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Abstract: In recent years vitamin B6 has become a focus of research describing the 
compound’s critical function in cellular metabolism and stress response. For many years 
the sole function of vitamin B6 was considered to be that of an enzymatic cofactor. 
However, recently it became clear that it is also a potent antioxidant that effectively 
quenches reactive oxygen species and is thus of high importance for cellular well-being. In 
view of the recent findings, the current review takes a look back and summarizes the 
discovery of vitamin B6 and the elucidation of its structure and biosynthetic pathways. It 
provides a detailed overview on vitamin B6 both as a cofactor and a protective compound. 
Besides these general characteristics of the vitamin, the review also outlines the current 
literature on vitamin B6 derivatives and elaborates on recent findings that provide new 
insights into transport and catabolism of the compound and on its impact on human health.  
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Introduction 

The Discovery of Vitamin B6  

The formula of vitamin B6 (henceforth referred to as vitB6) was first published by Ohdake in 1932. 
He worked on the isolation from rice-polishings of what he called “Oryzanin” (Vitamin B1) and found 
vitB6 as a by-product [1, 2]. Ohdake described the formula, but he was not aware that he had found a 
vitamin and did not recognize its physiological importance.  

At this time several scientists worked on the characterization of the vitamin B family members [3-
10]. These scientists were searching for the so called “rat pellagra prevention factor” that could cure 
acrodyna, a pellagra-like skin disorder in rats. They discovered that by adding a special yeast eluate to 
the diet, acrodyna could be cured. Paul György, a Hungarian born scientist, first described vitB6 as the 
active “rat pellagra prevention factor” in the yeast eluate [3]. Several years later in 1938 five separate 
groups of researchers, including György, isolated the crystalline vitB6 from yeast [4-8]. After 
determination of the structure of vitB6 in 1939, György named the vitamin pyridoxine due to its 
structural homology to pyridine [9]. In the same year, Stanton A. Harris and Karl Folkers, 
accomplished the synthesis of vitB6 [10]. 

In further studies it was shown that vitB6 could exist in other chemical forms that differ from 
pyridoxine by a variable group present at the 4′ position [11]. Pyridoxine (PN) carries a hydroxyl, 
pyridoxal (PL) an aldehyde and pyridoxamine (PM) an amino group (Figure 1). While all three species 
can be phosphorylated, it is pyridoxal 5’-phosphate (PLP) that is the biologically most active form and 
used as cofactor for many important enzymatic reactions.  

The Function of VitB6  

The discovery and the first publications on vitB6 ascribed a growth function to the vitamers [3, 11]. 
However, further studies clarified that this relatively rough description understated the diversity of 
crucial functions and importance for living organism that vitB6 has. VitB6, in the form of PLP, plays a 
primary role acting as a cofactor for a large number of essential enzymes. These PLP-dependent 
enzymes catalyze more than 140 distinct enzymatic reactions and belong to five (oxidoreductases EC 
1, transferases EC 2, hydrolases EC 3, lyases EC 4, isomerases EC 5) of the six enzyme classes 
defined by the Enzyme Nomenclature Committee of the International Union of Biochemistry and 
Molecular Biology (http://www.chem.qmul.ac.uk/iubmb/enzyme). This underlines the wide variety of 
chemical reactions that PLP-dependent enzymes promote in the organisms and shows again the 
importance of vitB6. The following section will give an overview of the metabolic reactions in which 
PLP-dependent enzymes are significantly involved. 

Many of the PLP-dependent enzymes catalyze important steps in the amino acid metabolism, like 
co-catalyzing transamination, racemization, decarboxylation, and α,β-elimination reactions [12, 13]. 
For example, transaminases mediate the conversion of α-ketoacids to amino acids and amino acid 
racemases produce D-amino acids from L-amino acids [14].  

Another site of action for the PLP-dependent enzymes is fatty acid metabolism. The enzyme δ-6-
desaturase (EC 1.14.19.3) catalyzes the synthesis of vital polyunsaturated fatty acids by the 
desaturation of linolic acid and γ-linolenic acid, respectively [15, 16].  
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Besides these roles, PLP also represents an important cofactor for the degradation of storage 
carbohydrates, such as glycogen. The PLP-dependent glycogen phosphorylase (EC 2.4.1.1) mediates 
the glycogen breakdown by the release of glucose from glycogen [17]. 

Furthermore, two PLP-dependent enzymes are involved in hemoglobin formation and chlorophyll 
biosynthesis. In these reactions the rate-limiting step is the primary biosynthesis of δ-aminolevulinic 
acid. In mammals and birds δ-aminolevulinic acid is synthesized by the action of δ-aminolevulinic 
acid synthase (EC 2.3.1.37) and in plants and algae by the action of glutamate-1-semialdehyde 2,1-
aminomutase (EC 5.4.3.8) [18].  

