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Abstract
Run charts are widely used in healthcare improvement, but there is little consensus on how

to interpret them. The primary aim of this study was to evaluate and compare the diagnostic

properties of different sets of run chart rules. A run chart is a line graph of a quality measure

over time. The main purpose of the run chart is to detect process improvement or process

degradation, which will turn up as non-random patterns in the distribution of data points

around the median. Non-random variation may be identified by simple statistical tests in-

cluding the presence of unusually long runs of data points on one side of the median or if

the graph crosses the median unusually few times. However, there is no general agreement

on what defines “unusually long” or “unusually few”. Other tests of questionable value are

frequently used as well. Three sets of run chart rules (Anhoej, Perla, and Carey rules) have

been published in peer reviewed healthcare journals, but these sets differ significantly in

their sensitivity and specificity to non-random variation. In this study I investigate the diag-

nostic values expressed by likelihood ratios of three sets of run chart rules for detection of

shifts in process performance using random data series. The study concludes that the

Anhoej rules have good diagnostic properties and are superior to the Perla and the

Carey rules.

Introduction
Plotting data over time is a simple method to learn from trends, patterns, and variation in data
over time and to study the effect of improvement efforts.

A run chart is a line graph of a quality measure over time with the median shown as a hori-
zontal line dividing the data points so that half of the points are above the median and half
are below.

The main purpose of the run chart is to detect process improvement or process degradation,
which will turn up as non-random patterns in the distribution of data points around
the median.
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Run charts have many uses. Anything that can be expressed as counts or measures sampled
over time can be analysed for non-random variation with run charts. In health care improve-
ment, run charts are being used to monitor improvement in quality indicators—common ex-
amples being infection and complication rates, waiting times, readmissions, and adherence to
standard procedures. Furthermore, run charts are useful for process control, that is, to monitor
critical processes in order to detect process degradation quickly (1, 2, 3).

If the process of interest shows only random variation the data points will be randomly dis-
tributed around the median (Fig. 1A). Random meaning that we cannot know in advance if

Fig 1. Example run charts with and without a shift in sample mean. Both charts have 24 useful
observations, that is, data points not on the median. The median is calculated from the first 12 data points
(baseline). A: No shift. The longest run has 3 data points, and the curve crosses the median 13 times. Only
random variation is identified.B: A shift in sample mean of 2 SD was introduced in the last 12 data points. The
longest run has 13 data points, which is above the signal limit of the Anhoej rules (8), and there are 6
crossing, which is below the signal limit (8), thus, non-random variation is identified. The plots were created
with the qicharts package for R [4].

doi:10.1371/journal.pone.0121349.g001
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any single data point will fall above or below the median, but that the probability of each event
is 50%, and that the data points are independent. Independence means that the position of
one data point does not influence the position of the next data point, that is, data are not auto-
correlated. If the process shifts or drifts, these conditions are no longer true and patterns of
non-random variation may be detected by statistical tests.

Non-random variation may present itself in several ways. Especially, if the process centre is
changing due to improvement or degradation we may observe “unusually” long runs of conse-
cutive data points on the same side of the median or that the graph crosses the median “unusu-
ally” few times (Fig. 1B).

A run is defined as one or more consecutive data points on the same side of the median.
Data points that fall on the median are not counted. They do neither contribute to the run nor
do they break it. The distribution of runs and longest runs are fundamental to run
chart analysis.

The expected number of runs was first studied by Swed and Eisenhart [5]. Recently, Chen
proposed a simpler method counting crossings, which is the number of times the graph crosses
the median [6]. Both methods are well modelled by statistical theory and yield comparable re-
sults. The general idea is that the number of crossings or runs in a random process is predict-
able within limits, and if there are more or less than predicted it is an indication that the
process is not random.

Similarly, the length of the longest run is predictable within limits. However, there is no gen-
eral agreement on what defines an “unusually long run”. Perla suggests runs of six or more
data points to identify non-random variation [1], while Carey suggests seven or eight [2].
Based on the theory of long runs described by Schilling [7], we recently proposed a dynamic
rule to identify too long runs [3]. According to this rule, the critical values depend on of the
total number of data points in the run chart. Thus, in a run chart of 10 data points, a run of
eight would be considered unusually long, while in a run chart of, say, 30 data points a run of
eight would not.

