
Supplementary Figures 

 
Supplementary figure 1 | The simulated returned signal from a dielectric slab for the reference signal used in 
the experiments (see Supplementary figure 6a below). The red lines indicate the locations of the dominant impulses, 

which coincide with the signal dominant peaks. 



 
Supplementary figure 2 | PPEX algorithm flow. a, Data pipeline. b, An example waveform and its time derivative. 
c, Phase diagram of normalized amplitude and velocity, which allows defining an energy. That energy is used as a 
first thresholding mechanism to separate noise (low energy) from signal (high energy). d, Histograms of amplitudes 
and velocities to determine the distribution to calculate probabilities. e, Peak selection after clustering of candidates.  
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Supplementary figure 3 | Mean Square Error of global peak location of different methods. PPEX is significantly 
better than frequency based deconvolution reported in Walker and recent robust peak finding method reported in 
Norman. PPEX also outperforms CLEAN for SNR < 8 dB by an order of magnitude. 

 
Supplementary figure 4 | Comparison between Canny edge detection and PPEX in finding the position of a 
simulated peak at different SNR levels. a, Raw simulated data with addition of noise. b, Canny results. c, PPEX 
results. d, Error calculation scheme. e, Error comparison versus SNR. PPEX outperforms Canny edge detection at 
low SNR encountered in THz depth sensing. 
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Supplementary figure 5 | Comparison between CLEAN, Canny edge detection and PPEX in finding the 
position of a layers in experimental data. a, Raw experimental data. b, Results from CLEAN deconvolution. c, 
Results from Canny edge detection. d, Results from PPEX. 
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Supplementary figure 6 | Waveform and wavelet applications vs. PPEX. a, Reference waveform. b, Reference 
spectrum. c, Peak finding results using PPEX: green, red and yellow respectively correspond to correct detection, 
false detection and misidentification. d1, Application of method in1 with the same level of smoothing as PPEX. d2, 
Application of method in1 using a higher level of smoothing. e1, Application of method in2 with low thresholding. e2, 
Application of method in2 with higher thresholding. 
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Supplementary figure 7 | The performance of different wavelet-based deconvolution schemes. a, Reference 
pulse. b, The measured reflection from multilayered sample along a single pixel. c, Deconvolution of signal in b using 
FWDD. d, Time domain deconvolution using Tikhonov regularization. e, Time domain deconvolution using ℓ1 
regularization. 
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Supplementary figure 8 | Deconvolution of the raw experimental data. a, Deconvolution using FWDD. (The color 
bar is the deconvolved signal amplitude) b, A binary version of the FWDD result in panel a. c,d, Recovered image 
and binary version using time domain deconvolution with Tikhonov penalty. e,f, Recovered image and binary version 
using time domain deconvolution with ℓ1 penalty.  

 
Supplementary figure 9 | Selection of the high contrast images based on the kurtosis value. a, A frequency 

image with relatively higher contrast. b, The histogram of the image in panel a, the kurtosis of the normalized image 
is 8.62. c, A relatively lower contrast frequency image. d, The histogram of the image in panel c which is more 

diffused than the histogram of image a; the kurtosis of the normalized image is 4.26.  
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Supplementary figure 10 | Binary image segmentation. a, An almost binary image. b, Three disks of different radii 
and the corresponding cost values. c, Normalized histogram of the image and the corresponding values 𝑢𝑢in  and 𝑢𝑢ex . 

 

 
Supplementary figure 11 | Explanation of shape characteristic functions. a, An image (the character “A”) and 

the corresponding characteristic function. b, For two given shapes 𝑆𝑆1 and 𝑆𝑆2, the positive support of 𝛼𝛼1𝜒𝜒𝑆𝑆1
(𝐱𝐱) +

𝛼𝛼2𝜒𝜒𝑆𝑆2
(𝐱𝐱) is 𝑆𝑆1  ∪  𝑆𝑆2 when 𝛼𝛼1,𝛼𝛼2 > 0. c, The positive support of 𝛼𝛼1𝜒𝜒𝑆𝑆1

(𝐱𝐱) − 𝛼𝛼2𝜒𝜒𝑆𝑆2
(𝐱𝐱) is 𝑆𝑆1 \ 𝑆𝑆2 when 𝛼𝛼2 > 𝛼𝛼1 > 0. 
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Supplementary figure 12 |Applying CCSC algorithm. a, The character placement in the dictionary: a stack of 26 
characters is placed at each pivot point. b, The convex cardinal shape composition algorithm successfully extracts 

the characters down to page 7 for blue pen ink on polyethylene. Double-sided pages require the page contents to be 
flipped every other page in order to keep the dictionary intact.   