Additionally, in plants the biosynthesis of the phytohormone ethylene is controlled by the synthesis 
of the precursor 1-aminocyclopropane-1-carboxylic acid from S-adenosylmethionine by PLP-
dependent 1-aminocyclopropane-1-carboxylate synthases (EC 4.4.1.14) [19].  

Apart from its function as a cofactor for PLP-dependent enzymes, vitB6 is also thought to act 
directly as a protective agent against reactive oxygen species, such as singlet oxygen which will be 
discussed in a following section [20, 21].  

While fungi, plants, archae, and most eubacteria are able to synthesize vitB6 (see next Section), 
most animals, including humans, lack this ability and rely on the external supply of vitB6. 

The Known Pathways of VitB6 Anabolism 

Deoxyxylose 5’-phosphate-Dependent and –Independent De Novo Biosynthesis of VitB6 

Two existing pathways are known for de novo vitB6 biosynthesis. First, the deoxyxylose 5’-
phosphate (DXP)-dependent pathway, which is present in eubacteria, such as Escherichia coli and 
second the DXP-independent pathway which is described for some bacteria, archaea and eukarya. 

The DXP-dependent pathway has been intensively studied in the gram-negative bacterium E. coli 
[22]. It was shown that in E. coli, vitB6 is synthesized by the action of PdxJ (EC 2.6.99.2) and PdxA 
(EC 1.1.1.262) (Figure 1) [23-25]. These two vitB6 synthase proteins use 4-phospohydroxy-L-
threonine (4HPT) and DXP, which are precursors in isoprenoid and thiamine biosynthesis, 
respectively, as substrates to form PNP [26-28]. PdxA catalyzes the oxidation of 4HPT to 3-amino-1-
hydroxyacetone 1-phosphate (AHAP), and PdxJ forms PNP with the intermediates AHAP and DXP 
[29]. PNP is then oxidized to PLP, the biocatalytically active form of vitB6, by PdxH via the salvage 
pathway (Figure 1) [30]. The vitB6 precursors 4HPT and DXP originate on the one hand from the 
oxidation plus transamination of D-erythrose-4-phosphate, and on the other hand, by the synthesis 
from pyruvate and D-glyceraldehyde-3-phosphate by DXP synthase (EC 2.2.1.7) [31]. 

Analysis of the crystal structure of the participating enzymes showed that PdxA and PdxJ act 
separately. PdxA dimers create an interface onto which 4HPT binds [29]. In contrast PdxJ forms 
octamers as tetramers of PdxJ dimers [32]. In every dimer interface a pocket is located where the 
intermediates DXP and AHAP are converted to PNP.   

The second known de novo vitB6 biosynthesis pathway is the DXP-independent pathway, which is 
found in bacteria, archaea, and eukarya [13, 33, 34]. The occurrence of this pathway is demonstrated in 
plants, fungi, Plasmodium falciparum, Thermotoga maritima as well as Bacillus subtilis and involves 
two proteins, PDX1 and PDX2 (for pyridoxine biosynthesis protein; orthologs for B. subtilis YaaD and 
YaaE, Geobacillus stearothermophilus PDXS and PDXT, Saccharomyces cerevisiae SNZ and SNO) 
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[33-37]. These two synthase proteins directly synthesized PLP from ribose 5’-phosphate or ribulose 5’-
phosphate, in combination with either glyceraldehyde 3’-phosphate or dihydroxyacetone phosphate 
and glutamine (Figure 1). Here PDX2 acts as a glutaminase, which deaminates glutamine to glutamate 
in order to supply nitrogen for the PLP heterocycle, and then PDX1 arranges the final ring closure [33, 
38]. 

Figure 1. Schematic drawing of de novo and salvage pathways. 

 
 

Crystallization studies in the organisms B. subtilis, G. stearothermophilus and P. falciparum 
demonstrated that the PDX enzymes form a synthase complex with a cogwheel-like structure [37, 39, 
40]. The core of the PLP synthase complex consists of 12 PDX1 enzymes that interact in two 
hexameric layers joining face-to-face to form a dodecamer onto which 12 PDX2 monomers attach [37, 
39, 40].  

