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Supplementary Methods 
 
Cell culture and neuronal differentiation 

Cells were grown at 37°C in a 5% (v/v) CO2 incubator. Mouse embryonic stem cells ES-46C 

(Ying et al, 2003) (ESC) were grown in GMEM medium (Invitrogen, # 21710025), supplemented 

with 10% (v/v) fetal calf serum (FCS; PAA, # A15-151), 2 U/ml LIF (Millipore, # ESG1107), 

0.1 mM β-mercaptoethanol (Invitrogen, # 31350-010), 2 mM L-glutamine (Invitrogen, # 25030-

024), 1 mM sodium pyruvate (Invitrogen, # 11360039), 1% penicillin-streptomycin (Invitrogen # 

15140122), 1% MEM Non-Essential Amino Acids (Invitrogen, # 11140035) on gelatin-coated 

(0.1% (v/v)) Nunc T25 flasks. The medium was changed every day and cells were split every 

other day. Before sample collection for Hi-C or CAGE, ESC were plated on gelatin-coated (0.1% 

(v/v)) Nunc 10 cm dishes in serum-free ESGRO Complete Clonal Grade Medium (Millipore, # 

SF001-500), containing 1U/ml LIF. Cells were grown for 48h, with a medium change at 24h. 

Mouse Epi Stem cells (EpiSC) were established from ESC-46C cells, after growth (4 

weeks) in N2B27 basal medium containing 20 ng/ml of Activin (R&D, # 338-AC-050) and 12 

ng/ml FGF2 (Peprotech, # 100-18B). The composition of the N2B27 basal medium was: ½ of 

DMEM/F12 (Invitrogen, # 21331-020), ½ Neurobasal Medium (Invitrogen, # 21103-049), 0.5x 

N2 (Invitrogen, # 17502-048), 0.5x B27 (Invitrogen, # 12587-010), 0.05 M β-mercaptoethanol 

(Invitrogen, # 31350-010) and 2 mM L-glutamine (Invitrogen, # 25030-024). EpiSC were grown 

on Nunc plates coated with FCS (PAA, # A15-151). Culture medium was changed every day and 

cells were split every other day by washing them 3 times with PBS without magnesium and 

calcium, incubated in PBS for 3 min at room temperature and then gently scraped from the plate. 

After scraping them the cells were pipetted up and down 3 times before transferring them to a 

new FCS-coated plate.  

EpiSC cells were differentiated into NPC (Day 5) or Neurons (Day 16) with midbrain 

properties (Jaeger et al, 2011). Differentiation was optimized based on a previously developed 

method (Jaeger et al, 2011) and at Day16, 99.4% cells are neurons positive for Tubulin beta-3, 

and 99.6% negative for BrdU (after 24h incorporation, see below; n=3.5x104). The day before 

starting the differentiation protocol (Day ‘-1’), exponentially growing EpiSC were plated on 

Nunc plates coated with 15 µg/ml human plasma fibronectin (Millipore, # FC010) and cultured in 
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N2B27 basal medium containing Activin and FGF2, so that they reached 70-80% confluence 

after 24h. Differentiation was started by rinsing cells twice with PBS, and culturing in N2B27 

basal medium plus 1 µM PD 0325901 (Axon, # 1408) for 2 days. Medium was replenished every 

day. On day 2, cells were washed with PBS, scraped, replated on 10 cm dishes (Nunc,	# 150350) 

coated with 15 µg/ml human plasma fibronectin (Millipore, # FC010) and cultured in N2B27 

basal medium for 3 days. At this stage, medium was replenished every day by removing ½ 

volume and adding ½ volume of freshly prepared medium. Samples of NPC were collected at 

this stage at day 5.  

Neurons were produced in parallel through the following steps. After 72h, the medium was 

replaced with N2B27 basal medium plus 100 ng/ml FGF8 (Peprotech, # 100-25-25) and 200 

ng/ml Shh (R&D, # 464-sh-025). Medium was replenished every day by removing ½ volume and 

adding ½ volume of freshly prepared medium. 

After 96h, cells were washed with PBS, and the medium replaced with N2B27 basal 

medium plus 10 ng/ml BDNF (R&D, # 450-02-10), 10 ng/ml GDNF (R&D, # 450-10-10) and 

200 µM L-ascorbic acid (Sigma, # A4544). Medium was replenished every day by removing ½ 

volume and adding ½ volume of freshly prepared medium until the last collection at day 16. 

 

CAGE sample preparation 

ESC, NPC and Neurons were grown as indicated above on 10 cm dishes (Nunc,	# 150350), the 

medium was removed, TRIzol (Invitrogen, # 15596-018) was added directly to the dish and total 

RNA was extracted and purified using the miRNeasy mini kit (Qiagen) from 5x10^6 cultured 

cells with a column purification according to manufacturer’s instructions with modifications. 

Chloroform was added at 200 µl/ml of TRIzol lysate before centrifugation. To bind total RNA 

including miRNA to the columns, 1.5x volumes of 100% ethanol was added to the aqueous phase 

of the lysate. Before library preparation, the quality of RNA samples was checked by 

BioAnalyzer (Agilent) to ensure integrity of RNA (RIN>8) and final concentration was 

determined by spectrophotometry (Nanodrop). Samples were sent to Riken Institute, Omics 

Science Centre (OSC), Yokohama, Japan, for CAGE library preparation and sequencing. CAGE 

libraries were prepared from 5 µg of total RNA as described previously (Itoh et al, 2012; 

Kanamori-Katayama et al, 2011) and then sequenced on the HeliScope Single Molecule 
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Sequencer platform (Helicos Bioscience). The sequencing reads were mapped and aggregated 

into TSS clusters, as previously described (Forrest et al, 2014).  

 

Incorporation of BrdU in replicating cells 
To measure the replication index of the cell populations used, ESC, NPC and Neurons were 

grown in their normal medium (see above) containing 50 µM BrdU (Sigma, # 59-14-3) for 24 h. 

Cells were fixed (10 min) with 4% freshly-depolymerized paraformaldehyde in 125 mM HEPES 

(pH 7.8). After washing (2x) in PBS, cells were permeabilized (20 min) with 0.2% Triton X-100 

in PBS and blocked (30 min) with 0.5% BSA, 0.2% fish skin gelatin in PBS. Cells were 

incubated (1h, humid chamber) with 0.5 U/µl DNaseI (Sigma, # D4263), 3 mM MgCl2 and anti-

BrDNA antibody (1:150; raised in mouse; Caltag Laboratories, # MD5110). Cells were washed 

(3x, 3 min each) with blocking solution and incubated (40-60 min) with the secondary antibody 

AlexaFluor 555 anti-Mouse IgG (1:1000; raised in donkey; Invitrogen, # A31570), in a humid 

dark chamber. Cells were washed (2x) with blocking solution and (2x) with PBS. Cells were 

stained (5 min) in 0.1 mg/ml DAPI in PBS washed (1x) with PBS and mounted using Dako 

Fluorescence Mounting Medium (Dako Agilent Technologies, # S3023). 

 

Immunofluorescence 

ESC, NPC and Neurons were fixed (10 min) with 4% freshly depolymerized paraformaldehyde 

in 125 mM HEPES, washed twice with PBS and permeabilized (3x, 5 min each) with 0.3% 

Triton X-100 in PBS (PBST), 5 min each by gently rocking. Cells were blocked (30 min) with 

3% donkey serum in PBST and then incubated (at 4°C, overnight), with primary antibody in 

PBST+3% donkey serum. Primary antibodies used were: mouse anti-Tuj1 (1:500; a Neuronal 

marker, Sigma, # T8660); mouse anti-Oct4 (1:50; a pluripotency marker; BD Biosciences, # 

611202); mouse anti-nestin (1:100; a marker of neural precursor cells, Cell Signalling, # 4760). 

After washing (3x, 10 min each) with PBST, cells were incubated (1h, in a humid dark chamber) 

with AlexaFluor 555 anti-mouse IgG (1:1000; raised in donkey; Invitrogen, # A31570) secondary 

antibodies in PBST+3% donkey serum. Cells were incubated (5 min) in 0.1 mg/ml DAPI in 

PBST, washed with PBST (3x, 10 min each), before mounting in Dako Fluorescence Mounting 

Medium. 
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 Images were collected sequentially on a confocal laser-scanning microscope (Leica TCS 

SP8 STED; HC PLAPOCS2 20x / 0.75 IMM objective), equipped with a 405 diode and a WLL 

(Supercontinuum visible) laser, and pinhole equivalent to 1 Airy disk. For comparison of BrdU 

staining during neuronal differentiation, images were collected on the same day using the same 

settings, and without saturation of the intensity signal.  

 

Generation of Hi-C libraries 

Samples used for generating ESC, NPC and Neurons Hi-C libraries were grown as detailed above. 

The medium was removed from the plate, replaced with fresh serum-free medium containing 1% 

formaldehyde (Sigma, # F8775), and the samples incubated 10 min at room temperature with 

gentle rocking every 2 min. Glycine (0.125M final concentration; Sigma; # G8898) was added 

and mixed by gentle rocking for 5 min to quench the formaldehyde and stop crosslinking. Plates 

were incubated 15 min on ice to stop the reaction. Cells were scraped from the surface of the 

Petri dish and the dish was washed thoroughly with media before transferring the cells to a 15 ml 

conical Falcon tube. Cells were pelleted by centrifugation with a Heraeus Multifuge X3M 

equipped with a 75003607 rotor (10 min, 2000 rpm), quick-frozen on dry ice and stored at -80˚C. 