 
Supplementary Tables 
 
Supplementary Table 1 | Selected materials reflection and transmission properties. Values are measured from 

the amplitude of the time-domain waveform. Values can be considered as the values at peak frequency in the 
frequency-domain. 

 
Layer Material Content 

material 
Reflectivity Contrast vs 

layer 
Transmission 

300 μm paper None 0.08 ± 0.02 -- 0.72 ± 0.01 
300 μm paper Blue pen 0.10 ± 0.02 25% 0.71 ± 0.01 
300 μm paper 6B pencil 0.15 ± 0.02 87% 0.68 ± 0.01 
300 μm paper HB pencil 0.10 ± 0.02 25% 0.71 ± 0.01 
180 μm glossy paper None 0.28 ± 0.02 -- 0.85 ± 0.01 
180 μm glossy paper Blue pen 0.37 ± 0.02 32% 0.86 ± 0.01 
180 μm glossy paper Permanent ink 0.29 ± 0.05 3% 0.86 ± 0.01 
180 μm glossy paper HB pencil 0.28 ± 0.02 0% 0.79 ± 0.01 
180 μm glossy paper Laser printer ink 0.28 ± 0.02 0% 0.80 ± 0.01 
190 μm polyethylene  None 0.22 ± 0.02 -- 0.75 ± 0.01 
190 μm polyethylene Blue pen 0.24 ± 0.02 10% 0.66 ± 0.01 

 
Supplementary Table 2 | Comparison of GPR vs. THz TDS 

 
Measurement 

geometry 
Frequency and 
metric ranges 

Material 
properties 

focus 

Inversion 
techniques 

Layer content 
decomposition 

2D context 
extraction 

GPR reflective and 
diffractive 

narrow band 
complex 
permittivity 

time domain 
filtering and 

deconvolution 

Not applicable Not 
applicable  

THz TDS reflective 
Confocal/raster 

broadband 
absorption 

time domain 
energy 

statistics 

spectral kurtosis convex 
cardinal 



 

Supplementary Notes 
 
Supplementary Note 1- Governing physics 
Consider a dielectric slab of width 𝑑𝑑 and reflection coefficient 𝜌𝜌, located perpendicular to the 𝑧𝑧 axis in 
front of our system. When a linearly polarized electric field 𝐄𝐄+ = 𝑝𝑝(𝑡𝑡 − 𝑧𝑧/𝑐𝑐)𝐚𝐚�x  travels through the 
dielectric medium, a portion of the electric field is reflected back, which is in the form of 𝐄𝐄− =
𝑟𝑟(𝑡𝑡 + 𝑧𝑧/𝑐𝑐)𝐚𝐚�x . The returned waveform 𝑟𝑟(𝑡𝑡) can be analytically calculated by convolving 𝑝𝑝(𝑡𝑡) with an 
impulse train, 𝑠𝑠(𝑡𝑡). Each impulse term in 𝑠𝑠(𝑡𝑡) corresponds to an inter-reflection within the slab. The 
spacing between the impulse spikes are 𝜏𝜏 = 2𝑛𝑛𝑑𝑑/𝑐𝑐, where 𝑛𝑛 is the refractive index of the slab (that can 
be frequency dependant) and 𝑐𝑐 is the wave speed in the vacuum. Based on the closed form expression3 the 
first impulse is proportional to 𝜌𝜌, the second impulse weight is proportional to 𝜌𝜌(𝜌𝜌2 − 1) and the 
subsequent impulse weights are proportional to 𝜌𝜌2𝑚𝑚−1(𝜌𝜌2 − 1), for 𝑚𝑚 = 2, 3,⋯ . 
 