The Salvage Pathway  

In addition to the direct synthesis of new PNP or PLP, the vitamers are interconvertible via the so 
called salvage pathway. These conversions are accomplished by the action of either kinases or 
oxidases [22, 41, 42]. The salvage pathway has been best analyzed in E. coli, where it has been shown 
that two different kinases (EC 2.7.1.35) can phosphorylate PN, PL and PM to their respective 5’-
phosphates (Figure 1). The two kinases differ in their substrate specifities, with PdxY acting on PL, 
whereas PdxK can utilize all three non-phosphorylated vitamers as substrates. Most eukaryotes contain 
a single kinase, and crystal structure of the kinase from several different organisms has revealed a 
dimer [43-46]. Each of the two monomers contains an active site that utilizes bound ATP and metal 
ions, which are required for activity [47].  

Contrary to the kinases, only one oxidase, PdxH (EC 1.4.3.5), is shown in E. coli to oxidize the 
phosphorylated forms of PNP and PMP to PLP (Figure 1) [28, 48].  
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 In yeast a pyridoxine phosphate oxidase, PDX3 (EC 1.4.3.5), was identified and mutants in this 
gene had increased oxidative stress sensitivities [49].  Interestingly, complementation with a recently 
identified oxidase in Arabidopsis, AtPPOX, rescued this yeast mutant which underscores the highly 
conserved nature of the pathway [50]. The crystal structure of pyridoxine oxidase has shown that this 
protein also functions as a dimer, with the cofactor flavin mononucleotide, FMN, bound in the active 
site of each monomer [51-53]. 

The Other End: VitB6 Catabolism  

Besides the biosynthesis of vitB6, catabolism of the vitamin is also an important aspect for cellular 
homeostasis of the compound. A critical step is represented by the dephosphorylation of 
PLP/PMP/PNP because this step represents a major control for the pool of available active vitB6 
cofactor. There are reports of unspecific dephosphorylation of PLP/PMP/PNP by alkaline phosphatase 
(EC 3.1.3.1) and acid phosphatase (EC 3.1.3.2)  [54-58]. However, additional phosphatases have been 
annotated for various organisms that specifically target phosphorylated vitB6 as a substrate [59, 60]. 
Of these currently the one best characterized is human pyridoxal phosphatase (PLPP) (EC 3.1.3) 
(Figure 2).  The enzyme is a 64 kDa dimer with a requirement for Mg2+. It is expressed in various 
tissues but predominantly in brain, liver and testis [60]. PLPP has its highest affinity for PLP, followed 
by PNP and then PMP. Inorganic phosphate has a strong inhibitory effect, but the enzyme can also be 
weakly inhibited by PL [60, 61]. Although basic biochemical data are well established for human 
PLPP control of its activity is still open. 

 
Figure 2. Bacterial catabolic pathways of vitB6. Roman numbers in parenthesis indicate 
enzymes: (I) pyridoxine 4-oxidase; (II) pyridoxal phosphatase; (III) pyridoxal 4-
dehydrogenase; (IV) 4-pyridoxollactonase; (V) pyridoxol oxidase. Arabic numbers indicate 
compound: (1) PN; (2) PLP; (3) PL; (4) 4-pyridoxolactone; (5) 4-pyridoxic acid; (6) 
succinic semialdehyde (modified from [62]). 

 
 



Molecules 2009, 14                            
 

 

334

In the gram-negative bacteria Pseudomonas sp. and Mesorhizobium loti a detailed pathway has 
been described for degradation of vitB6 and its phosphorylated derivatives (see Figure 2 for an 
overview) [62, 63]. Here PL can either be converted in a two-step process from 4-pyridoxolactone to 
4-pyridoxic acid (4-PA) via the subsequent activities of pyridoxal-4-dehydrogenase (EC 1.1.1.107) and 
4-pyridoxolactonase (EC 3.1.1.27) or directly to 4-PA by pyridoxal oxidase (EC 1.2.3.8); 4-PA in turn 
is then catabolized in five additional steps to succinic semialdehyde [62, 64]. It is noteworthy that 4-
PA is also found in rats and human which makes it likely that similar catabolic pathways exist in these 
organisms [65, 66]. In addition, succinic semialdehyde is a common compound that can accumulate in 
humans if, for example, degradation of γ-amino-butyric acid is impaired by succinic semialdehyde 
dehydrogenase (EC 1.2.1.24) deficiency [67]. However, it is basically unknown how the vitamin is 
degraded in eukaryotes after pyridoxine phosphatase activity. 

Allocation of VitB6 in Prokaryotes and Eukaryotes  

A highly important but poorly understood field is the translocation of vitB6 in prokaryotes and 
eukaryotes. Some vitB6 auxotrophic prokaryotes and single cell eukaryotes rely on the import of the 
vitamin, while multicellular eukaryotes that cannot synthesize vitB6 need to translocate the vitamin to 
their different organs.  