 The initial chromatin digestion, biotin labeling, blunt end ligation, protein removal, DNA 

purification, and quality control of the initial stage of the Hi-C libraries were all performed 

exactly as previously published (Lieberman-Aiden et al, 2009), using 400U per reaction of either 

NcoI or HindIII enzyme. From the 3C-like library, changes were made in order to obtain a higher 

yield of DNA for sequencing (Appendix Fig S1). The removal of biotin from the ends of 

unligated restriction fragments was performed by mixing 5 µg of Hi-C DNA, 1 µl of 10x NEB 2 

buffer, 1 µl each of 10 mM dATP and 10mM dGTP, and 5U of T4 DNA Polymerase (NEB) in a 

200 µl PCR tube (Maxymum Recovery, Axygen). Each reaction was incubated in a PCR machine 

(Bio-Rad MyCycler) at 12°C for 2h. Up to 10 separate reactions per sample were performed to 

provide enough DNA for downstream processing, as the percentage of DNA in the library that 

contains valid, biotin-labeled, Hi-C junctions is very small. The samples were then incubated for 

20 min at 75°C to heat-inactivate the enzyme, and were then transferred to 1.5 ml tubes 

(Maxymum Recovery, Axygen). The DNA was precipitated from the solution by the addition of 

10 µl 3M sodium acetate and 275 µl of cold 100% EtOH, followed by incubation overnight at -

80°C. Samples were washed 2-3 times with 500 µl of 70% ethanol before being resuspended in 
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400 µl water. The DNA was then sheared to an average size of 300-500bp using a Branson 

Sonifier with cup horn attachment (Branson S-450D Sonifier). DNA was then size-selected using 

Ampure XP beads (Agencourt XP) according to manufacturers specifications, with ratios of 

0.65x and 0.8x, and was then eluted in 60 µl of Qiagen EB buffer. All of the replicates for each 

sample were then pooled together, and the total volume was reduced to 301µl using a speed-vac 

(Eppendorf). 1 µl of each sample was used to measure DNA concentration using the Quant-iT 

PicoGreen assay (Invitrogen), where for each sample we would expect to have more than 2 µg of 

total DNA present.   

 The biotin-labeled Hi-C fragments were then pulled down to facilitate DNA end repair, 

adenylation, and adaptor ligation. 60 µl of Dynabeads MyOne Streptavidin C1 beads (Invitrogen) 

were washed twice with 400 µl of Tween Wash Buffer (TWB; 5 mM Tris-HCl pH 8.0, 0.5 mM 

EDTA, 1 M NaCl, 0.05% Tween). For all washes, beads were recovered using a DynaMag 

Magnet (Invitrogen) for 1 min. After washing, the beads were then resuspended in 2x Binding 

Buffer (BB; 10 mM Tris-HCl, pH 8.0, 1 mM EDTA, 2 mM NaCl). All 300 µl of Hi-C DNA was 

added to the resuspended beads and incubated with rotation at room temperature for 15 min. The 

beads were collected, the supernatant discarded, and the Hi-C bound beads were washed with 400 

µl of 1x BB, before being transferred to a new 1.5ml tube. The beads were then resuspended in 

100 µl of 1x Ligation buffer (NEB) before being transferred into a 200 µl PCR tube. 

 The ends of the Hi-C fragments were repaired using a solution prepared on ice separately 

containing 10 µl of 10x Ligation Buffer (NEB), 4 µl 10 mM dNTP mix, 5 µl (15 units) of T4 

DNA Polymerase (NEB), 5 µl of T4 Polynucleotide Kinase (NEB), 1 µl of Klenow DNA 

Polymerase (NEB), and 75 µl of water. The supernatant from the beads was removed 

immediately prior to being resuspended with the cold 100 µl end repair mix. The beads were then 

incubated at 20°C for 30 min in a thermal cycler, washed twice with 200 µl of 1x TWB and twice 

with 200 µl EB buffer. A 3’ adenylation mix was generated in a similar fashion, by preparing 

separately on ice 5 µl of 10x NEB 2, 10 µl of 1 mM dATP, 3 µl of Klenow exo-, and 32 µl of 

water. The supernatant from the beads was removed immediately prior to being resuspended with 

the 50 µl adenylation mix. The samples were incubated at 37°C for 30 min in a thermal cycler, 

and then washed twice with 200 µl of 1x TWB and twice with 200 µl EB buffer. 

The amount of Illumina PE adaptor needed to ligate to the Hi-C fragment ends was 

determined from the total DNA measured using the Quant-iT kit earlier in the protocol. For every 
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1 µg of total DNA present in a given Hi-C sample, 6 pmol of the Illumina PE Adaptor was used. 

On ice, 25 µl of 2x Adaptor Ligation Buffer (Illumina) and the Illumina PE Adaptor was brought 

to a total volume of 45 µl with water. The beads were then resuspended with the adaptor mix, 

followed by the addition of 5 µl of DNA ligase (Illumina), and were mixed gently with a pipettor. 

The ligation reaction was incubated at 20°C for 15 min in a thermal cycler, the beads were 

washed twice with 200 µl of 1x TWB, twice with 200 µl of EB buffer, and finally resuspended in 

50 µl of EB buffer. 

PCRs were performed to determine the optimal number of cycles needed to generate 

enough of a Hi-C library to be sent for sequencing. Individual PCRs were composed of 0.5 µl Hi-

C Library, 1 µl of 1.6 µM Illumina PE 1.0 primer, 1 µl of 1.6 µM Illumina PE 2.0 primer, 10 µl of 

Phusion High-Fidelity 2x Master Mix (NEB), and 7.5 µl water in 200 ml PCR tubes. The 

reactions were run as follows: 1 cycle of 5 min at 94°C, either 6, 8, 10, 12, or 14 cycles of 30s at 

94°C, 30s at 65°C, and 30s at 72°C, and a final cycle of 7 min at 72°C. DNA was then run on a 

2.5% agarose gel, where the optimal number of PCR cycles was chosen. This number varied 

from 7 to 11 cycles for all Hi-C libraries, depending on the quantity of Hi-C DNA initially used. 

Smaller numbers of PCR cycles are strongly preferred to reduce the abundance of duplicate reads 

in the data and increasing the yield of the sequencing runs.  

A number of large-scale reactions were then performed using 2.5x the reagents from the 

test PCRs using the chosen cycle number in order to generate enough Hi-C library for sequencing. 

Samples were purified using a 1.8x volume of Ampure XP beads, as per the manufacturer’s 

instructions, and eluted in 50 µl of EB buffer (Qiagen). Samples were quantified using the Quant-

iT assay, and visualized on a 2.5% agarose gel prior to sequencing to check the quantity and 

quality of the samples.  

 

Sequencing 

All Hi-C samples were sequenced on the Illumina Hi-Seq 2000/2500 platform, using the 100bp 

paired-end protocol (Genome Quebec). Raw reads are available online from GEO, accession 

number GSE59027. Table EV3 describes the number of reads obtained for each sequenced lane.  

 

Other Hi-C datasets 
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Raw reads from a similar mouse ESC-J1 Hi-C experiment (Dixon et al, 2012) were downloaded 

from GEO using accession number GSE35156 and processed in the same manner as our own 

data for all comparisons in the article. The locations of TADs identified in the same study were 

also downloaded (HMM-TADs), and are referenced as such in comparisons.  

 

Hi-C Data processing 

Hi-C reads were processed using the software presented in Imakaev et al. (2012) hiclib (Imakaev 

et al, 2012). Although there are other tools available that deal with biases in Hi-C datasets in a 

comparable fashion (Hu et al, 2012; Yaffe & Tanay, 2011), hiclib has a well documented pipeline 

that guides analysis from the level of raw reads up to fully corrected Hi-C contact matrices.  

Briefly, each Hi-C paired-end read file was aligned separately to the mm9 genome using 

bowtie2 (Langmead & Salzberg, 2012) using default parameters. Each read was initially 

truncated to 25bp and then checked to see if it aligned uniquely. If so, it was added to the pool of 

uniquely mapped Hi-C reads for downstream analysis. If the 25bp read did not align uniquely, 

the size of the truncated read would be increased by 5bp and another attempt would be made to 

align it. This is repeated until none of the non-aligning reads can be extended any further. This 

ensures that the presence of a Hi-C junction within the Hi-C read, often denoting a ligation event 

between two non-continuous parts of the genome, does not affect the alignment of the read.  

Hi-C read pairs that contain two uniquely aligning ends were then parsed and filtered using 

the default settings of hiclib to obtain a collection of high-confidence Hi-C read pairs. Self-

circularized products, dangling ends, duplicate reads arising from PCR bias, and reads that align 

more than 500bp apart through a Hi-C junction were removed from downstream analysis. Reads 

that map to fragments smaller than 100bp or larger than 100kb were also removed, as were the 

top 0.5% of fragments with the largest number of reads. Data from different sequencing lanes 

were combined at this point, and binned using 50kb windows in order to be converted into raw 

Hi-C contact matrices. Table EV2 details the effects each of the filters had on the quantity of 

reads. Finally, an iterative hiclib correction was applied to normalize the systematic biases in the 

Hi-C matrices using DNA visibility.  

 In order to be able to compare data between Hi-C datasets, we used additional methods to 

normalize across different samples (Appendix Fig S18). The largest source of variance between 

samples was the ratio between cis and trans Hi-C contacts (Table EV2), which also appeared to 
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vary in the other published datasets examined. Samples with high numbers of trans contacts had 

a lower average intensity and resembled a normal distribution, perhaps suggesting that a portion 

of the trans contacts are actually biological noise in the form of randomly generated Hi-C 

ligation products. Using the distribution of read counts in the trans data, we performed a 

background subtraction (Average Read Count + 1 Standard Deviation), which was subtracted 

from all interactions, both cis and trans, across the entire dataset. Finally, in order to properly 

account for differences in library depth between samples, we converted individual read counts 

into reads per billion by dividing the signal for each interaction by the total number of reads (cis 

and trans) left after background subtraction, and multiplying by 1 billion. Hi-C matrices were 

highly similar between HindIII and NcoI replicates used (Appendix Fig S19). Results from the 

NcoI libraries are represented in the main text and Figures. All heatmaps display log-transformed 

Hi-C interaction data scaled relative to the highest and lowest interactions within that specific 

heatmap, with the exception of Figure 2H and Appendix Figs S2 and S3, where clipping was 

done at 80% and 99%, respectively, to emphasize long-range contacts. The heatmaps in Figure 

2H and Appendix Figs S2 and S3 were additionally downscaled by a factor of 2 and 4, 

respectively, using the aggregate function of the R raster package. 