When 𝜌𝜌 is small, only the first and second impulse terms in 𝑠𝑠(𝑡𝑡) are dominant and the remaining terms 
exponentially tend to zero. The location of these two terms corresponds to the front and back interfaces of 
the dielectric slab. Especially, when the pulse width is sufficiently small relative to the slab thickness, the 
two dominant peaks in the returned signal can identify the impulse locations and technically locate the 
dielectric boundaries. As an example, for 𝑑𝑑 = 300 𝜇𝜇m, which is the paper thickness in our experiment, 
Supplementary figure 1 shows the simulated returned signal for the actual bipolar reference signal used in 
our experiments. We can observe that the peak locations exactly identify the impulse locations (shown in 
red), simply because the pulse effective width is small enough and the thickness of the paper is 
sufficiently large. 
 
In the case of a multi-layer dielectric slab, the impulse response 𝑠𝑠(𝑡𝑡) effectively consists of multiple 
impulse pairs each corresponding to a layer, and under similar assumptions about the pulse width, the 
interface locations can be determined from the dominant peaks. Our Probabilistic Pulse EXtraction 
(PPEX) approach is in fact exploiting this fact to locate the paper boundaries, by identifying the peaks and 
following a statistical framework for possible model inaccuracies. If the effective pulse width is not 
sufficiently small, PPEX fails to locate the paper boundaries accurately. For example, PPEX cannot 
explicitly resolve the two reflections from the two boundaries of paper-air-paper as two peaks and it 
detects it as one peak. This is because these two peaks are only 20 µm (~0.06 ps) apart which is almost an 
order of magnitude smaller than the bandwidth of the pulse itself (2 THz or 150 µm) and fundamentally 
not resolvable with the system. This, however, does not interfere with the detection of the pages as the 
peaks from air-paper-air boundaries for each page are far enough to identify the length of time-gating 
window required for the next steps of the procedure. Additionally, even if an error were to occur for one 
of the pages, the spectral time-gating step would still increase the contrast of the content based on the 
average estimated time window, and the final convex cardinal shape decomposition would still overcome 
possible occlusions and distortions of the content. Therefore, the content extraction would not be directly 
affected. However it must be mentioned that, similar to any other THz-TDS system our system is 
fundamentally limited in depth resolution by half of its coherency length (~75 µm), therefore, if the pages 
where extremely thin (e.g. less than 75 µm) PPEX would repeatedly fail and estimate every two or three 



boundaries as one. In this case, the negative results would be lower contrast enhancement in the spectral 
domain. Also, while the convex cardinal shape decomposition would still recover the content, there would 
be ambiguity as to which page (among few neighboring pages) these contents belong to. 
 
Supplementary Note 2- Probabilistic Pulse Extraction (PPEX) approach and 
implementation  
The extraction of the locations of pulses in a waveform is often realized through deconvolution and/or 
peak finding methods. Peak finding methods are used when overlapping between peaks is minimal or 
none. Deconvolution is used to mitigate the effects of the pulse width in cases in which the overlapping 
between pulses is significant.  
 
PPEX computes the probability of each point being and extremal value in the time waveform. This is 
based on the amplitude, first derivative (e.g. velocity), and the statistical characteristics of the noise in the 
waveform. Ideally, extremal values are characterized because they are local maxima/minima and their 
derivative is equal to zero. PPEX starts by computing the time derivative of the waveform, or velocity. 
Then, both the amplitude and velocity are normalized with respect to their standard deviations: 
 

(𝑦𝑦, 𝑡𝑡) → (𝑞𝑞,𝑝𝑝) = �𝑦𝑦, 𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡
� → (𝑢𝑢, 𝑣𝑣) = � 𝑞𝑞

𝜎𝜎𝑞𝑞
, 𝑝𝑝
𝜎𝜎𝑝𝑝
� .  (1) 