Pioneering studies that demonstrated the existence of such vitB6 transporters came from Salmonella 
typhimurium and S. cerevisiae [68, 69]. In higher eukaryotes studies on rat renal proximal tubular cells 
demonstrated uptake of pyridoxine and N-(4'-pyridoxyl) amines [70]. Here, the work by Zhang and 
McCormick showed that the tested rat cells have an active Na+-dependent uptake system, which is able 
to discriminate between the different offered substrates. Interestingly, both pyridoxine and its amine 
derivatives were substrates of a pyridoxal kinase as they were phosphorylated upon entry into the 
cytosol [70]. Intestinal absorption in humans comes from two sources, dietary ingestion in the small 
intestine and uptake of bacteria produced vitB6 in the large intestine [71, 72]. Experiments using 
human intestinal epithelial Caco-2 cells and mammalian colonocytes demonstrated the involvement of 
carrier-mediated systems for both with pH, temperature and pyridoxine levels affecting the rate of 
transport. An intercellular protein kinase A (PKA)-mediated pathway appears to regulate transport in 
the Caco-2 cells, whereas transport in colonocytes appears to be regulated by a Ca2+/CaM- mediated 
pathway [71, 72]. Work in human placental tissue has also indicated the presence of a passive transport 
system that transfers pyridoxine in and out of the cells but not against a concentration gradient [73]. 
Both active uptake and export of vitB6 have been demonstrated in yeast [69, 74, 75]. The fission yeast, 
Schizosaccharomyces pombe, showed a preferential efflux of PN that was dependent on the internal 
concentration of PN, and the rate was increased with the addition of Na+ [74]. It was suggested that the 
membrane potential could be affecting the PN efflux gate or carrier. Additionally, work in S. pombe 
has linked the PL reductase encoded by prl1+ gene to the excretion of PN following its reduction from 
PL as part of the maintenance of vitB6 levels in the cell [76]. Overall these findings demonstrated the 
presence of various mechanisms for transport of the vitB6. However the precise identity of the 
transport proteins that facilitate such movements has remained open. Described for S. cerevisiae in 
2003, Tpn1p was the first example of a eukaryotic vitB6 transporter [77]. The protein belongs to the 
family of purine-cytosine permeases and functions as a plasma membrane bound proton symporter for 
vitB6 uptake. It has a high affinity for PN with a Km value of 0.55 μM but also transports PM and PL 
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with lower affinities. A second unrelated transporter, Bsu1p was identified in S. pombe, a yeast strain 
that does not contain a Tpn1p homlog [78]. While Bsu1p has lower affinity for PN than Tpn1p, it also 
operates as a proton symporter with similar optimal pH and substrate profiles. Likewise, expression of 
both transporters increased when PN concentrations decreased [77, 78].  Very recently, a novel class of 
vitamin transporters were identified in prokaryotes [79]. They are composed of different modules that 
have substrate specific components and an energy-coupling module and were named accordingly as 
energy-coupling factor (ECF) transporters. The energy-coupling module allows docking of different 
substrate specific components to facilitate selected transport of metabolites across membranes. 
Interestingly, the authors also identified an ECF transporter with a high affinity for pyridoxine [79]. 
The findings of Tpn1p, Bsu1p and the ECF transporters demonstrate that different transport pathways 
have evolved and it will be exciting to learn what kind of transport proteins are active in other 
organisms. In addition it will be of importance to understand intracellular transport of vitB6 since 
many PLP-dependent enzymes are present in mitochondria and chloroplast. However, currently it is 
open how this is achieved in the cell since corresponding transport proteins remain to be identified. 