 

Identification of TADs 

To define the fundamental Topologically Associating Domains (TADs) we exploit the 

Directionality Index (DI) measurement introduced originally by (Dixon et al, 2012). From the Hi-

C dataset, we measured DI at each bin by calculating the difference in read counts between 

upstream and downstream interactions within a window of size L. As previously identified, the 

DI signal becomes roughly independent of the window size for L > 2Mb, so in the following 

analysis we set L = 2Mb. We then examined the distribution of DI values (Appendix Fig S4) and 

their standard deviation, σ. We found the average of DI values is practically zero. We set a 

relevance threshold, α, and identify the boundaries of TADs as the points along the DNA 

sequence where DI rises to be above the given threshold (DI(i) > ασ, left boundary) and where DI 

declines to be below the threshold (DI(i) < -ασ, right boundary) (Appendix Fig S4). For any 

considered value of α (see Supplementary Analyses), the TAD size values are much larger than 

the TAD sizes calculated in a control random Hi-C matrix obtained by bootstrapping the original 

Hi-C matrix along its diagonals, which preserves the genomic distance bias. Thus, the boundaries 
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identified in the case α=0 are significant and, unless otherwise stated, we considered them in our 

study. Small changes in the threshold values do not alter our results (Appendix Fig S4).  

 

Comparison of TAD boundaries  

In order to compare the location of TADs between datasets, we examined the location of TAD 

boundaries throughout the genome. For each boundary location in a given sample (A), we 

attempted to identify a conserved boundary in the second sample (B) within 100kb upstream and 

downstream (Appendix Fig S6). Overlaps are reported as the percentage of boundaries in sample 

A that have a corresponding boundary in sample B. As the number of boundaries can vary 

between samples, the two possible directions of comparison result in different percentages, 

resulting in a slightly asymmetrical overlap matrix. For simplicity, conservation values from both 

directions were averaged within the main text and Figures. Overall, we see that the locations of 

TAD boundaries in the NPC sample are similar to those in both ESC and Neurons, while ESC 

and Neurons share fewer boundaries (Fig 3F). A comparison between HMM-TADs and ESC-J1 

TADs derived using our modified approach indicate that the two approaches generally identify 

overlapping boundaries, with our approach also defining some structures within HMM-TADs 

(Appendix Fig S6).  

 

TAD conservation  

To compare TADs defined by our approach (see above) with the HMM-based approach (HMM-

TADs) used previously (Dixon et al, 2012), we used the following procedure. The boundaries of 

TADs identified with either method in the published ESC-J1 Hi-C data were considered to 

coincide if their location was within a given tolerance from each other. The tolerance, Δx, used 

here is 40% of the average TAD length (Δx = 200kb). In cases where both TAD boundaries 

coincide within the allowed Δx, the two TADs are counted as overlapping. We also used our 

TAD definition algorithm to define TADs based on ESC-J1. To compare TADs defined by the 

two different approaches we employed two measures of global overlap: (i) the fraction of 

overlapping TADs (Appendix Fig S20), a measure previously used (Dixon et al, 2012), and (ii) 

the fraction of genome within overlapping TADs. The largest global overlap was found for the 

value of α where the average size of TADs with the two methods is about the same, specifically α 

around 0.2. In that case the overlap is about 64% by use of measure (i) and 60% by measure (ii) 
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(Appendix Fig S20). For α=0, we found that the overlap is approximately 47% by use of measure 

(i) and 29% by use of measure (ii). Importantly, in both cases the values found are much higher 

than the overlap found by considering a randomized system where the same TADs are used but 

their linear order along the genome was randomized, which is 15% and 9% respectively with 

measure (i) and (ii). Overall, our results confirm that the fundamental TADs identified with our 

very restrictive overlapping criterion match those using more elaborate methods (Dixon et al, 

2012). The same approach was used to find conserved TADs between different cell types. 

 

Identification of metaTADs 

After the identification of the fundamental TADs, we calculate the mean interaction Ik,k+1 

between all the points of neighbouring domain pairs: 

 

(1)                                             Ik,k+1 = ∑ij xij / (bk  – ak )( bk+1 – ak+1 ) 

 

where k is the TAD index, xij are the values of all the entries of the Hi-C matrix corresponding to 

the two TADs, ak and bk  (resp. ak+1 and bk+1) are the left and right boundary coordinates of TAD 

k (resp. k+1), and the sum i runs from ak  to bk  and j from  ak+1 to bk+1. If we have n domains, 

there are n-1 neighbouring TADs pairs, and also n-1 values for I. Then, we considered the pair 

having the highest interaction Imax, which we grouped together to define what we call a metaTAD, 

encompassing both TADs. The newly defined metaTAD is added back to the list of domains 

(whereas its composing subdomains were taken out). The procedure is repeated iteratively until 

there remains only one metaTAD having the size of the entire chromosome and containing a 

hierarchy of all prior metaTADs. The coordinates of metaTADs identified here based on the NcoI 

dataset are available in Table EV3. 

 

Inner and outer interactions of metaTADs  

The interaction between metaTADs is defined using equation (1). We identified the mean 

interaction between the two domains producing a new metaTAD containing n fundamental TADs, 

and we consider their average I (n). As control, we computed the same interactions between two 

neighbouring regions of size equal to the original domains, which were randomly located at any 

other inter-TAD boundary existing at that level of the three. This corresponds to shift bk and ak+1 



	 13	

in the sum given in equation (1) into new boundary coordinates bk’ and ak’+1 for two new 

neighbouring metaTADs, under the conditions:  bk’  – ak’  = bk  – ak and bk’+1 – ak’+1 = bk+1 – ak+1. 

Subsequently, we calculated, the average control interaction IC (n) over metaTADs containing n 

fundamental TADs.  

 As a further control, we repeat the whole procedure on the Hi-C matrices randomized as 

described just above: we defined the corresponding metaTAD tree using the above definitions, 

then we calculated in the same way the quantities I(n) and IC (n). In this way, we can compare the 

significance level of the metaTADs found on the real Hi-C matrices with randomized matrices 

(Appendix Fig S7A-D). 

 The inner interaction of a metaTAD was defined by the mean of all Hi-C contact entries 

contained within its boundaries. Consider a metaTAD, k, encompassing n fundamental TADs. 

We define the quantity Jk( n ) :  

 

                                                       Jk( n ) = ∑ij xij / (bk  – ak )2 

 

where xij are the values in the metaTAD corresponding Hi-C matrix, ak  and bk are its left and 

right boundary coordinates in the Hi-C matrix, and i and j run from ak  to bk. This is the average 

inner interaction of metaTAD k. Then, we calculated the average, J(n), over all the metaTADs 

containing precisely n TADs. As a background reference level, we considered the quantity JC(n), 

which is obtained by repeating the above same procedure in a set of random Hi-C matrices, 

which are generated, as in the case above, by repeated permutation of bins at the same distance 

from the diagonal (bootstrapping approach). We choose this kind of randomization since it 

preserves the genomic distance bias. 

 We find that in all the time points J/JC as a function of n remains 20% above the expected 

random background level up to domains approximately 40Mb wide, i.e., with n=80 (Appendix 

Fig S7E-H). Note that the value of the background normalized interaction, J/JC, up to those scales, 

is comparable to the value for n=1, which corresponds to the original TAD. Thus, metaTAD 

background corrected intra-domain interactions are comparable to those observed in the lowest 

level TADs, at least for metaTADs up to roughly 40Mb. This analysis further supports the 

presence of interactions between TADs, which form a hierarchy of larger metaTADs in a self-

similar pattern of ‘domains-within-domains’. 
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  Error bars are computed, for a fixed n, by considering the distributions over all 

chromosomes (excluding Y), propagating the error on the ratio. As we consider more than two 

orders of magnitude in n, we use a logarithmic scale and apply a logarithmic binning for n > 10. 

 

MetaTADs in different human Hi-C data 

To assess if metaTAD hierarchies can also be found in other organisms, we have analysed human 

IMR90 and ESC-H1 Hi-C data from (Dixon et al, 2012) building the metaTAD trees starting 

from our fundamental TADs identified with α=0.0. The average TAD size is d0 = 0.44Mb in 

hESC-H1 and d0 = 0.55Mb in IMR90 cells. As the human Hi-C matrices lack the data 

corresponding to the centromeric regions of the chromosomes, we took that into account by 

considering separately the two chromosome arms. Accordingly, the random matrices used for the 

control curves are obtained by excluding the centromeres in the bootstrapping procedure (see 

section on TAD identification). 

Analyzing the resulting metaTAD trees, we found a significant hierarchy of domain 

contacts by both measures we considered before: interactions between metaTAD pairs are 

significantly stronger than background interactions both in the case of the I/Ic, ratio (inter-domain 

interactions, Appendix Fig S8A-C) and in the case of the J/Jc ratio (intra-domain interactions, 

Appendix Fig S8D-F), up to domains of tens of megabases.	