 
An energy value is defined for each point in the waveform based on amplitude and velocity. This energy 
is defined such that it is high for higher amplitudes and low velocities. This provides a filtering 
mechanism to separate signal from noise, retaining only the points that are candidates to be extremal: 
 

   𝐸𝐸 = 𝑢𝑢2𝑒𝑒−𝑣𝑣2 .   (2) 
 
It is noteworthy that the optimal energy can be determined through a learning process, where a parametric 
model is learned using labeled peaks. Aside from the amplitude and the velocity, other features such as 
the peak width, spacing between the neighboring peaks and their location can be reflected in more 
complex energy models. For the purpose of this work a model solely in terms of 𝑢𝑢 and 𝑣𝑣 performed a 
sufficiently accurate characterization of the peaks.  
 
The histogram for the amplitude and velocity of a waveform provides a statistical description of the 
distribution of their values. Considering that pulses in each terahertz waveform are highly localized in 
time, we can assume that most of the content of the waveform is noise and, thus, the histograms will 
mostly describe the statistical characteristics of the noise. In this case, the peaks of the pulses will tend to 
be outliers in the histogram of amplitudes but will lie around the zero value in the histogram of velocities.  
Histograms of experimental waveforms indicate that we could assume a Gaussian distribution for both the 
amplitudes and velocities. In this case, we can compute the probability of a point being an extremal point 
by using the error function for both the amplitude and velocity. Therefore, we can compute the likelihood 
of a point being an extremal point as: 

  
   𝑝𝑝(𝑢𝑢, 𝑣𝑣) → 4 �erf(|𝑢𝑢|) − 1

2
� �3

2
− erf(|𝑣𝑣|)�,  (3) 



 
where erf is the single sided cumulative error function, and u and v are the normalized amplitudes and 
velocities. This probability calculation provides a second threshold mechanism to select candidates with 
the highest likelihood of being extremal values. The result of applying PPEX on a waveform is a series of 
candidates that are likely to be extremal values. However, PPEX does not identify which candidate 
corresponds to a certain peak. Experimental and simulation results indicate that candidates tend to group 
around a real peak of the pulse. We use k-means clustering to group the candidates into the different 
peaks. The candidates have high likelihood to be the extremum; PPEX chooses the point with highest 
absolute amplitude inside each cluster as the representation of that peak. To enhance the performance of 
PPEX for very noisy data, a partial wavelet denoisng4 can be considered as a preprocessing stage. 
Supplementary figure 1 shows the entire data processing flow. 
 
The application of PPEX on the (x, y, z) THz time-domain data cube will provide candidates for extremal 
values of the temporal waveforms for each (x, y) pixel in the form of a point cloud. These extremal 
candidates provide the position of the different layers. Clustering will assign each candidate point into 
each layer so that a surface representing the layer can be fitted on. An alternative method to recover the 
position of the pages is to apply edge detection methods on the images representing the cross section of 
the sample, for example, using Canny edge detection5,6 which is considered one of the most robust edge 
detection methods. Once the position of each page is determined, the intensity of the pulse can be mapped 
to generate an image of the intensity distribution across the layer. We use the PPEX output as an input to 
the time-gated spectral analysis. 
 
 
Supplementary Note 3- PPEX comparison with conventional methods  
Two major deconvolution approaches are used in the analysis of THz waveforms: frequency-based 
deconvolution and “CLEAN” deconvolution. Both methods require the measurement of reference pulse. 
In the frequency-based deconvolution approach, the response of the system r(t) is modeled as the 
convolution of the reference pulse p(t) with the response of the sample s(t), which will contain the 
positions of the different layers modeled as a comb of impulse functions7. The position of the peaks is 
retrieved by Fourier inverting the division between the Fourier transform of the measured response and 
the Fourier transform of the reference pulse: 
 

 𝑟𝑟(𝑡𝑡) = 𝑝𝑝(𝑡𝑡) ∗ 𝑠𝑠(𝑡𝑡) → 𝑠𝑠(𝑡𝑡) = 𝐹𝐹𝐹𝐹−1 �𝑅𝑅
�(𝑣𝑣)
𝑃𝑃�(𝑣𝑣)