The Role of VitB6 in Stress Response 

Recent work has provided evidence of an expanded role of vitB6 in cells. As stated above, this 
compound serves a role in enzymatic catalysis. However, vitB6 may play a crucial role in protecting 
cells from oxidative stress because the vitamin has been shown to exhibit antioxidant activity that even 
exceeds that of vitamins C and E [80-83]. Upon mutation of genes involved in the salvage and de novo 
pathways of vitB6 synthesis, a range of phenotypes are seen in salt and reactive oxygen species (ROS) 
sensitivity (Table 1). ROS sensitivity in context with vitB6 was originally characterized in the 
phytopathogen Cercospora nicotianae. Here mutant strains were identified that were particularly 
vulnerable to their own toxin cercosporin, a photosensitizer that produces singlet oxygen and 
superoxide upon irradiation [35, 81]. Cloning of the mutant genes in C. nicotianae revealed that the 
mutated fungi were affected in a PDX1 ortholog [35, 80, 81]. These findings were of importance since 
so far vitB6 had not been mentioned in the context of singlet oxygen resistance [84]. Subsequent 
studies in other organisms also showed that vitB6 is crucial for oxidative stress tolerance and other 
abiotic stressors. For example, loss of Arabidopsis thaliana PDX1.3 causes hypersensitivity towards 
treatment with Rose Bengal, a ROS inducing chemical [85]. Moreover Arabidopsis pdx1.3 mutants are 
also hypersensitive towards salt and UV-B treatments [85, 86]. It is also interesting to note that 
mutants in the salvage pathway show aberrant stress sensitivities, demonstrating that vitB6 metabolism 
in general is critical for abiotic stress tolerance. For example, the Arabidopsis sos4 mutant that is 
affected in pyridoxine kinase PDXK is highly sensitive to salt stress [87]. However, unlike mutants 
affected in PDX1 genes that have been demonstrated to contain reduced levels of vitB6, sos4 has 
overall increased levels of the vitamin [86, 88-90]. Though the precise reason for increased vitB6 
levels in sos4 remains to be answered, the example given demonstrates that vitB6 levels do not strictly 
correlate with stress tolerance. Hence, one must question whether aberrant vitB6 levels are the primary 
reason for the observed abiotic stress sensitivities. 

It is noteworthy that PDX1 and PDXK gene expression is also regulated in response to abiotic 
stress. For example, B. subtilis PDX1 has been demonstrated to be upregulated in the presence of the 
singlet oxygen producer, methylene blue [91].  In addition, PYRO A (a PDX1 homologue described in 



Molecules 2009, 14                            
 

 

336

Aspergillus nidulans) and Arabidopsis PDX1.3 are upregulated after exposure to UV radiation [92, 
93]. Also SNZ1, a S. cerevisiae PDX1 homologue, has been shown to be present in higher amounts 
during the stationary growth phase in which cultures are more prone to oxidative stress [94, 95]. 
Findings in plants revealed that expression of Arabidopsis PDX1 genes is regulated by drought, 
chilling, UV-B treatment, and ozone [96]. Finally, SOS4 up-regulation has also been demonstrated as a 
response to cold stress and abscisic acid (ABA) treatment [87].   

Overall there appears to be a broad and beneficial effect of vitB6 on abiotic stress tolerance in the 
cell, and stressors have been found to result in an increased amount of expression of genes involved in 
vitB6 biosynthesis.  Notably and as mentioned above there are some exceptions to the observation that 
increased vitB6 availability is beneficial: Herrero and Daub observed negligible changes in vitB6 
content in tobacco in response to salt stress, and Gonzalez and coworkers noted significantly higher 
vitB6 levels in sos4 relative to wild type plants despite the mutant’s increased salt sensitivity [90].  
Considering these findings, future work may aim to link additional signals to a response of altered 
vitB6 production in cells.  Additionally, characterization of the ROS quenching capacity and 
regulation of vitB6 biosynthesis may help to solve the close relationships seen between the vitamin 
and the described sources of stress.  

Table 1. Examples of VitB6 De Novo and Salvage Pathway Mutants in Context with Stress. 

Organism  Mutant Pathway affected Phenotype Citation 

E. coli ppox/pdxH Salvage 
Reduced growth, 
aberrant shape 

[27] 

C. nicotianae sor1/pdx1 De novo 

Increased ROS 
sensitivity, loss of 
vitB6 production, 
increased salt 
sensitivity, reduced 
growth 

[81] 

S. cerevisiae snz1/pdx1 De novo Reduced growth in 
minimal media 

[94] 

S. cerevisiae sno1/pdx2 De novo 
Reduced growth in 
minimal media [94] 

S.  cerevisiae pdx3 Salvage 
Increased ROS 
sensitivity [50] 

A. thaliana sos4-1 Salvage 
Increased salt 
sensitivity [87, 90] 

A. thaliana 
pdx 1.1,  
pdx 1.3  

De novo 
Increased salt 
sensitivity [21, 86] 

A. thaliana 
pdx3/PPOX 

Salvage 
Reduced aerial & root 
growth, increased salt 
sensitivity 

[50, 90] 
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The Diversity of VitB6 Derivatives  

As described in the preceding paragraphs, vitB6 is a well-investigated compound critical for many 
cellular processes as either a central cofactor or as a potent antioxidant. However, it is noteworthy that 
a variety of different PN, PM, and PL derivatives have been described, for which the precise function 
is not understood (Table 2). These derivatives potentially have novel functions, and may be crucial to 
fully appreciate the biological relevance of vitB6. 