 

Investigating metaTAD hierarchies on Hi-C interaction matrices corrected for linear 

distance 

In this study, we have used the ICE methods (Imakaev et al, 2012) and background subtraction to 

normalize the Hi-C matrices, as in most Hi-C studies. An additional option is to consider 

normalization of interactions for linear distance (see e.g. (Yaffe & Tanay, 2011)). To test the 

robustness of our results against such proximity effects, we have repeated our metaTAD analysis 

using a Hi-C matrix corrected for 1D proximity (observed/expected matrix as described in 

(Lieberman-Aiden et al, 2009)). We compared the sequence of (meta)TAD joining events based 

on an uncorrected and 1D-proximity corrected  matrix and found consistent joins in 72% of cases 

when allowing a 20% tolerance due to noise in the data. Hence, our metaTAD hierarchy is stable 
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even in the case of a 1D corrected Hi-C matrices and reflects true preferential interactions 

between TADs and metaTADs. 

 

Genomic and epigenomic datasets used for correlation and visualization 

A variety of genome-wide features were examined in the context of the metaTAD topology. GC 

content, gene coverage, average exon count and average gene length of individual TADs and 

50kb windows were calculated by custom scripts based on sequence and gene annotation data 

downloaded for mm9 from the UCSC Genome Browser (Karolchik et al, 2014). The Hi-C 

principal component analysis (PCA) eigenvectors were determined at a resolution of 100kb using 

a previously published approach (Imakaev et al, 2012; Lieberman-Aiden et al, 2009). To derive 

one value per TAD, we calculated the average PCA score of the respective regions. 

ChIP-seq datasets for RNAPII-S5p (GSM850467), RNAPII-S7p (GSM850468), RNAPII-

S2p (GSM850470) as well as H3K36me3 ChIP-seq data (GSM850472) were taken from 

(Brookes et al, 2012). H3K4me3 (GSM307618), H3K9me3 (GSM307621), H3K27me3 

(GSM307619) and H4K20me3 (GSM307622) ChIP-seq data were taken from (Chen et al, 2008; 

Mikkelsen et al, 2007). H3K27ac ChIP-seq data (GSM970221) was taken from (Ferrari et al, 

2014). All ChIP-seq datasets were mapped to mouse build mm9 using bowtie2 v2.0.5 (Langmead 

& Salzberg, 2012) with default parameters. After mapping, highly duplicated reads (>95% 

quantile) were removed. Replicates from each experiment were merged. ChIP-seq datasets were 

normalized by calculating FPKM values from reads falling into each TAD or 50kb window and 

normalized by the length of the respective region per kilobase and the total number of mapped 

reads per experiment in millions. Subsequently, we computed log ratios of these signal FPKMs 

against FPKMs derived from background controls of each individual study. Control for the 

RNAPII and H3K36me3 datasets was derived from mock ChIP (GSM850473) performed in the 

absence of antibody (beads only), while controls for H3K4me3, H3K9me3, H3K27me3 and 

H4K20me3 were ChIPs performed using an antibody against H3 (GSM307624) and the control 

for H3K27ac was input (GSM970219).  

The DNAseI-seq data from ENCODE/University of Washington was downloaded from 

the UCSC Genome Browser (Encode Project Consortium, 2011) (http://hgdownload-

test.cse.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeUwDnase/). DNAseI-seq intensity was 
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calculated as the fraction of each TAD or 50kb window covered by ‘DNAseI hotspots’ as defined 

in the UCSC Genome Browser.  

Lamina association and replication timing data were obtained from Peric-Hupkes et al. 

(Peric-Hupkes et al, 2010) and Hiratani et al. (Hiratani et al, 2008), respectively, as provided for 

mouse build mm8 from the ReplicationDomain database (Weddington et al, 2008) 

(http://www.replicationdomain.com). Conversion from mm8 to mm9 coordinates was performed 

using the liftOver tool downloaded from the UCSC Genome Browser. To derive one value per 

TAD or 50kb window, we calculated the average of all values falling into the respective regions. 

To assess transcription factors binding, we downloaded annotated transcription factors 

peaks for CTCF, Nanog, Oct4, Sox2, Smad1, E2f1, Tcfcp2l1 Zfx, Stat3, Klf4, Esrrb, c-Myc and 

n-Myc from Chen et al. (Chen et al, 2008). Conversion from mm8 to mm9 coordinates was 

performed using the liftOver tool downloaded from the UCSC Genome Browser. The “All TF” 

dataset was derived by the union between peaks from any of these datasets, while the 

“Pluripotency TFs” dataset consists of peaks from Nanog, Oct4, Sox2, Klf4 and Esrrb only. We 

computed the enrichment of TFs per TAD by counting the number of peaks falling into each 

normalized by the respective TAD size in Mb. 

 

Processing of CAGE data 

CAGE single molecule sequencing datasets were generated for ESC, NPC and Neurons (day 14) 

and clustered by the FANTOM Consortium (Forrest et al, 2014) and annotated using Ensembl 

(http://www.ensembl.org/). In the main text, we refer to individual CAGE clusters as transcripts. 

Expression changes were measured for all CAGE clusters as log2 fold-change between time 

points, and FDR (Benjamini, 1995) adjusted p-values for differential expression were calculated 

using DESeq (Anders & Huber, 2010) with default settings. Three transitions in expression were 

measured: ESC to NPC, NPC to Neurons, and ESC to Neurons; this identified 1117 (793 with 

Ensembl gene annotation), 38 (31) and 1288 (1093) differentially expressed (adjusted p <= 0.1) 

clusters, respectively. Functional annotation enrichment for clusters was assessed using DAVID 

(Dennis et al, 2003) and GOrilla (Eden et al, 2009) (Table EV1).	

To derive overall CAGE expression measures for TADs or 50kb regions, we calculated 

FPKM values as the total read count of all CAGE clusters within a TAD or 50kb window 

normalized by the length of the respective regions in kilobases and the total number of all reads 
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within the respective CAGE clusters in millions. Finally, FPKM values were log transformed 

after adding a pseudocount of 1x10-7. 

 

Correlations of biological features over metaTAD trees 

To investigate the correlation of biological features with the tree structure, we first defined a 

distance, d(i, j), on the tree space between two generic TADs i and j. We considered the 

hierarchical distance, given by the total height of the smallest branch including i and j, as well as 

the number of edges minus one along the tree path from TAD i to TAD j. Such distances take 

into account the hierarchical structure of domains within domains. As they both return very 

similar results, we used the latter (number of edges along the metaTAD tree minus one) 

throughout the manuscript. 

 Once we have the tree distances between all the TADs pairs, we collected the subset Ud of 

the pairs having the same distance d. We then calculated the Pearson correlation coefficient over 

that set in the biological feature of interest: 

 

C(d) = ∑i ( s1i - E[s1] )( s2i - E[s2] ) /(Var[s1] Var[s2])1/2 

 

where the sum is over the Nd TAD pairs in the set Ud, s1i 
 and s2i are the epigenomic signals of the 

first and second TADs in the pair number i, E[s1] and E[s2] are the mean of s1i 
 and s2i, and finally 

Var[s1] and Var[s2] are the variance of s1i and s2i. In this way, we obtain the correlation 

coefficients for different tree distances, d. Specifically, we calculated the correlation coefficient 

C(d) for each chromosome and evaluated their average. Error bars in Fig 3B and Appendix Fig 

S11 represent standard errors over the 20 chromosomes examined in the mouse genome. 

 For better visualization of C(d) and comparison with random tree structures (see below), 

we converted the tree distance d into the corresponding average genomic distance s (Appendix 

Fig S21). This was accomplished using the following relation: 

 

s(d) = ∑i ( c2i – c1i ) / Nd 
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where c1i and c2i are the genomic coordinates of the midpoint of the first and second TAD of pair 

i in the set Ud. In the plots of our figures, unless otherwise stated, we show the tree correlation 

function C(s).   

 In general, we find that the correlation decreases approximately according to a stretched 

exponential law (superimposed dashed line over the correlation data): 

 

                                                          C(s) ~ exp – (s / s0)β  

 

where the best fit parameters s0 and β depend on the considered biological feature. C(s) decreases 

from 1 to 0 as s becomes larger and larger. We defined the correlation length, L0, as the genomic 

distance where C(s) is 20%.   

Appendix Fig S11 shows the tree correlation function C(s) for a variety of epigenomic 

transcription data in ESC, as well as CAGE data for ESC, NPC and Neurons indicating that 

correlations along the metaTAD tree extend to much longer scales than along the linear genomic 

distance. For most features, the real tree correlation function is statistically significant above the 

random tree (see correlation on random neighbour trees paragraph) correlation function (Fig 3C 

and Appendix Fig S12). 

	

Correlations of biological features over random neighbour trees 

We made the same calculation as above, for comparison, for random neighbour trees. Random 

neighbour trees were built in the following way: starting from the real linear array of TADs, we 

randomly join neighbouring TADs pairs within metaTADs irrespective of their Hi-C interactions. 

In this way, each TAD k has the same 50% probability to be joined to its left neighbouring TAD 

k-1 or to its right neighbouring TAD k+1. Once a random metaTAD is produced, it is added back 

to the list and the procedure is iterated up to the size of the whole chromosome as discussed 

before. The derived random neighbour trees were found to be highly similar in TAD distance 

distribution to the observed tree as shown in Appendix Fig S22. We then calculated the tree 

distances d and the corresponding correlation coefficient as described in the previous section. We 

consider an ensemble of 30 such random tree structures for each chromosome. To measure 

significance, we computed one-sided Wilcoxon rank sum tests of difference in median between 

the real and random neighbour trees. 
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Analysis of genomic and epigenomic features associated with TAD and metaTAD 

boundaries 

We analyzed enrichments of epigenomic features at TAD and metaTAD boundaries. MetaTADs 

were selected according to size, and those > 10Mb and < 40Mb were used in boundary analyses. 

Above 40Mb the interactions between metaTADs are not significantly greater than expected, and 

below 10Mb an increasingly large proportion of boundaries are shared between TADs and 

metaTADs (as metaTADs are built originally from TADs). Up to two thirds of TAD boundaries 

are metaTAD boundaries without any size selection. 