�.  (4) 

 
In CLEAN deconvolution, the reference pulse is shifted to where the first maximum or minimum peak is 
found in the waveform. The reference pulse is scaled and subtracted from the waveform. The resulting 
waveform may have another pulse in a different location. The process continues by shifting the reference 
pulse to the location of the new maximum or minimum and subtracting a scaled version from the 
waveform. This process is repeated recursively until a certain number of shifts or the noise floor is 
reached. The shifts indicate the positions of the peaks within the waveform8. CLEAN deconvolution 
operates entirely in the time-domain. Peak finding has been extensively studied and many review papers 
exist in the application specific and general context9. However, both peak finding and deconvolution do 



not perform well in the presence of noise and low SNR conditions although some recent papers have 
proposed efficient automated peak finding algorithms in noisy data2 . 
 
To compare the performance of PPEX with different deconvolution and peak finding methods, we have 
used a Gaussian pulse of width equivalent to that of our reference pulse in the experimental 
measurements. We model the reflection of two interfaces with the reflection coefficient equivalent to that 
of the paper. The separation between pulses can be adjusted to simulate different overlapping conditions. 
To further evaluate the performance of the different methods we have also computed the global mean-
square-error (MSE) in locating the position of the two peaks versus SNR. Intuitively, the log(MSE) for 
any algorithm decreases as the SNR increases until the slope of the curve asymptotes to that of the 
Cramer Rao lower bound10,11. Supplementary figure 3 shows the MSE for PPEX, CLEAN, frequency base 
deconvolution as reported in7,8 and recent peak finding algorithm reported in2,9. The results of the 
simulation indicate that peak finding method starts to break down when SNR < 20 dB whereas frequency 
based deconvolution breaks down around 15 dB. Both CLEAN and PPEX perform better than frequency-
based deconvolution or peak finding. However, PPEX breaks down around 5 dB whereas CLEAN starts 
failing around 8 dB. Therefore, PPEX has an edge over CLEAN in low SNR conditions. Our algorithm 
has the above distinguishability with regards to the noise variance and peak full width half maximum 
(FWHM), therefore in case of our THz measured data, peaks of ~450 fs separated by 400 fs can be 
distinguished from signal with SNR level as low as 8 dB. This is yet above the coherency limit of 250 fs. 
 
The performance of PPEX versus Canny in extracting the position of a layer in cross section images is 
also simulated. The layer is simulated by shifting a Gaussian pulse along a tilted direction in the cross 
section and Gaussian white noise is added to the ground truth (Supplementary figure 4a). Due to the shape 
of the peak and the nature of edge detection, the results from applying Canny edge detection will provide 
the boundaries where the peak can be found but not the actual position of the peak (Supplementary figure 
4b). On the other hand, PPEX shows candidate positions that are likely to be the peak instead of the edges 
(Supplementary figure 4c). The error is defined as the number of points detected as edge outside the 
FWHM of the original peak divided by the total number of points detected as edge in the image 
(Supplementary figure 4d). The results of the simulations indicate that PPEX is more robust and 
consistent in finding candidate peak positions compared to Canny as the SNR decreases. The simulations 
indicate that Canny begins to break down around 15 dB whereas PPEX breaks down around 3 dB 
(Supplementary figure 4e). The error is computed by averaging the output of simulating 100 trials for 
each SNR. 
 
Supplementary figure 5 shows the results of applying CLEAN, Canny and PPEX on an experimental 
cross section (Supplementary figure 5a). The results indicate that PPEX is capable to retrieve the position 
of the layers more robustly than either CLEAN or Canny edge detection. These experimental results 
validate the simulations reported above.  
 
Supplementary Note 4- PPEX versus wavelet-based peak finding  
While wavelet transforms are dominantly used for filtering and denoising of a signal, they can also be 
used for peak finding. Supplementary figure 6 demonstrates the emitted signal waveform in time and 
Fourier domain along with a typical outcome of the PPEX compared against two wavelet-based peak 
finding techniques proposed in1 and2. Wavelets can play two major roles in signal peak characterization. 