The best known of these derivatives is probably 4’-O-methylpyridoxine or ginkgotoxin from the 
tree Ginkgo biloba [12, 97]. The compound has been found in different tissues with the highest 
concentrations being present in seeds [98]. Although it has been shown that the additional 4'-O-methyl 
group most likely derives from methionine, and that both phosphorylated and non-phosphorylated 
forms of pyridoxine are methylated, the biosynthetic pathway leading to 4’-O-methylpyridoxine is still 
unresolved [98, 99]. Ingestion of the toxin can lead to Gin-nan-sitotoxism, epileptic convulsions, and 
other neuronal disorders [100]. As seeds from Ginkgo trees are a food source in China and Japan, and 
extracts from leaves are used in pharmaceutical products, they represent a potential health risk. The 
PLP-dependent enzyme glutamate decarboxylase (GAD), which is critical for synthesis of the 
neurotransmitter GABA was discussed as a potential target of 4’-O-methylpyridoxine. However, there 
is no clear evidence that ginkgotoxin significantly reduces GAD activity when present in 
physiologically relevant concentrations [101]. In contrast, recent work rather suggests that the toxin is 
competing with PN/PM/PL for human pyridoxine kinase [97]. This in turn might reduce the pool of 
available PLP and PMP in the brain and negatively affect GAD activity and GABA biosynthesis [97].  

Ginkgotoxin was also found in the African tree Albizia tanganyicensis [98-100] demonstrating that 
the biosynthetic pathway leading to the formation of 4’-O-methylpyridoxine is not unique to Ginkgo. 
Albizia tanganyicensis and its close relative Albizia julibrissin also synthesize other more complex 
vitB6 derivatives (see Table 2) [100, 102]. Unfortunately, neither for ginkgotoxin nor for the other 
Albizia derivatives could we find a biological function explaining why these compounds are 
synthesized. A likely possibility is that they serve as protecting compounds against pathogens due to 
their toxicity. This poses the attractive question as to what kind of mechanisms these plants employ to 
protect their own metabolism against toxic vitB6 derivatives. For example, do they utilize specific 
compartments or organelles for storage of their toxic compounds? 

Another aspect that vitB6 derivatives have been brought in context with is the formation of 
advanced glycation and lipoxygenation end-products (AGE and ALE, respectively). AGE and ALE 
formation can occur in cells when reduced sugars (e.g. glucose, fructose) or polyunsaturated fatty acids 
are abundant. In such a situation they can cross-react preferentially with lysine residues of proteins 
[103, 104]. Accumulation of AGE and ALE is also caused by oxidative stress or overload of pathways 
active in detoxification [103]. Such end-products are often detrimental for protein function and, 
especially in older tissues, might lead to severe damage. Hence, patients with diabetes or 
atherosclerosis that have increased contents of blood sugar or blood lipids, respectively, suffer from 
accumulation of AGEs and ALEs. Here, pyridoxamine is discussed to serve as a protecting compound 
by bonding with fatty acids (see Table 2) and thereby effectively competing with proteins for ALE 
formation [104, 105]. The vitamin is also discussed to serve as a protecting compound for AGE 
formation which is of special interest to patients suffering from diabetes [106-108].  
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A significant proportion of vitB6 (ranging from 5-80% of the total vitB6 content) in many fruits and 
vegetables is glycosylated [109, 110]. Glycosylated vitB6 appears to be abundant in plants and has 
been detected in soybean, rice, and Ginkgo [111-113].  Furthermore, in fungi β-fructosyl and β-
galactosyl compounds of pyridoxine have been found [114, 115]. It is likely that these derivatives of 
vitB6 are not substrates of a pyridoxine kinase and thus are not accessible for metabolic utilization. 
Consequently, specific β-glucosidases have been described in plants and human capable of removing 
the sugar moiety, making the vitamin again accessible for salvage pathway enzymes [111, 116-118]. 
Although no precise explanation for the high amount of glycosylated vitB6 is provided in literature, a 
possibility can be seen in context with AGE accumulation. Here, vitB6 might serve as a protecting 
compound to prevent reaction of sugar with lysine residues of proteins. Alternatively, glycosylated 
forms of vitB6 might serve as storage compounds of the vitamin and even carbohydrates that can be 
mobilized upon demand. Overall the existence of such a diverse variety of vitB6 derivatives indicates 
that the vitamin is involved in or employed for many other currently unknown processes.  