Another commonly used test for non-random variation is the trend test, which identifies
unusually long runs of data points all going up or down. While the trend test has been shown
to be at best useless [3, 8], it is still widely used [1, 2].

It is common practice to bundle two or more run chart tests so that if just one of the tests is
positive it is taken as suggestive evidence that non-random variation is present in the process
of interest.

In this study I compare the diagnostic value of three sets of run chart rules that have been
proposed in peer reviewed articles (Table 1).

The critical values for longest run and number of runs in Perla's and Carey's sets of rules are
tabulated in Perla's paper [1].

Table 1. Three sets of run chart rules.

Perla Carey Anhoej

Longest run > = 6 > = 7 (8 if there are 20 or more data points in the
run chart)

> UPL

Number of runs (or
crossings)

< LPL
or > UPL

< LPL or > UPL < LPL

Longest trend > = 5 > = 6 NA

UPL/LPL = dynamic upper/lower prediction limits based on the number of useful observations. See text

for details.

doi:10.1371/journal.pone.0121349.t001
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The limits used with the Anhoej rules can be calculated using the formulas or looked up in a
table provided in my previous paper [3]. The use of the Anhoej rules is demonstrated in Fig. 1.

The primary aim of this study was to evaluate and compare the diagnostic properties of dif-
ferent sets of run chart rules for detection of non-random variation in the form of shifts in pro-
cess performance over time. Second, I wanted to suggest a method for future evaluation and
study of run chart rules.

Methods

Likelihood ratios
Traditionally, likelihood ratios are used to evaluate how well clinical tests are able to discrimi-
nate between the presence and the absence of specific clinical conditions. In this study I applied
likelihood ratios to simulated run charts, which may be considered diagnostic tests for non-
random variation.

The questions of interest for run chart users are “what is the chance that a run chart with a
positive runs test really contains non-random variation?” and “what is the chance that a run
chart with a negative runs test really contains only random variation?”

Likelihood ratios are diagnostic measures designed to answer these kinds of questions [9].
Assume that a run chart tests positive for non-random variation. A perfect test would mean
that the run chart would certainly come from a process with non-random variation (true posi-
tive, TP). However, some run charts with only random variation also test positive (false posi-
tive, FP). We therefore correct the true positive rate by the false positive rate by dividing one
with the other. The positive likelihood ratio is defined as TP rate/FP rate = sensitivity/
(1-specificity).

Likewise, if a run chart tests negative this could be a false negative (FN) rather than a true
negative (TN). The negative likelihood ratio is defined as FN rate/TN rate = (1-sensitivity)/
specificity.

A likelihood ratio greater than 1 speaks in favour of the condition being tested for, which in
our case is non-random variation, while a likelihood ratio less than 1 speaks against non-ran-
dom variation. The further a likelihood ratio is from 1, the more or less likely is the presence of
non-random variation. As a rule of thumb, a positive likelihood ratio greater than 10 is consid-
ered strong evidence that the condition being tested for is present. A negative likelihood ratio
smaller than 0.1 is considered strong evidence against the condition [10].

Thus, likelihood ratios allow us to quantify the probability of non-random variation in run
charts and are useful quality characteristics of run chart rules.

Run charts simulation
For the purpose of this study, I developed a simulation programme that automatically creates
data series simulating run charts from random numbers from a normal distribution (or option-
ally, a poisson distribution) and applies the Perla, Carey, and Anhoej run chart rules to identify
non-random variation. In half the simulations a shift in process mean of 2 standard deviations
(SD) is introduced. So, for each simulated run chart the true presence or absence of a shift to-
gether with the presence or absence of signals from the runs analyses is known by the simula-
tion programme allowing the programme to calculate likelihood ratios for each set of run
chart rules.

For each simulated data series the median is calculated using the first 6, 12 or 18 data points
as baseline. And the shifts (when present) are introduced in the post-baseline period of 6, 12 or
18 data points. Thus, there are nine combinations of baseline and post-baseline periods of
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different length allowing us to study the influence of these parameters on the diagnostic value
of the tests.