In some techniques1 wavelets mainly contribute in denoising the signal and a standard peak finding 
algorithm is applied to the processed data. Another approach is to use wavelets to decompose the signal 
into different scales. By inspecting the wavelet coefficients at a suitable scale, the peaks can be identified 
through the wavelets with the highest coefficients2,12.  This approach may fail to produce promising 
results for noisy signals where the peaks have different widths or varying spacing.  
 
Supplementary figure 6c shows the PPEX response to a sample signal in our experiments. Green circles 
mark correct identifications, whereas yellow and red circles mark missing or false identifications. In order 
to locate exact extrema, a local search around the outcomes of the k-means is performed. Supplementary 
figure 6d1 shows the performance of undecimated discrete wavelet transform1 for the same level of 
smoothing used for PPEX. A higher smoothing destroys some of the major peak information as depicted 
in Supplementary figure 6d2. We have also demonstrated the identified peaks using the continuous 
wavelet-based pattern matching2 for a small threshold (Supplementary figure 6e1) and a manually tuned 
threshold (Supplementary figure 6e2). 
 
As indicated in this comparison while wavelet-based denoising can contribute to a statistical peak finding 
process (such as PPEX), using the wavelet transforms as the sole tool for peak finding can suffer from the 
distortion (varying width) and overlapping of the peaks in THz signals from densely layered structures.  
These overlappings and distortions are directly related to the thickness and complex THz permittivity of 
the layers and they affect wavelet-based methods more than PPEX since wavelet coefficient are notably 
affected with such signal distortions. Such sensitivity is appreciated in compression, filtering, and 
denoising applications but it’s not directly of substantial benefit in peak detection.  This may justify use 
of wavelet-based deconvolution discussed below, since deconvolution techniques are usually more robust 
to overlapping.   
 
Supplementary Note 5- Wavelet-based deconvolution techniques 
Using wavelets for the purpose of peak finding in THz time domain signals was discussed and analyzed 
in the previous section. We also discussed the frequency-based and CLEAN deconvolution techniques 
and showed their rather poor performance for our problem. The use of wavelets for the analysis of THz 
signals has shown promise, especially for deconvolution purposes13–15. A favorable property of the 
wavelets is the zero-mean nature of the scaling functions and waveform compatibility with THz signals. 
In this section we discuss two main deconvolution techniques equipped with wavelets to deconvolve the 
multilayer structure from the returned signal.  
 
A promising technique in this area is proposed in14, which suggests a frequency wavelet domain 
deconvolution (FWDD). The authors stabilize the standard frequency deconvolution using Wiener 
filtering, and equip their scheme with stationary wavelet shrinkage to accurately recover the impulse 
spikes in 𝑠𝑠(𝑡𝑡).  

An alternative approach is to perform the standard deconvolution in time domain, while restraining 𝑠𝑠(𝑡𝑡) 
to a subspace spanned by wavelet basis16. More specifically, our sampled observations are in the form of 
𝐫𝐫 = 𝐩𝐩 ∗ 𝐬𝐬 + 𝐧𝐧, where 𝐩𝐩 is the known reference pulse in vector form, 𝐧𝐧 is the measurement noise vector 
and 𝐬𝐬 is to be determined. The convolution as a linear operator can be written as 𝐩𝐩 ∗ 𝐬𝐬 = 𝐓𝐓p𝐬𝐬, where 𝐓𝐓p  is 
a Toeplitz matrix constructed from 𝐩𝐩. Consider 𝐬𝐬� to be a vector containing the wavelet coefficients of 𝐬𝐬, 



based on which we can write 𝐬𝐬 = 𝐖𝐖𝐬𝐬�. Here 𝐖𝐖 carries the wavelet basis as its columns. We can directly 
deconvolve the measurements for 𝐬𝐬�, through the following regularized least squares problem: 
 

𝐬𝐬� = argmin
𝐳𝐳

 �𝐫𝐫 − 𝐓𝐓p𝐖𝐖𝐳𝐳�+ 𝜆𝜆‖𝐳𝐳‖𝑝𝑝  .    (5) 

 
Here, ‖𝒛𝒛‖𝑝𝑝  norm denotes the ℓ𝑝𝑝  norm of the vector 𝐳𝐳 and 𝜆𝜆 is a penalty weight. The simplest penalty 
takes the Tikhonov form for 𝑝𝑝 = 2. However, since the THz waveforms of interest have simple 
representations in the wavelet domain, the vector 𝒔𝒔� must be sparse and the ℓ1 penalty (i.e., 𝑝𝑝 = 1) is a 
more reasonable choice.  
 