Table 2. Examples of VitB6 Vitamers and Their Derivatives 

Derivative Structure Function Organism 

found 

citation 

Vitamin B6 
CH3 N

OH
OH

R

Antioxidant ubiquitous [13] 

Vitamin B6-

phosphate CH3 N

OH
O

P
O

OH OH
R

Cofactor ubiquitous [13] 

4’-O-Methyl-

pyridoxine 

(ginkgotoxin) CH3 N

CH2
O

CH2OH OH

CH3

Unknown; potential 

inhibitor of 

PN/PM/PL kinase 

Ginkgo biloba, 

Albizia 

tanganyicensis 

[23, 97, 

99] 

5’-O-Acetyl-4’-O-

methylpyridoxine 

 CH3 N

CH2
O

CH2OH O

CH3

C
CH3

O

Unknown 
Albizia 

tanganyicensis [100] 

Julibrine I 

CH3 N

CH2
O

CH2OH O

CH3

glclgcUA Unknown 
Albizia 

julibrissin 
[102] 

Julibrine II 
CH3 N

CH2
O

CH2OH O

CH3
O

OH

OH

OH
O O

OH
OH

OH

Unknown; 

has been 

demonstrated to 

induce arrhythmia 

Albizia 

julibrissin 
[102] 

 
 
 

 

R1= -HC-O (PL) 
R2= -CH2OH (PN) 
R3=-CH2NH2 (PM) 
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Table 2. Cont. 

5'-0-(β-D-

Glucopyranosyl) 

pyridoxine CH3 N

CH2
CH2OH O

OH
CH2 O CH2

OH

OH
OH

OH
Unknown 

Various plant 

products 
[111, 112] 

N-Hexanoyl-

pyridoxamine 

(HAPM) 

 CH3 N

CH2
CH2OH OH

NH
C

OH3C(H2C)4
Inhibitor of 

advanced glycation 

and lipoxidation 

reactions 

PM treated 

diabetic and 

obese rats 

[9, 10] 

N-Nonanedioyl-
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CH3 N

CH2
CH2OH OH

NH
CH

O
Inhibitor of 

advanced glycation 

and lipoxidation 

reactions 

PM treated 

diabetic and 

obese rats 

[104, 105] 

 

VitB6 Supplements and Human Health: Is it too much or not enough of a good thing? 

The importance of vitB6 in human health is reflected in how actively it is studied in relationship to 
a wide range of disease prevention and control. The current Recommended Dietary Allowance (RDS) 
from the American National Institute of Health (NIH) for vitB6 is 2 milligrams per day with an 
upward tolerance of 100 mg per day for adults. High doses can lead to peripheral sensory neuropathy 
and nerve degeneration [119, 120]. These problems are generally reversible when supplementation is 
stopped. Additionally some studies have suggested that increased levels of the B6 vitamers and some 
derivatives can generate toxic photoproducts as a result of UV irradiation [121-123].  

Most problems are stemming from deficiencies of the vitamin and there are several areas of interest 
actively being pursued. Numerous clinical trials have been conducted to observe the broader impact of 
vitB6 on human health problems such as cancer prevention and recovery and the amelioration of 
neurological diseases.  Also under investigation are the benefits of increased vitB6 through its role as a 
cofactor in upstream processes that lead to problems involving heart disease, osteoporosis and 
diabetes. Several of these topics are addressed in the following section.   

Studies of vitB6 supplements in cancer prevention have yielded mixed results ranging from no 
significant benefits seen in breast cancer to indications of protection against colorectal cancer [124]. A 
recent study on hairless mice given PN supplements was performed to see if increased vitB6 protected 
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against UV-B induced skin tumors [121]. It was reasoned that vitB6 would help quench reactive 
oxygen species (ROS), which are associated with the development of cancer. Interestingly though, 
while higher serum levels of PLP correlated with a higher dosage of dietary PN, neither the amount of 
PLP nor oxidative stress markers in skin differed in relationship to the dosages. Additionally an 
increase in tumor induction was seen in the mice given the higher doses of PN, correlating with 
previous work [122, 123]. Interestingly decreased levels of vitB6 accompanied by increased levels of 
oxidative stress were detected in red blood cells of non-small cell lung cancer patients, also 
highlighting the vitamin’s potential benefits as an antioxidant [125]. 

Phosphorylated vitB6 is needed as a cofactor for neurotransmitter synthesis. However, studies on 
elderly people have shown that a walking program has more benefits on cognitive improvement and 
increased folate may help prevent Alzheimer’s diseases rather than vitB6 supplements [126-129]. 
While an association of low PLP and high symptoms of depression have been reported, 
supplementation with vitB6 has not been shown to conclusively improve depression in older men [130, 
131]. In schizophrenic patients with tardive dyskinsia, plasma levels of PLP were significantly lower 
and treatment with vitB6 supplements reduced the symptoms of this disease along with another 
schizophrenic associated disease, akathisia [132-134]. VitB6 is also studied as a potentially important 
candidate to improve behavioural disorders of autistic children, although the precise impact of the 
vitamin remains to be shown. [135-136].  

