influences on
posture control are expected to be even larger since a child’s
foot goes through significant developmental changes in shape
and soft tissues of the foot sole (e.g., the presence of a fat pad
underneath the foot plantar surface in infants), once the child
starts to stand and walk. Moreover, development of the bony
structure of the longitudinal arch only starts ∼1 year after birth
and continues up to the age of 5 years (Straus, 1926; Maier, 1961).
Postural activity of numerous intrinsic foot muscles (that is
typically not recorded in postural studies) further contributes to
human foot plasticity. There are also large individual differences
in foot deformations. These deformations yield large errors
in the measured changes of the ankle joint angle, as well as
even minute local foot deformations elicit noticeable directional
postural responses (Gurfinkel et al., 1994; Wright et al., 2012).
However, many postural studies tend to focus on the simple hinge
action of the ankle joint (Gatev et al., 1999; Masani et al., 2003;
Winter et al., 2003; Mergner, 2007).

The processing of the CoP oscillations imply a certain
degree of non-linearity. Upright postural control during quiet
standing has often been investigated by quantifying spontaneous

postural sway in the displacement, velocity and frequency
domains. Nevertheless, the analysis and interpretation of the
findings should be carried out carefully since the data processing

technique may affect the structure of CoP variability (Rhea et al.,
2015). In addition, the similar amplitudes of the CoP oscillations
in different animals (Figure 1) raise an important point about

their normalization to the body height, body mass and the size
of the base of support. Could it reflect an evolutionary adopted
sensory threshold for the control of postural sway? Indeed,
despite differences in body size, the proprioceptive thresholds
(for muscle spindles, joint and load receptors), nerve conduction

velocities and the types of muscle fibers are similar for terrestrial
mammals, suggesting that a simple size-scaling cannot be applied
when comparing sensorimotor control across species (More
et al., 2010). Whatever the exact mechanism for comparable CoP
oscillations (Figure 1), both mechanical and neural factors are

likely to contribute (Gatev et al., 1999; Masani et al., 2003; Winter
et al., 2003; Di Giulio et al., 2009; Simoneau and Teasdale, 2015).
These considerations are also important for the developmental
studies. For example, CoP oscillations are similar or larger (but
never smaller) in young children with respect to adult humans

notwithstanding over the 2-fold difference in body height (Oba
et al., 2015). To some extent, they could be accounted for
by the development of postural stability in children. However,
we do not know the quantum of CoP oscillations attributable

to instability and which proportion may be adjusted due to
“unknown” normalization procedure. In other words, we are
uncertain about whether and how the CoP amplitude should be
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normalized to the body height for the same animal at different
developmental ages.

There are also other non-linear properties of the sensorimotor
system, including thresholds (e.g., for vestibular stimulation),
time delays of proprioceptive feedback and neuromuscular
delays of force production. The nonlinear geometry of musculo-
skeletal connections (e.g., the dependence of the moment
arm of muscles upon joint angle) contributes to non-linear
properties of the sensorimotor system, though this type of non-
linearity is more noticeable during relatively large movements
or postural perturbations or when changing the postural set.
We will not review here numerous postural models and
refer to other articles related to nonlinear control strategy,
including burst-like muscle activations, observed especially
during unstable conditions. It has even been suggested
that intermittent open loop control may be an appropriate
solution to deal with feedback time delays, motor noise and
computational-muscular economy (Loram et al., 2011). The
shift of paradigms in future experimental or modeling studies
may be related to the development of non-linear approaches
(Loram et al., 2011; Nomura et al., 2013; Funato et al.,
2016), although complexity of the model may come at the
cost of understanding. These limitations force a necessary
trade-off between the usage of linear approaches and more
complex postural models. Nevertheless, even if we for simplicity
apply linear computations (for instance, Kiemel et al., 2008;
Assländer and Peterka, 2014), we need to keep in mind
considerable non-linearity in the neuromuscular control of
posture.

Posture Control as a Summation of
Postural Reflexes
Early postural studies made an emphasis on the reflex nature of
postural mechanisms and provided various important examples
of static postural reactions (Magnus, 1924; Roberts, 1978). The
idea of stretch reflexes, sensory (proprioceptive, visual and
vestibular) feedback and its impairment in various forms of
pathology of the spinal cord, brainstem and cerebellum, in
conjunction with the later developed concept of servoregulation,
has been influential in the assessment and modeling of human
posture control.