Supplementary figure 7 shows the result of applying the aforementioned deconvolution schemes to our 
THz data.  Supplementary figure 7c shows the FWDD outcome, which fails to locate the spikes in 𝑠𝑠(𝑡𝑡). 
Supplementary figure 7d shows the time domain deconvolution using the Tikhonov regularization and 
Supplementary figure 7e demonstrates the time domain deconvolution using the ℓ1 penalty. We can see 
that the ℓ1 penalized deconvolution generates the best results as it uses the sparse prior in 𝐬𝐬�.  
 
Supplementary figure 8 shows the recovered images by deconvolving the raw experimental data in 
Supplementary Figure 5a. We observe that only the time domain deconvolution using sparse prior is able 
to extract the layered structure of the medium. Despite this, identifying the layers is yet a challenging 
task, especially for pages 5 and after.  
 
While the suggested deconvolution schemes show promise in many THz applications, they fail to show a 
reasonable performance in our experiments. The main reason behind such performance is the dispersion 
in our layered structure. Basically, in a dispersive media, the convolution model that we stated earlier in 
Supplementary Note 1 is no more valid and the returned signal undergoes a more complex model. This is 
why the FWDD scheme completely fails to locate the impulse locations and the sparse time domain 
deconvolution identifies a group of spikes rather than individual spikes around each interface. In fact, a 
small level of dispersion can drastically affect the deconvolution results, since compensation of the model 
mismatch may require a solution, which is far from the true impulse response. Therefore, PPEX is a more 
reliable technique here, since it uses a statistical framework to determine the layer boundaries. The use of 
PPEX, however, requires working with sufficiently thick layers, despite the proposed deconvolution 
schemes, which at least in theory do not impose such restriction.  
Finally, we would like to note that even if PPEX fails to successfully locate the layers, the CCSC scheme 
can still identify the main characters in presence of overlapping characters from neighboring layers. The 
reader is referred to17,18 for challenging identification examples in noisy and overlapping cases.  
 
Supplementary Note 6- Time-Gated Spectral Analysis Framework 
Corresponding to each layer, we have a cube of data 𝑑𝑑(𝑥𝑥,𝑦𝑦, 𝑧𝑧) where 𝑥𝑥 and 𝑦𝑦 are the spatial coordinates 
and 𝑧𝑧 is the time (convertible to depth). In discrete form, 𝑧𝑧 takes values of 𝑧𝑧1, 𝑧𝑧2,⋯ , 𝑧𝑧𝑛𝑛 , where each 𝑧𝑧𝑖𝑖  
corresponds to a certain page depth. These depths are found by the PPEX algorithm that was explained in 
Supplementary Note 1. We use the amplitude of discrete Fourier transform (DFT) of 𝑑𝑑(𝑥𝑥,𝑦𝑦, 𝑧𝑧) along the 
𝑧𝑧 coordinate with window size of ~3 ps (or equivalently the ~660 µm depth in paper) to get �̂�𝑑(𝑥𝑥,𝑦𝑦,𝜔𝜔) 



(window size depends on layer thickness and is derived from the average thickness of layers found from 
PPEX) and subsequently its modulus denoted by  
  

 𝑓𝑓(𝑥𝑥,𝑦𝑦,𝜔𝜔) = ��̂�𝑑(𝑥𝑥,𝑦𝑦,𝜔𝜔)�.  (6) 
 
The 3 ps window size is derived from PPEX output to minimize distortion from other layers. Here, 𝜔𝜔  
takes 𝑘𝑘 distinct values 𝜔𝜔1,⋯ ,𝜔𝜔𝑘𝑘  because of the discrete nature of the transform.  
 