VitB6 is involved in maintenance of normal homocysteine levels, and lower levels of homocysteine 
are associated with lower rates of coronary heart disease and stroke [137]. However studies are 
conflicting as to whether giving supplements to lower the homocysteine levels improves protection 
against these diseases [137-139]. High homocysteine levels have also been linked to osteoperosis and 
bone fragility fractures. In vitro tissue experiments demonstrated that either decreasing vitB6 or 
increasing homocysteine levels stimulated osteoclast activity, which leads to bone resorption [140].  

Blood vitB6 levels are significantly decreased in diabetics. As vitB6 is a cofactor in tryptophan 
catabolism, disruption of this pathway leads to increased levels of kynurenine metabolites which 
inhibit insulin secretion and lower glucose tolerance [141]. Studies on different B6 vitamers have 
shown that supplements can help with problems related to glucose tolerance [142]. Complications 
from other diabetes-associated diseases are also common, and interestingly high doses of vitB6 
normalized endothelial dysfunction, a precursor to vascular disease, in children with type 1 diabetes 
[143]. 

Outlook and Perspectives 

Though in the last years various aspects in vitB6 biosynthesis and the impact and benefits of the 
vitamin for general metabolism have been explained, many questions remain unanswered. Five of 
these are covered in the following section to provide an outlook on future opportunities related to this 
important research field. 

Do regulatory mechanisms exist that control PLP de novo biosynthesis? Although the two biosynthetic 
pathways – DXP-dependent and –independent – have been resolved, regulatory mechanisms on the 
transcriptional and posttranscriptional level to control PLP biosynthesis remain to be found. Although 
transcriptional regulation of PDX1 genes has been described for various organisms after stress 
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treatments, it remains open whether this in turn affects vitB6 levels [13, 144]. Considering the central 
and indispensable role of PLP in metabolism one would expect that such regulatory switches exist. 
These need to be connected with general metabolism, first because vitB6 exhibits such a central role as 
a cofactor and second because the de novo biosynthetic machinery competes for the precursors 
required for PLP synthesis with other pathways.  

How are the salvage pathway and PLP phosphatase activities regulated? As for the de novo pathways, 
it has not been explained how salvage pathway enzymes and PLP phosphatases are regulated. This is 
surprising as pyridoxine kinase and PNP/PMP oxidase are crucial players in controlling vitB6 
homeostasis and the availability of the active cofactor which might even occur in concert with PLP 
phosphatases. However, only a few studies reveal insights on factors like ions, ATP, or end-products 
that directly affect activities of these enzymes [61, 145-149], while the interplay between the different 
proteins and the de novo pathway has not been addressed. Again, one would suggest that some higher 
degree of active control is present that regulates the proteins of the salvage pathway and PLP 
phosphatases upon demand.  

What are the mechanisms of vitamin B6 translocation? For many organisms it is open how vitB6 is 
translocated within the different organs and tissues. Although the non-phosphorylated forms can to 
some extent go passively through membranes, this diffusion is most likely insufficient for long 
distance allocation or rapid uptake of the vitamin when needed [77]. Currently only a few examples 
are given for vitB6 transporters in yeast and prokaryotes, making this an important question in other 
organisms like animals or plants [77, 79]. 

How does vitamin B6 metabolism positively affect stress tolerance? For many organisms it has been 
shown that mutants affected in either the salvage or the de novo pathway are hypersensitive towards 
abiotic stress conditions.  However, this hypersensitivity does not always correlate with the vitB6 
content in the cell [86, 90]. Hence it is currently unclear and necessary to ask whether the amount of 
vitB6 is the critical factor to protect against abiotic stress, whether it is the vitB6 homeostasis that is 
important, or whether it is the proteins that participate in the different pathways that have additional 
functions connected to stress alleviation. 

Are there more de novo pathways present in yet unexplored organisms and how are vitB6 derivatives 
formed? Currently it appears to be that there are just the two described de novo pathways, and no 
evidence for additional biosynthetic pathways is at hand. Though one cannot exclude the possibility 
for a third pathway, it is more likely that only the two described DXP-dependent and DXP-
independent pathways exist. In contrast the variety of existing vitB6 derivatives indicates an extensive 
metabolic ability of organisms to modify vitB6. It will be interesting in the future to have more 
knowledge generated on the enzymes that modify vitB6, about the biological purposes of these 
compounds, and how these organisms protect themselves against potentially toxic derivatives. 
Understanding these points may provide better approaches to utilizing the pharmaceutical potentials of 
vitB6 and its derivatives for human health.  
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