 The genomic region around each TAD or metaTAD boundary was split into 50kb bins 

extending 450kb in each direction. ChIP-seq datasets (RNAPII, H3K27me3, CTCF) and DNaseI-

seq datasets were processed with MACSv2 to give relative signal over background (from an 

estimated local model), which was then averaged over all boundaries genome wide. For gene 

density, CAGE TSS (CTSS) density and LAD boundary density, simple intersection counts were 

used per bin and averaged over all boundaries. 

 Nuclear lamina association heatmaps display raw microarray probe intensities averaged 

into the same 50kb bins described above per boundary. Transitions between high and low lamina 

association were detected by fitting a linear regression model across the boundary bins and 

classifying those models with an absolute coefficient >0.05 as crossing a lamina transition. 

Boundaries were divided into those that coincided with a lamina transition and those that did not, 

and heatmaps were then sorted by average intensity. To test the significance of the association 

between boundaries and lamina transitions, we circularly permuted both boundaries and 

transition points on each chromosome 1000 times, and calculated the proportion of boundaries 

that crossed lamina transitions using the same linear regression procedure. Empirical p-values 

were then calculated as the number of permuted results greater than or equal to the observed 

value. 

	

Comparison of Hi-C trees 

The hierarchical organization of Hi-C data can be represented in the form of a dendrogram or tree. 

Here we gauge similarity between the Hi-C trees of ESC, NPC and Neurons, and between these 

and random trees, by employing two popular tree comparison methods: the Robinson-Foulds 
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distance (Robinson & Foulds, 1981) and the cophenetic correlation coefficient (Sokal & Rohlf, 

1962). The Robinson-Foulds distance between two trees is commonly described as the removal 

and addition of splits required to transform one tree into the other (Huson, 2011) and can be 

normalized by 2*(n-3), where n is the number of leaves in the tree. The cophenetic correlation 

coefficient is the Pearson-correlation between the cophenetic matrices of the trees (distances 

through the tree between all leaves) being compared (MathWorks, 2014). Albeit different, these 

two approaches correlate with one another to a certain extent (Spearman correlation equal to -

0.426). In both methods, we focused solely on tree topology, and all tree branch lengths were 

made to be equal to 1. 

The matrices in Fig 4B and Appendix Fig S15 summarize the tree comparisons for the 

cophenetic correlation coefficient and the Robinson-Foulds distance. The results indicate that Hi-

C-based trees are more similar among each other than they are to random trees or random trees 

with themselves. These tree comparisons also highlight that the correlations previously found 

between the Hi-C data matrices are recapitulated when looking at hierarchical tree topologies 

alone – for us an indicator that the hierarchical organization of Hi-C can be well-captured by the 

trees.  

The comparisons between Hi-C-based trees for ESC, NPC and Neurons use only the set 

of TADs with conserved boundaries between individual samples, here called cTADs, while 

unconserved TADs were pruned from the trees. Conserved TADs (cTADs) were defined as in the 

section “TAD conservation”. The use of cTADs is important since it ensures we refer and 

compare the same genomic locus across time points (with a 200kb tolerance corresponding to 4 

bins in Hi-C matrices). 

In general, we observe a broad distribution of similarity values when comparing trees of 

the same chromosome across different cell types. Fig EV4A shows the cophenetic correlation 

coefficient per chromosome for all comparisons between cell types. Large deviations from the 

mean could reflect bigger rearrangements in chromosomal 3D architecture throughout the 

neuronal differentiation.  

Fig 4B and Appendix Fig S15A, B also shows comparisons of real trees and random trees. 

Each real tree was compared with two types of random tree models: the random neighbour tree 

model as described above and completely random trees. The latter are fully random trees with the 

same number of leaves as the original real tree, but with no constraints on which TADs make up 
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a clade/metaTAD; these are generated by the rtree function in the ape R package (Paradis et al, 

2004). Each tree was compared with 100 random trees and the mean similarity was calculated. 

For the case of comparing random neighbour trees with themselves, 10 were selected from ESC, 

NPC and Neurons and these were compared with 10 other random neighbour trees. 

 

TAD classification according to gene expression change  

Measuring gene expression changes per TAD is not well established, and here we have pioneered 

the use of double criteria to robustly classify meaningful TAD expression changes over a time 

point transition. We employ thresholds for both the minimum absolute expression difference (at 

least a quarter of the inter-quantile range; a third and a sixth were also considered, see Fig EV4C 

and Appendix Fig S17) and the minimum absolute fold change (at least 1.5x in CAGE FPKM 

values per TAD; 1.25x and 2x minimum fold-change was also considered, Fig EV4C and 

Appendix Fig S17). 

 We applied this method to all TADs with conserved boundaries (cTADs), as defined in 

the previous section. cTADs showing expression changes exceeding these thresholds can be 

visualized in Fig EV4C for all time point transitions. Genomic regions of gene expression change 

(turquoise intervals of Fig 4C) were defined based on cTADs start coordinates. 

 

Integrating local tree changes, expression changes and A/B compartment membership  

In order to relate tree structure changes/ conservation with matched gene expression data we 

devised a local tree change measure for each cTAD (TAD with conserved boundaries) reflecting 

the structural tree changes around it during a particular time point transition. For a given cTAD, 

we order all other cTADs in the chromosome according to increasing tree distance over the 

metaTAD tree of time point A. Neighbour cTADs are defined as all cTADs with distance less or 

equal than the third cTAD with highest distance. The tree distances of neighbour cTADs in time 

point A are then compared with the respective distances (for the same cTADs) over the tree of 

time point B using a root-mean-squared deviation approach such that 

Tree change 𝑇𝐴𝐷 𝑎 =  (!!,!!!!,!)!!
!!!

!
, 
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where A and B refer to the metaTAD trees of different time-points, 𝑥!,! and 𝑥!,! to the tree 

distance between cTAD a and neighbouring cTAD t in the metaTAD tree of time-point A and B 

respectively, and n the total number of neighbouring TADs considered. 

To define regions of tree conservation and tree changes we calculated the z-score of the tree 

change measure over each chromosome. If a cTAD has a z-score<0, it is considered to be within 

a conserved region and if z-score>0 a region subject to tree structure changes. Analogous to gene 

expression changes, genomic regions of tree conservation/change were defined by extending the 

start of a cTAD to the start of the next cTAD and hence may also include regions where TAD 

boundaries were not conserved. Fig 4A and Appendix Fig S16 include an example of ESC-NPC 

local tree changes for chr6.  

 The distribution of local tree changes for all cTADs between ESC-NPC and NPC-

Neurons is significantly different (p-value 5.4e-07; Wilcoxon test) and, for a given threshold 

value of change, ESC-Neurons is the time point transition with more changing cTADs followed 

by ESC-NPC and NPC-Neurons (Fig EV4B). Additionally, the total genomic distance occupied 

by tree changes is higher in ESC-NPC than in NPC-Neurons (Fig EV4B). 

 The fraction of a given TAD covered by B compartment and the fraction covered by 

lamina-associated domains (Peric-Hupkes et al, 2010) are highly correlated genome-wide as 

expected (Appendix Fig S16; ESC-NPC chr6 as example). Since A/B compartments have been 

shown to relate to active/repressed chromatin, we reasoned that regions of tree 

changes/conservation should be further divided according to A/B membership. A cTAD is said to 

be in compartment A (or B) if at least 75% of its length (coverage) is in A (or B). If in a time 

point transition, a cTAD changes its coverage of a given compartment by more than 25% it is 

classified as an A/B compartment change region. Similar to our findings with regions subject to 

tree changes, the total genomic distance occupied by A/B compartment changes is higher in ESC-

NPC than in NPC-Neurons (Fig EV4B). 

 The overlaps between cTADs showing expression changes, regions showing altered tree 

structure, and regions of defined A/B membership were calculated as the intersection of the 

relevant intervals divided by their union (i.e. the Jaccard Index). The total genomic distance 

encompassed by each of the types of regions considered when evaluating the overlap with gene 

expression changes is represented as percentage of genome length in Appendix Fig S17A. We 

calculate the significance of the Jaccard Index value using 10,000 circular permutations based on 
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a randomly chosen cTAD start position and report the empirical p-values (Fig 4E-F). As an 

additional control, we also show the overlaps obtained with regions displaying no significant 

changes in gene expression (Fig 4F and Appendix Fig S17B). 

 

Expression analysis of conserved tree topologies 

We probed the nature of conserved tree topologies between differentiation time points by relating 

pairs of cTADs (TADs with conserved boundaries) that keep the same tree distance in both trees 

with their changes in gene expression. 

As before, we classified cTADs as ‘up-regulated’ (Up) or ‘down-regulated’ (Down), 

according to their change in CAGE per-TAD FPKM using the double criteria previously 

described.  A cTAD was called Unchanged (“Unch”), if its fold-change is less than 1.5x and the 

absolute expression difference is small (lower than a quarter of their inter-quantile range). 

Appendix Fig S23 summarizes this classification genome-wide for all time point transitions. We 

also note that this cTADs classification often follows the expression changes of genes within 

them, for instance, cTAD containing Nanog is down-regulated and the cTAD containing 

midbrain-specific Th is up-regulated.  

We next found, for each chromosome, pairs of cTADs connected at distance d in both 

trees for each comparison (ESC-Neurons, ESC-NPC, NPC-Neurons,). Considering each distance 

separately, we then computed the probability of finding a gene-expression coherent cTAD-cTAD 

pair, i.e., pairs of cTADs which have identical CAGE change classification: [Up-Up], [Unch-

Unch] and [Down-Down], normalized by the total number of pairs at that distance. We contrasted 

this probability with an independent model where the probabilities of a coherent pair were 

derived from individual class frequencies at distance d; a 90% binomial confidence interval (CI) 

was added to judge significance. 