For each of the nine possible combinations of baseline and post-baseline length, 1,000 simu-
lations are performed with and 1,000 without post-baseline shift. In total, 18,000 run charts
are simulated.

The simulation programme was built with R version 3.1.2 [11] with the add-on packages
dplyr, tidyr, lattice, and latticeExtra. The programme code is available as supplementary mate-
rial to this article (S1 File).

Results
Positive and negative likelihood ratios from the simulation study are displayed in Fig. 2. The
length of baseline and post-baseline periods are shown in the panel headers. For example, the
centre panel (12:12) is from 2000 run charts with 24 data points, 12 in the baseline period used

Fig 2. Likelihood ratios of run chart rules. The bars show the positive (LR+) and negative (LR-) likelihood ratios for each combination of run chart rules and
baseline and post-baseline length shown in the panel header. Each panel is based on 2000 simulations of which 1000 had a shift of 2 SD in sample mean
introduced in the post-baseline period.

doi:10.1371/journal.pone.0121349.g002
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for calculation of the median and 12 after a shift in sample mean of 2 SD was introduced in
half of the run charts.

Table 2 shows the results from the 2000 simulations from the centre panel (12:12) of Fig. 2.
Table 3 shows the calculations of likelihood ratios from the values in Table 2.

Comparable results were obtained using random data series from a poisson distribution (re-
sults not shown).

Overall, the Anhoej and Carey rules perform better than the Perla rules—the Anhoej rules
slightly but consistently better than the Carey rules. For run charts with 12 or more data points
in the post-baseline period, the Anhoej and Carey rules perform very well with positive LRs
around 10 and negative LRs around 0.1. The interpretation is, that given a positive test based
on the Anhoej or Carey rules, the presence of a shift of 2 SD is about 10 times more likely than
no shift; and given a negative test, a shift is about 10 times less likely than no shift.

The Perla rules have very low negative LRs meaning that a negative test with great certainty
rules out shifts. However, the Perla rules have rather low positive LRs suggesting that a positive
test is only 2–4 times more likely to be associated with true shifts in process performance
than not.

A practical example
Fig. 3 displays the monthly number of hospital acquired urinary tract infection in an 800-bed
acute care hospital in the Capital Region of Denmark. According to the Carey and Anhoej
rules, the run chart shows only random variation. According to the Perla rules, the chart shows
non-random variation in the form of a shift and a trend. Both signals have the desired direction
(down), so one might conclude that improvement has occurred. However, data come from a
period where no attempts were made to systematically target urinary tract infections at this
hospital, and by looking at the chart as a whole, it is obvious that neither signal represents
(persistent) improvement.

Table 2. Results from runs analyses of 2000 simulated run charts with 24 data points and a shift of 2 SD introduced in the last 12 samples of half
the simulations.

Anhoej Carey Perla

Shift - Shift + Shift - Shift + Shift - Shift +

Signal - 927 115 901 116 534 10

Signal + 73 885 99 884 466 990

Shift +/- denotes the presence or absence of true shifts in process mean. Signal +/- denotes the result from the run chart analysis using the three set of

run chart rules.

doi:10.1371/journal.pone.0121349.t002

Table 3. Diagnostic properties of run chart rules based on the results from Table 2.

Anhoej Carey Perla

Sensitivity TP/(TP+FN) 0.885 0.884 0.990

Specificity TN/(TN+FP) 0.927 0.901 0.534

LR+ sens/(1-spec) 12 8.9 2.1

LR- (1-sens)/spec 0.12 0.13 0.019

TP = true positive, FP = false positive, TN = true negative, FN = false negative, LR+/LR- = positive/

negative likelihood ratio.

doi:10.1371/journal.pone.0121349.t003
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Discussion
Run charts are widely used in health care improvement, but different sets of run charts rules
exist, and few, if any, have critically evaluated the statistical properties of different rules. To my
knowledge, this is the first study to characterise and compare the diagnostic properties of run
charts. The results show that the Anhoej and Carey run chart rules have good diagnostic prop-
erties, while the Perla rules, due to a high number of false positive tests, are of
questionable value.