On the other hand, it has been realized that the notion of
postural reflexes is rather limited to account for the actual
complexity of posture control, which includes anticipatory or
feedforward adjustments, context-dependent sensorimotor
(or “reflex”) modulations, postural body scheme, and
integration of posture and movements (Massion, 1994). A
noteworthy illustration of the postural body schema is the
modulation of automatic postural reactions (e.g., in response
to galvanic vestibular stimulation, muscle vibration, or postural
perturbation) according to an illusionary rather than real
position of the head or body segments (Gurfinkel, 1994). There
are several techniques to artificially induce a dissociation between
real and perceived body configuration: by eliciting proprioceptive
illusions, by using the phenomenon of “return” of subjective
head position to the neutral position after its prolonged turning,

or by hypnotic suggestion. All these techniques show similar
effects on spatially-oriented postural responses to sensory
stimulation. Changes in the gaze direction may also modulate
postural responses (Ivanenko et al., 1999), consistent with
supraspinal or cognitive influences on posture control, likely
because the gaze represents an important reference frame for
the internal model of spatial orientation. Thus, the fact that
automatic postural reactions are accomplished in accordance
with internal representation of body scheme (Popov et al.,
1986; Smetanin et al., 1988; Gurfinkel, 1994) indicates that
it does not only serve for conscious perception of position
but it is also the basis for planning and implementing motor
activity. The control of balance during both standing and
movements depends on a complex interaction of physiological
mechanisms, high level processing of sensory information
in accordance with the postural body scheme and on the
individual’s expectations, goals, cognitive factors and prior
experience. The body scheme elements exist already at the level
of the spinal cord and contribute to the processing of sensory
input and postural responses (Fukson et al., 1980; Windhorst,
1996; Poppele and Bosco, 2003). The notion of body schema
has received attention in a large context of contemporary motor
control to understand adaptability of reflex modulation, a range
of processes such as state estimation, prediction, learning,
and to bridge the gap between cognitive and motor functions
(Gurfinkel, 1994; Maravita and Iriki, 2004; Windhorst, 2007;
Pearson and Gramlich, 2010; Ivanenko et al., 2011; MacPherson
and Horak, 2012; Herzfeld and Shadmehr, 2014).

In sum, postural control is no longer considered one system
or a given set of equilibrium reflexes but rather a motor skill
(Horak and Macpherson, 1995). Many studies are focusing on
quantifying the reflex gain of specific neural pathways, such as the
Hoffman reflex, local stretch reflexes in individual joints, motor
evoked potentials, etc. or applying a specific balance test. They
provide knowledge about excitability of these pathways in specific
conditions. However, the view that a few pathways or centers
in the brain are responsible for posture control is quite limiting
in our abilities to assess risks of falling and to improve balance.
In addition, high-level cortical involvement increases as postural
challenges or demands for reactive control increase (Ouchi et al.,
1999; Solopova et al., 2003; Varghese et al., 2015). From the
diagnostic and rehabilitation viewpoints, “many systems need to
be evaluated to understand what is wrong with a person’s balance”
(Horak, 2006).

Posture Control and Equilibrium Control
It is typically stated in many articles on posture control that
sensory information from somatosensory, vestibular and visual
systems are integrated to provide equilibrium maintenance
(Fitzpatrick and McCloskey, 1994; Blouin et al., 2007; Mergner,
2007; Assländer and Peterka, 2014; Chiba et al., 2016).
Accordingly, a consistent bulk of research focused on postural
equilibrium investigates how sensory inputs are reweighted or
how neural strategies change in different situations to control
balance and postural reactions to perturbations (Nashner, 1976;
Ivanenko et al., 1997; Jeka et al., 2004; Schweigart and Mergner,
2008; Nardone and Schieppati, 2010; Simoneau and Teasdale,
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2015; Balestrucci et al., 2017). However, the system of posture
control must deal with the two tasks simultaneously, one sets
a distribution of tonic muscle activity (“posture”) and the other
is assigned to compensate for internal or external perturbations
(“equilibrium”). Are these two tasks equivalent?

To start with, the control of movement and maintaining a
fixed limb posture following movement (holding the body part
at its destination) involve distinct neural circuits in the brain
stem, cerebellum, motor cortex, hippocampus, etc. (Shadmehr,
2017). For instance, many neurons in the primary motor
cortex that express load-related activity are exclusively involved
during either posture only or movement only, i.e., they respond
differently to transient and continuous loads applied during
posture (Kurtzer et al., 2005; Herter et al., 2009). It was suggested
that the necessity of having a “hold circuit” may have arisen from
the need to maintain a constant “sensory state,” while circuits
that are responsible for moving the body part change its sensory
state. Since the two tasks (movement and holding still) are
inherently interrelated, there is also overlapping and interaction
between these circuits. Nevertheless, they differ significantly.
Neurophysiological data across different modalities regarding the
control of gaze, head movements, arm movement, posture and
locomotion indicate that distinct interneurons and motoneurons
exhibit bursts of activity during transient movements vs.
a sustained level of discharge during posture maintenance
(Shadmehr, 2017). Accordingly, a similar concept can be applied
to the control of phasic and tonic postural muscle activity.
As far as it concerns postural tone, it originates from several
supraspinal centers, including the reticular formation, vestibular
nuclei, cerebellum, and mesodiencephalic nuclei (Hess, 1954).
These brain regions can exhibit sustained long-lasting activity
providing a prolonged excitation and inhibition of executive
motor systems. In addition, there are also specialized pathways
to the spinal cord (Kuypers, 1964; Szokol and Perreault, 2009;
Deliagina et al., 2014) and specialized activation of the trunk
musculature during various postural and motor tasks (Urquhart
et al., 2005; Falgairolle et al., 2006, 2013; Tsao et al., 2011;
Beliez et al., 2015). For instance, descending pathways to the
axial musculature (that links all parts of the body together and
provides axial muscle tone and trunk stabilization) via somatic
descending brain stem andmonoaminergic pathways are distinct
from the descending tracts to limb motoneurons (Kuypers, 1964;
Szokol et al., 2008; Sivertsen et al., 2014).