Fig 4G shows that up to a tree distance of 5, higher spatial proximity through 

differentiation primes cTADs for similar gene expression changes. Due to pruning of non-

conserved TADs, a tree distance of 5 in the tree of cTADs corresponds approximately to distance 

6-8 in the tree of all TADs - approximately 2-6Mb in genomic distance. 

 

The Strings & Binders Switch polymer model and its parameters  
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We employed the Strings & Binders Switch (SBS) model (Barbieri et al, 2012; Nicodemi & 

Prisco, 2009) to model chromatin, represented as a self-avoiding polymer chain on a cubic lattice 

with lattice linear spacing d0.  In the present case the chain was made of N = 192 beads. In the 

SBS model, equally spaced, specific beads of the chain are sites of attachment for floating factors 

(binders). Red (R) beads are attachment sites only for red binding factors, and analogously for 

green (G) and blue (B) beads. All other beads are inert, as they have no interactions apart from 

excluded volume effects (and chain length integrity constraints). The chain total length also 

includes 12 inert beads inserted at each end of the polymer in order to avoid finite size effects on 

the chain conformation corresponding to the actual simulated chromatin region.  

 The model parameters are the affinity E between binding site and binder, and the 

concentration of binders. In our analysis, we assumed equal values for binding energy and 

concentrations for the different type of binding sites. The data presented in Fig 5 and Appendix 

Fig S24 have ER = EG = EB = 4 kBT, values falling in the known range of real transcription factor 

binding energies (kB is the Boltzmann constant and T the temperature in Kelvin). For all details 

see (Barbieri et al, 2012; Nicodemi & Prisco, 2009). 

 

Monte Carlo simulations 

The above model was investigated by Metropolis Monte Carlo (MC) computer simulations 

(Binder, 1997; Binder & Heermann, 2002). Diffusing molecules and polymer beads randomly 

move from one to a nearest neighbour vertex on the lattice, while single site occupancy and 

polymer non-breaking constraints are maintained. Binding is only permitted between nearest 

neighbour particles on the lattice, as in a “lattice gas” model. Our binders have a binding 

multiplicity of six, close to the typical number of polymerases in a transcription factory. MC 

averages are over up to 104 runs, each run being fully equilibrated with up to 1013 single MC 

steps (Binder, 1997; Binder & Heermann, 2002) (Appendix Fig S24).  

 Monte Carlo dynamics is suited for sampling the equilibrium conformation ensemble. To 

estimate also the order of magnitude of the time scales involved in the real polymer dynamics, we 

estimated the conversion factor from MC steps to real time by matching the diffusion coefficient 

estimated for DNA loci in mammalian cells (D ≈ 1-10µm2 / h) with the one measured in our 

simulations (Barbieri et al, 2012; Chubb et al, 2002). 
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Contact matrices, gyration radius, and occupied volume 

The contact matrices of the model polymer discussed in the main text report the probability of 

finding a bead pair within a distance of 3d0. The volume occupied by a group of beads, e.g. the 

red beads, is here taken as the volume of a sphere of radius Rg (V = 4/3 π Rg
3), where Rg is the 

gyration radius of those beads, a measure of their average distance from their center of mass. 

 

CryoFISH detection of DNA 

ESC (46C) cells were fixed in 4% and 8% paraformaldehyde in 250 mM HEPES (pH 7.6; 10 min 

and 2h, respectively). Cell pellets were embedded in 2.1 M sucrose in PBS and frozen in liquid 

nitrogen. Ultrathin cryosections were cut using an EM FC7 ultracryomicrotome (Leica, Wetzlar, 

Germany) with ~180 nm thickness, captured in sucrose-PBS drops, and transferred to coverslips 

for cryoFISH. 

Cryosections were first washed (2x, 30min total) in 2xSSC, then incubated (2h, 37oC) with 250 

µg/ml RNase A (Sigma; in 2xSSC), washed (2x) in 2xSSC permeabilised (10 min) with 0.2% 

Triton X100 in 2xSSC and washed (3x) in 2xSSC. Cryosections were washed and treated (10 

min) with 0.1 M HCl, washed (3x) in PBS and then incubated (15 min) in 20 mM glycine in PBS. 

Cryosections were then dehydrated in ice-cold ethanol (30%, 50%, 70%, 90% and 3x100%, 3 

min each), dried briefly, denatured (10 min, 80°C) in 70% deionized formamide, 2xSSC, 0.05M 

phosphate buffer pH 7.0, and then re-dehydrated as above. After a brief period of drying, 

coverslips were overlaid onto probe mixture on Hybrislips (Invitrogen, Eugene, USA) and sealed 

with rubber cement for in situ hybridisation. 

Probes consisted of MYtags custom labelled oligonucleotide libraries produced by MYcroarray 

(Ann Arbor, MI, USA). Regions ‘a’, ‘b’ and ‘c’ were labelled with ATTO-550, ATTO-488 and 

ATTO- 594. 

Probe libraries were precipitated and air-dried and resuspended in deionised 100% formamide. 

Probe in formamide was mixed 1:1 with a 2x ‘hybridization mixture’ containing 20% dextran 

sulphate, 0.1 M phosphate buffer (pH 7.0) and 4xSSC. Probes were denatured (10 min) at 70°C 

before hybridization. 

Hybridization was carried out at 37°C in a moist chamber for ~40h. Post-hybridization washes 

were as follows: 50% formamide in 2xSSC (42°C; 3x over 25 min), 0.1xSSC (60°C, 3x over 20 

min), and 0.1% Tween-20 in 4xSSC (42°C, 10 min). Nuclei were counterstained (45 min) with 
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DAPI in PBS with 0.05% Tween-20, rinsed sequentially in 0.05% Tween-20 in PBS and then 

PBS alone. Coverslips were mounted in VectaShield (Vector Laboratories, Peterborough, UK) 

immediately before imaging. 

 

Microscopy and image analyses 

Images from cryosections were acquired on a confocal laser-scanning microscope (Leica TCS 

SP8; 63x objective, NA 1.4) equipped with a 405 nm diode, and a white light laser, using pinhole 

equivalent to 1 Airy disk. Images from the different channels were collected sequentially to 

prevent fluorescence bleedthrough. For automated quantitative image analyses, images (TIFF 

files) were automatically merged and each channel manually thresholded in ImageJ to define 

masks for nuclei, and for each locus. Distances between the centers of mass of FISH signals 

within each nucleus were measured using an in-house ImageJ script (kindly provided by Tiago 

Rito and Miguel Branco). Averages and standard deviations were calculated from 2 independent 

FISH experiments. Statistical analyses were performed using R. For Figure EV5B, images (TIFF 

files) were merged in Adobe Photoshop, background noise was removed using the Despeckle 

filter, before contrast stretching. 
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Supplementary Analyses 
 

Robustness of TADs identified by different methods in different datasets 

The definition of TADs considered in our manuscript is based on the Directionality Index (DI) 

and a significance threshold, α (see Supplementary Methods). As different thresholds may return 

different TAD boundaries, we explored how TADs depend on α. We first discuss the TAD 

average size, d, as a function of α: we found it converges to a constant value, d0, as α tends 

toward zero (Appendix Fig S4) and such a limit value is d0 = 0.48Mb, 0.51Mb, and 0.47Mb in 

our ESC, NPC, and Neurons Hi-C datasets (Appendix Fig S5A). The corresponding TAD size 

distribution, P(d), is approximately exponential and its support extends down to 50kb which is 

the resolution of the Hi-C NcoI dataset considered here (Appendix Fig S5B). For small α values, 

the size of TADs is only weakly dependent on the threshold. Importantly, their average size is 

much larger than the TAD sizes computed in a control random Hi-C matrix obtained by 

bootstrapping the original Hi-C matrix along its diagonals (which preserves the genomic distance 

bias). Thus, the boundaries identified in the case α = 0 are significant and we considered this case 

in our study. The coordinates of TADs identified here from the NcoI dataset are available in 

Table EV3. 

To illustrate the effects of the threshold, here we explore the TADs obtained for two 

values, α=0.0 (used in the main text) and α=0.2, for the identification of TADs in our ESC data; 

we also consider the case where our method is applied, with a threshold α=0.2, to ESC-J1 data 

from (Dixon et al, 2012), in order to compare the results with the original TADs identified with 

the HMM method (Dixon et al, 2012). The distributions of TAD sizes based on different datasets 

and TAD definition methods are reported in Appendix Fig S25A. The TADs analyzed in the 

main text (ESC, α=0) have an average length of ~500kb, which places them between the local 

domains defined by (Rao et al, 2014) (~300kb) and the original TADs defined by (Dixon et al, 

2012) (~1Mb). Using a DI threshold of α=0.2 results in TADs with the same size as Dixon et al. 

(~1Mb), both in our and the Dixon’s murine ESC Hi-C datasets.  

To compare the different methods and datasets, we determined the distribution of the 

number of our TADs which overlap the TADs from the original HMM-based algorithm and the 

TADs identified by use of α=0.2 (both in our ESC and Dixon’s ESC-J1 dataset). As expected by 

considering the average size of individual TADs in the different cases, we find that on average 2 
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TADs from the “α=0 case” overlap just one TAD from the HMM or the “α=0.2 case” (Appendix 

Fig S25B). However, in 40-50% of cases, we see a one-to-one relation between α=0 TADs and 

TADs of any other definition. In addition, among the settings with ~1 Mb-sized TADs, almost all 

resulting TADs overlap exactly one TAD in any other definition. 

 

Robustness of metaTADs identified from different TAD definitions in different murine Hi-

C data 

To strengthen the conclusions on metaTADs discussed in our main text, we repeated our analysis 

of metaTADs using different TAD definitions (see previous section) and using an alternative 

murine dataset (ESC-J1) from (Dixon et al, 2012).  