As this study shows, the choice of run chart rules is of crucial importance when interpreting
results from improvement programmes. Using very sensitive run chart rules will inevitably in-
troduce a high risk of false positive tests. All other things being equal, sensitivity and specificity
are opponents. The task is to find the best balance between the two. This balance is well ex-
pressed by likelihood ratios.

The availability of personal computers and free, open source software for data manipulation
and analysis makes the use of simulations studies easily accessible to statistical researchers. But
it is also important to realise that no number of cleverly designed simulations can cover the
wide variety of real life conditions and situations. In this study I evaluated only nine carefully
designed situations together with a fixed change in process performance. In practice, run chart
rules are often applied dynamically while the process of interest is developing; and often base-
line data are not available. In these situations, medians are recalculated and run chart rules ap-
plied after each new data point. Also, there are many more ways that change can appear than
as a sudden and fixed shift in process performance at one specific point in time.

It is therefore important to stress that this study does not establish fixed diagnostic proper-
ties of run chart rules. Rather, it provides a framework for characterising and comparing run

Fig 3. A practical example of false positive run chart analysis. The run charts displays the monthly number of hospital acquired urinary tract infection.
The chart has 27 useful observations, the longest run is 6, and the number of crossings is 11. The longest run of data points going in the same direction
(trend) is 6—points no. 13–19, since repeating values (15–16) only count as one. According to the Carey and Anhoej rules, the run chart shows only random
variation. According to the Perla rules, the chart shows non-random variation in the form of a shift (longest run> 5) and a trend (longest trend> 4).

doi:10.1371/journal.pone.0121349.g003
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chart rules, while studying how different rules and conditions affect the conclusions from real
life use of run charts.

“The proof of the pudding is in the eating.” It is my personal experience after having used
the Anhoej rules on a wide variety of healthcare processes for several years that they work well
in practice picking up significant changes in process performance while rarely creating false
signals. However, more sensitive (and less specific) run chart rules may be appropriate in situa-
tions where it is important to identify changes very quickly or rule out non-random variation
with high certainty, and where false positive signals are of minor importance. In any case, the
choice of run chart rules should be decided before data collection begins.

As mentioned, the Anhoej rules perform slightly better than the Carey rules. This is mainly
due to fewer false positive tests (73 vs. 99, Table 2). The difference may be explained partly by
the different number of tests included in the two set of rules—the more tests performed, the
more likely is a false positive result.

The Anhoej rules applies two tests to the run chart, while the Carey and Perla rules apply
four tests including the trend test, which has been shown to be at best useless, and a test for un-
usually many runs, which is not included in the Anhoej rules. Unusually many runs (or cross-
ings) is indeed a sign of non-random variation, which will appear if data are negatively auto-
correlated, that is, if any high number tends to be followed by a low number and vice versa.
However, this situation is rare in healthcare measures, and, if present, is most likely not an ef-
fect of improvement, rather than a result of poorly designed indicators or sampling issues. If,
eventually, one wants to investigate whether data might be negatively auto-correlated, it would
be useful also to include a test for unusually short longest runs.

Thus, the trend test and the test for too many runs are not useful for identifying shifts in
process performance due to improvement, and adding them to the analysis will increase the
risk of false positive tests and cause poorer run chart performance.

Conclusions
In conclusion, this study shows that the Anhoej run chart rules have good diagnostic properties
for identifying non-random variation in run charts under the conditions tested. Also the
Anhoej rules are simpler to apply, because only two tests have to be performed, compared to
the four tests included in the Carey and Perla rules. Finally, the Anhoej rules are independent
of the number of available data points, making them useful also with run charts that have more
than the usual 20–30 data points.

Supporting Information
S1 File. This file contains the R code to produce the simulations used in this study. The
code will run on an installation of R with the add on packages lattice, dplyr, lattice, and latti-
ceExtra. The output is a graph (Fig. 2) and a table showing likelihood ratios of run chart rules
for identification of non-random variation in simulated run charts of different length with or
without a shift in process mean.
(R)
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