Slow and fast processes in the central nervous system are also
often linked to the control of muscle tone and phasic muscle
activity. For instance, various postural aftereffects are associated
with slow changes in the tonic muscle activity (Gurfinkel et al.,
1995; Kluzik et al., 2005; Bove et al., 2009; Wright, 2011). In
some conditions, posture-related and equilibrium-related control
can be differentiated with regard to slow and fast components
of CoP displacements, respectively. For instance, participants
with occluded vision undergoing super slow (<0.1◦/s) tilts of
the supporting platform, subthreshold for most vestibular and
proprioceptive phasic reactions, display very large compensatory
phase shifts and delays (tens of seconds). It is worth noting,
though, that large slow body movements are superimposed with
small irregular oscillations reflecting an ongoing equilibrium

control (Gurfinkel et al., 1995). Thus, besides operative control
assigned to compensate deviations from a reference position,
the system of postural control includes at least one additional
level, which elaborates this postural “set” taking into account the
energy cost of standing, position of body segments, muscular
torques and demands for stability and security. From a functional
point of view, this may solve the old posture-movement paradox
introduced by a famous German scientist, Erich vonHolst (1908–
1962): how we can move from one posture to another without
triggering resistance from posture-stabilizing mechanisms. If
one considers posture and equilibrium to be mediated by
distinct neural circuits, posture-stabilizing mechanisms may
be responsible for the control of equilibrium relative to the
superiorly determined postural set.

The basis of habitual sitting or standing human posture
is postural tone of skeletal muscles. Phasic activity is often
voluntary (though it may be automatic as well) while tonic
involuntary activity is less known and much less studied.
There are methodological difficulties since the activity in many
(e.g., trunk) muscles is rather small. Under narcosis, muscle
tone disappears while tonic activity can be observed during
sleeping, since there are some active phases accompanied by
muscle tonic contractions (Harris, 2005; Peever, 2011; Huon and
Guilleminault, 2017). Among important examples of long-lasting
involuntary activity are the tonic vibration reflex (Eklund and
Hagbarth, 1966) and involuntary postcontraction muscle activity
(Salmon, 1914; Kohnstamm, 1915) that have been suggested to
represent an amplification of neuromotor processes normally
involved in automatic posture maintenance and tonic spinal
activity (De Havas et al., 2017; Ivanenko et al., 2017).

An important issue is an evaluation and definition of muscle
tone (Gurfinkel et al., 2011), which is traditionally linked to the
activity level of muscle. In clinical practice, changes in tonus
are typically measured, not tonus per se, by the extent of the
muscle resistance to stretch. However, muscle length changes
may also evoke involuntary shortening reactions (compliant
posture behavior) or elicit postural adjustments of other “remote”
muscles not being primarily stretched (Andrews et al., 1972;
Gurfinkel et al., 1989b). A dynamic “postural frame,” that is
inherently incorporated in posture and movement coordination,
may account for the resistive or compliant behavior of the
body (Cacciatore et al., 2014). In this respect, Bernstein’s (1940)
interpretation of muscle tone seems more functional, as the
degree of readiness for movement related to movement as a
state is related to an action, or as a precondition is related
to an effect. Changes in muscle tone affect movements. The
remarkable findings of the British neurologist Martin (1967)
provide excellent examples of how disturbances to postural
tone in humans affect the ability to perform movements. For
instance, the loss of normal posture of the head and trunk
can be observed in patients with eyes closure while inability
to hold the body up may result in a gradually flexed posture
during walking. Furthermore, disturbances of trunk posture, its
dynamics and variability during walking may differ for idiopathic
and parkinsonian camptocormia, suggesting the involvement of
different underlying physiopathological mechanisms (de Sèze
et al., 2015). In addition, trunk postural adjustments may
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also depend on walking conditions, for instance, forward vs.
backward walking (Ivanenko et al., 2013). These disturbances are
related primarily to automatic rather than voluntary control of
posture (Wright et al., 2007; Ivanenko et al., 2013). The level of
tonic muscle activity substantially influences postural orientation
(Martin, 1967; Kluzik et al., 2005; Wright, 2011) and is inherently
incorporated in gait control (Mori, 1989).

In summary, the central nervous system is able to combine
mobility with stability and the nature of interactions between
posture and movement is a long-standing problem in movement
neuroscience. The latter aspect was best described by Sherrington
(1906) more than a century ago—“posture follows movement
like a shadow.” It even anticipates movement. Tonic muscle
activity and posture control require specialized neural circuitry.
An appropriate postural tone is an integral part of any movement
and disturbances to muscle tone may in turn affect movement
performance. In order to understand the control of posture
and movements, we need to know better how postural tone

is generated and maintained, including its neuromuscular
underpinnings.
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