In Appendix Fig S26, we report genome wide averages of I/Ic and J/Jc using TADs 

defined with α=0.2 in our own Hi-C dataset (Appendix Fig S26C-D), the ESC-J1 dataset 

(Appendix Fig S26E-F) as well as the original TAD definitions by (Dixon et al, 2012) based on 

an HMM (Appendix Fig S26G-H). In all cases, our first measure (I/Ic) indicates significantly 

higher interactions up to metaTADs comprising ~50 TADs. Given the average size of 

approximately 1Mb in each case (see the paragraph about exploration of TAD size distribution), 

this corresponds to length scale of ~50Mb. In line with these results, also the second measure 

(J/Jc) reveals curves that are significantly different from random up to genomic distances of tens 

of megabases. Therefore, we can summarize that our definition and significance of metaTAD 

hierarchies are independent on the specific methods used to call TADs and on the dataset 

considered. 

 Further, we repeated our analysis of a subset of epigenomic feature correlations for TADs 

defined with α=0.2 in our own Hi-C dataset and compared it with the correlations measured over 

the linear genomic distance of TADs, as discussed in Main Text and in the 

paragraph ”Correlations of biological features over metaTAD trees” (Appendix Fig S27A). 

Finally, we also compared correlations of the same epigenomic features over the metaTAD tree 

and over random neighbour trees generated from the linear sequence of TADs (Appendix Fig 

S27B). As presented in the main text for metaTADs based on α=0 TADs, there are significant 

statistical differences between the real and random cases, up to scales of tens of megabases. 
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Description of Supplementary Tables 
 

Table EV1: Gene ontology enrichment analysis.  

Excel spreadsheet containing enrichment of GO process, function and component terms for all 

genes represented by CAGE clusters ranked by log2 (fold change) between time points. 

 

Table EV2: Hi-C sequencing and processing statistics.  

Excel spreadsheet containing information on read counts for all considered samples, as well as 

the effect of processing on the data at each step.  

 

Table EV3: NcoI TADs and metaTADs.  

Excel spreadsheet containing the coordinates of TADs and metaTADs for the NcoI dataset, 

binned at 50kb intervals. 
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Appendix Figure S1. Comparison of Hi-C protocols. 
Overview of the steps in the Hi-C protocol that were adjusted to reduce the number of necessary PCR 
cycles needed for amplification in order to minimize duplicated reads. The black bubbles in the center 
represent steps common to the protocol used in this study and the protocol presented in Lieberman-
Aiden et al. (2009). The order of steps within the original protocol is represented by the blue arrows 
and bubbles on the right, while the order of the steps in the modified protocol are represented by the 
red arrows and bubbles on the left. For more details, see Supplementary Information (Extended 
Methods).	
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Appendix Figure S2. Changes in long-range interactions for chr1-chr10. 
Complex changes in long-range chromatin interactions of many chromosomes are prominent when 
plotted during the differentiation time series. Hi-C interaction data is plotted in log-scale.  
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Appendix Figure S3. Changes in long-range interactions for chr11-chr19. 
Complex changes in long-range chromatin interactions of many chromosomes are prominent when 
plotted during the differentiation time series. Hi-C interaction data is plotted in log-scale.  
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Appendix Figure S4. Identification of TADs. 
A Distribution of values of the Directionality Index, DI in the ESC Hi-C data (see Appendix 
Supplementary Methods, the window size for the calculation of DI is here L=2Mb). The average 
value of DI is µ = 3, very close to zero, and its standard deviation is σ = 1680. Similar distributions, 
with analogous values for µ and σ, are found in NPC and Neurons.  
B TAD boundaries are identified by positions where |DI| grows above a given threshold ασ, where σ 
is the standard deviation of DI and α is a threshold constant. Different thresholds return different 
TADs boundaries: for example, in the Hi-C matrix shown, α = 0 gives the six TADs highlighted by 
the black dashed lines (TADs I), while α = 0.2 gives the two TADs in red (TADs II).  
C The plot shows the average TAD length d0 as a function of α, for three values of L, in ESC. The 
bottom grey line corresponds to the TADs in a control randomized Hi-C matrix (see text). Even for  α 
= 0, the TADs identified in the real Hi-C matrix are well above the random case. d0 changes only by a 
factor two, when α increases roughly up to 0.2, while afterwards a much steeper increase is observed. 
In subsequent analyses, we chose α = 0 to identify TADs. 
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Appendix Figure S5. Size of TADs. 
A The average TAD length, d0 (for α = 0 and L = 2Mb), was measured for the three datasets produced 
in this study (ESC, NPC, Neurons) and for the ESC-J1 published data (Dixon et al., 2012). The 
random case corresponds to TADs identified in a randomized Hi-C matrix (see Appendix 
Supplementary Methods).  
B The distribution of TAD sizes is roughly exponential in all our datasets. A detailed comparison of 
results using different TAD detection approaches is shown and discussed in the Appendix 
Supplementary Analyses. 
 

Exponential fit
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Appendix Figure S6. Overlap of TAD boundaries between datasets. 
Here we examine the similarity in location of TAD boundaries between datasets. TADs for ESC, 
NPC, Neurons and ESC-J1 were identified using α = 0. TADs in ESC-J1 (HMM) correspond to 
the one published in Dixon et al. 2012. The locations of boundaries of the datasets indicated on 
the left of the table A are matched to corresponding boundaries within a 100kb window in the 
datasets mentioned at the top B. Values reported are the percentage of A boundaries that have a 
corresponding boundary in B. As the total number of boundaries (specified in the white cells) 
varies between samples, the table is not symmetrical. This is in contrast to the display used in 
Figure 3F, where conservation scores are averaged for both comparisons to generate a simpler 
symmetrical matrix.   



J 

Appendix Figure S7. Measure of inter- and intra-domain interactions.  
The background normalized metaTAD inter-domain, I/IC (panels A-D), and intra-domain, J/JC 
(panels E-H), interactions are shown for our three cell types. The I/IC ratio is described in the Main 
Text (see also Appendix Supplementary Methods). J/JC is the background normalized average 
contacts within metaTADs. It is shown as a function of the number of TADs, n, which a metaTAD 
includes. J/JC remains significantly above the control level up to scales of the order of n=40 TADs. 
The data shown here are the same shown in Main Text Figure 2D, but here we show the 
corresponding error bars. The enrichment of intra-interactions, J/JC, in metaTADs is comparable to 
the enrichment in the original TADs (corresponding to n=1). The value of JC is the average 
interaction within a region with the same genomic size as the metaTAD, but calculated on a random 
Hi-C control matrix generated by repeated permutation of bins at the same distance from the diagonal 
(“bootstrapping approach”), preserving the genomic distance bias. 
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Appendix Figure S8. MetaTAD trees can be found in human cells.  
The figure shows the genome averaged I/Ic (blue) and J/Jc (purple) curves, and the corresponding 
control cases (in green), in different human Hi-C data from Dixon et al. (2012). TADs were identified 
with our detection method using α=0 applied to ESC-H1 (panels B and E) and IMR90 (panels C and 
F) data.  
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Appendix Figure S9. MetaTAD trees coincide with A/B compartments. 
For each distance in the metaTAD tree, we measured the frequency with which two interacting TADs 
are formed to belong to the same compartment (blue) or different compartments (red). For ESC (A), 
NPC (B) and Neurons (C), this frequency is much higher than expected from their linear distance 
(grey) up to metaTAD tree distances of 7 and more. 
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Appendix Figure S10. Transitions of Lamina-association are observed at TAD and metaTAD 
domain boundaries. Heatmaps depict Lamina-associated (blue) and Lamina-detached (red) regions 
for a variety of domain boundaries. The leftmost heatmap displays data for all TAD boundaries. The 
other heatmaps display the data thresholded to select boundaries for metaTAD domains of different 
lengths. Each heatmap displays the 900 kb flanking domain boundaries (dashed lines) for all 
boundary regions (heatmap rows). Transitions in lamina association are visible in each heatmap as 
abrupt changes in colours at boundaries (see Appendix Supplementary Methods) regardless of the 
size selection thresholds.  
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Appendix Figure S11. Correlation of genomic, epigenomic and TF features along metaTAD 
trees is much stronger than along linear genomic distances. 
Pearson correlations of epigenetic and CAGE data, and transcription factor (TF) binding sites over 
the metaTAD hierarchy (filled circles, upper lines; transformed to average genomic distance; both 
axes are logarithmic) is much larger than the same correlation measured over the linear genomic 
distance of TADs (filled triangles, lower lines). See Appendix Supplementary Methods for further 
details. Superimposed lines are stretched exponential fits. 
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Appendix Figure S12. Correlation of features along the metaTAD hierarchy in comparison with 
random neighbor trees. 
To measure significance, we computed one-sided Wilcoxon tests of difference in median between the 
real and random neighbor tree correlations (see Appendix Supplementary Methods) and found the 
former to be significantly stronger up to large distances, approximately 10 Mb, for a number of 
features; horizontal line, p-value=0.05. Average gene length and exon count per TAD were used as 
controls. 
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Significance of feature correlation compared to random trees for different tree distances
newly added histone modifications (plus some old for comparison)
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Appendix Figure S13. Comparison of enriched features at TAD and metaTAD boundaries.  
Genome-wide profiles of epigenomic features and gene densities averaged over all TAD and over 
only large metaTAD (10 – 40 Mb) boundaries (ribbons show 95% confidence intervals of the mean). 
The enrichment of most features was significantly increased at metaTAD boundaries when compared 
to TAD boundaries. ‘CAGE’ represents CAGE-defined active TSS. 

CAGE 

RNAPII-S2p RNAPII-S5p RNAPII-S7p

H3K27me3 CTCF DNAseI

LAD boundariesGene density
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Appendix Figure S14. Consistent gene density and transcribed TSS enrichments (CAGE TSS) 
at TAD and metaTAD boundaries over the time-course.  
Gene densities refer to mean counts of genes per bin, with an overlap of at least 250bp. CAGE-
defined active TSS (CAGE TSS) were counted per 50 Kb bin across each TAD and each large 
metaTAD (10 – 40 Mb) boundary and averaged (ribbons show 95% confidence intervals of the 
mean). Peak heights suggest modestly stronger enrichments at metaTAD boundaries relative to TAD 
boundaries.  
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Appendix Figure S15. Comparisons of metaTAD trees between samples. 
A,B Normalized Robinson-Foulds distances (A) and cophenetic correlation coefficients (B; see also 
Figure 4B) between metaTAD trees composed of TADs with conserved boundaries. Comparisons with 
two different sets of 100 random tree models are also shown: the random neighbour tree and the fully 
random tree models (see Appendix Supplementary Methods). Shown are genome-wide averages over 
all chromosomes. MetaTAD trees are more similar to each other than to random trees. On average, the 
topology of the NPC metaTAD trees is closer to that of Neurons, both of which are roughly equidistant 
to the ESC metaTAD trees.  



0.0e+00 2.0e+07 4.0e+07 6.0e+07 8.0e+07 1.0e+08 1.2e+08

0

2

4

6

8

Tr
ee

 c
ha

ng
es

● ● ● ● ● ●

●●

●

● ●
●

●

●

●

● ●

● ●● ● ● ●

●●

●

● ●●

● ●

● ●

●●● ●

●●●● ●● ●● ● ●● ● ● ● ●

●

●

●

●

●

● ●● ●

●●● ●

●●

●● ● ●● ● ● ●

●

●●● ●

● ●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

● ●
● ●

●

●●

●

● ● ● ●

●

● ●

● ●

● ●

●

● ●● ●● ● ●

● ●

●

●●● ●

●

● ●

●

●

● ● ●

● ●● ● ● ●●● ● ●● ● ●●●● ●● ●● ●● ●● ● ●● ●● ● ● ●● ● ● ● ●● ●● ●● ●●●●●● ● ● ●●● ●● ●● ●● ● ● ●● ● ●● ● ●● ●● ●●● ● ●●●● ●● ●● ● ●● ● ● ●● ● ● ●● ●● ● ● ●●●● ●●● ● ●●● ● ●●● ● ●●● ● ●●● ●● ● ● ●● ● ●● ● ● ●● ●● ● ● ●●● ●● ●●●●●●● ● ●●●●●●●● ● ●● ● ● ● ●● ●● ●● ● ● ●●● ● ● ● ● ●●●● ● ● ● ●● ●● ●●● ● ● ● ● ● ●● ● ● ●●● ●● ●● ● ● ● ●● ●● ● ● ● ●●●●● ●●● ●●●● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ●● ● ●●● ● ●●●● ●● ●● ● ●● ● ● ● ● ●● ● ●● ● ●● ● ●●● ● ●● ●● ● ●● ● ● ● ● ●●● ●● ● ●●● ● ●●●●● ● ● ● ● ●● ● ● ●● ● ● ● ● ●●●● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● ● ● ● ● ● ●●● ● ● ● ● ●● ● ● ●

0.0

0.2

0.4

0.6

0.8

1.0

df.es$start[df.es$seqnames == paste("chr", chr, sep = "")]

Fr
ac

tio
n 

in
 L

AD

0.0e+00 2.0e+07 4.0e+07 6.0e+07 8.0e+07 1.0e+08 1.2e+08
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

in
 B ESC

NPC

ESC
NPC

. conserved TADs. non-conserved TADs

in B AB changesin A

Gene expression 
changes

A/B Compartment

ESC-NPC, chr6

Appendix Figure S16. Comparisons of tree changes with lamina-associated domains and A/B 
compartments.   
Chromosome plot of local tree changes for chr6, ESC-NPC, as depicted in Figure 4A. The grey 
horizontal line refers to a z-score of zero, used to define genomic regions of tree conservation and tree 
changes. Dots represent TAD start positions along chromosome. The two lower panels represent the 
fraction of each TAD covered by a Lamina-associated domain (middle) or by B compartment (bottom 
panel) for both time-points. If a TAD has over 75% coverage of a given compartment, it was classified 
as being in that compartment. A TAD with a compartment coverage change of more than 25% was 
classified as changing.  
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Appendix Figure S17. Robustness of the analysis of overlap between gene expression changes and 
tree changes. 
A Genomic proportions of the classified regions used in the overlap analysis.  
B Overlap analyses in Figure 4F were repeated for different thresholds classifying TADs with (top) and 
without (bottom) significant gene expression changes. Empirical p-values were obtained by comparison 
with 10,000 random circularly permutated intervals. 
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B

A

Appendix Figure S18. Hi-C data normalization approach.  
(A) Hi-C matrices representing chromosome 1 in ESC, and the effects of transformations on the data. 
The scale is a log representation of the actual values in the matrix scaled automatically to the range of 
data. (B) Visualization of Hi-C interactions before (blue) and after (red) application of each 
processing steps, as seen 20Mb upstream and downstream from chromosome 1 at 137 Mb (grey 
column). Data is first corrected using Iterative Correction (Imakaev et al., 2012) to remove 
experimental biases. Background is calculated using the distribution of trans Hi-C reads and is 
subtracted from both cis and trans data. Finally, Hi-C data is normalized across datasets by 
conversion into reads per billion.  
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Appendix Figure S19. Spearman correlation of Hi-C data between samples.  
Pairwise Spearman correlation coefficients measured between normalized Hi-C datasets binned at 
1Mb. Only interactions occurring less than 20Mb apart within each chromosome were considered.  
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A B

Appendix Figure S20. TAD overlap.  
We examine the amount of similarity between HMM-TADs annotated by Dixon et al. (2012) and 
TADs identified in this study based on ESC-J1 cells. The random control used is based on a sample 
with randomly reshuffled real TADs positions (see Supplementary Methods). (A) The overlapping 
fraction of TADs as defined by Dixon et al. (2012) and TADs identified in this study in ESC-J1, as a 
function of the threshold α for different values of the tolerance, Δx, used to define ‘overlap’ (see 
Supplementary Methods). (B) A different overlap measure, the fraction of genome within overlapping 
TADs in our and Dixon’s definition. The grey line is the comparison with a random control case (see 
Supplementary Methods). 
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Appendix Figure S21. Relationship of metaTAD tree distance with genomic distance.  
The plot shows the average genomic distance corresponding to a given metaTAD tree distance over 
the tree. Data are averaged over the three cell types of this study.  
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Appendix Figure S22. Distribution of metaTAD sizes.  
(A-C) Histograms of linear distances between TADs at fixed metaTAD tree distances measured as the 
number of TADs lying in-between, for ESC (A), NPC (B) or Neurons (C). Two directly neighbouring 
TADs have a linear distance of 0 (no intermediate TAD). The distributions based on observed (blue) 
and random neighbour (red) trees show highly similar distances for all three time-points. Error bars 
reflect one standard deviation based on 30 random trees. 
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Appendix Figure S23. Classification of gene expression change of conserved TADs between time 
points.  
Bar plot with the relative frequency of each class of gene expression change between the different 
differentiation time-points. NA refers to conserved TADs which did not fit the criteria for being up-
regulated, down-regulated or unchanged (see Supplementary Methods).  
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Appendix Figure S24. Monte Carlo equilibration dynamics of the SBS polymer model.  
In our SBS polymer simulations, the system is left to equilibrate until it reaches a stable 
thermodynamics state. Here we show the equilibration dynamics of the normalized gyration radius 
Rg(t)/Rg(0) starting from open (SAW) interaction-free polymer configurations in the model of Fig 
5B. The three curves refer to the whole polymer (black), and to only red or only green beads.  

59	



Appendix Figure S25. Comparing TAD definitions between different datasets and algorithms.  
(A) Density plot showing the distribution of TAD/domain sizes dependent on the used algorithm/
dataset. The ESC-J1 TADs HMM were published in Dixon et al. (2012), the mouse lymphoblast local 
domains were published in Rao et al. (2014). The TADs used in our study (ESC-46C, α = 0; red) have 
an average size of approx. 0.5 Mb. The number of TADs derived and their average length is shown in 
the upper right corner. (B) Histograms of the number of TADs from one algorithm/dataset (left) 
overlapping TADs based on another algorithm/dataset (top). Only TADs overlapping with >50% of 
their size were counted. The average count of overlapping TADs for each comparison is shown in the 
upper right corners.  
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Appendix Figure S26. General features of metaTAD trees are significant and independent of the 
algorithm and dataset used.  
The figure shows the genome averaged I/Ic (blue, A) and J/Jc (purple, B) curves, and the 
corresponding control cases (in green), in different murine Hi-C data. Panel (C) and (D) correspond 
to metaTADs in our ESC-46C data, using TADs identified with our method for α = 0.2. Panel (E) and 
(F) correspond to metaTADs in the original ESC-J1 data from Dixon et al. (2012), using TADs 
identified with our method at α = 0.2. Panel (G) and (H) correspond to metaTADs in the original 
ESC-J1 data from Dixon et al. (2012), using the original HMM TAD classification published in 
Dixon et al. (2012).  
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Appendix Figure S27. Correlations of genomic features along metaTAD trees derived using ESC 
TADs (α = 0.2) are much stronger than expected by linear genomic distances.  
(A) Correlation coefficient of different epigenetic features over the metaTAD tree (filled circles, upper 
lines) in ESC data, using TADs identified with our method for α=0.2. MetaTAD tree correlations are 
larger than the same correlation measured over the linear genomic distance of TADs (filled pink 
triangles). (B) To measure significance, we computed one-sided Wilcoxon tests of difference in median 
between the real and random neighbour tree correlations and found the former to be significantly stronger 
(horizontal line, p-value=0.05) up to large genomic distances.  
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