In order to get clear images of the letters within each layer, an effective way of selecting the frequency 
bins is necessary to contrast the spectral difference between the blank paper and paper with content. We 
use higher order statistics and specifically the kurtosis information to select the high contrast images. For 
high contrast images that are closer to being binary, one would expect a histogram with sharper peaks 
about the low and high intensity values. The kurtosis value is a measure of the peakedness of a probability 
density function, and selection of frequency images with the highest kurtosis would provide us with the 
images of highest contrast (Supplementary figure 9).  
 
After calculating the kurtosis values for all the frames 𝑓𝑓(𝑥𝑥,𝑦𝑦,𝜔𝜔1) through 𝑓𝑓(𝑥𝑥,𝑦𝑦,𝜔𝜔𝑘𝑘) as 
 

 𝐾𝐾𝑖𝑖 = 𝐾𝐾𝑢𝑢𝑟𝑟𝑡𝑡[ 𝑓𝑓(𝑥𝑥,𝑦𝑦,𝜔𝜔𝑖𝑖) ]    𝑖𝑖 = 1,⋯ ,𝑘𝑘,     (7) 
 
the algorithm selects the frequency frames with highest kurtosis values and averages them. Specifically, 
we choose 𝑚𝑚′ indices with highest kurtosis values and average them to produce the final time-gated 
Fourier domain image 𝐹𝐹g(𝑥𝑥,𝑦𝑦). Compared to averaging along all the frequency frames or using a single 
frequency frame, this method improves the signal to noise ratio and avoids unwanted noise from higher 
frequencies.  In summary, the time-gated spectral analysis does the following: 

• time-gate based on the depth value found from PPEX 
• calculate 𝐾𝐾1 = 𝐾𝐾𝑢𝑢𝑟𝑟𝑡𝑡[ 𝑓𝑓(𝑥𝑥,𝑦𝑦,𝜔𝜔1) ] through 𝐾𝐾𝑘𝑘 = 𝐾𝐾𝑢𝑢𝑟𝑟𝑡𝑡[ 𝑓𝑓(𝑥𝑥,𝑦𝑦,𝜔𝜔k) ] 
• sort the 𝐾𝐾1,⋯ ,𝐾𝐾𝑘𝑘  to descending order as 𝐾𝐾𝑝𝑝1 ,𝐾𝐾𝑝𝑝2 ,⋯ ,𝐾𝐾𝑝𝑝𝑘𝑘   
• calculate 𝐹𝐹g(𝑥𝑥,𝑦𝑦) as the average of 𝑚𝑚′ frames with highest kurtosis values as below 

 

𝐹𝐹g(𝑥𝑥,𝑦𝑦) =
∑ 𝑓𝑓(𝑥𝑥 ,𝑦𝑦 ,𝜔𝜔𝑝𝑝𝑖𝑖)
𝑚𝑚 ′
𝑖𝑖=1

𝑚𝑚′    (8) 
 
It must be noted that the DFT is only taken along the z coordinate or equivalently the time coordinate; 
therefore, the frequency values are directly correlated to the absorption lines of the content materials and 
the paper materials. The Kurtosis is applied to a vectorized version of 𝑓𝑓(𝑥𝑥,𝑦𝑦,𝜔𝜔𝑖𝑖), which is a 2D image for 
a given 𝜔𝜔𝑖𝑖 .  
 
In our experiments the frequency separation between the frames is 25 GHz. The frequency resolution is 
inverse of the window size, so the wider the window in the time-domain, the higher the frequency 
resolution. For the Fourier transform, we used a 139-point DFT (Discrete Fourier Transform). A search 
for the high contrast images is performed between the first 20 low frequency images and then the top 
three images with the highest kurtosis are selected (𝑚𝑚′ = 3). A simple averaging among the selected 
images provides us with a representative image associated with each layer. 



 
Supplementary Note 7- Applying Convex Cardinal Shape Composition (CCSC) 
To extract the characters after partial occlusion and with heavy noise we use our recently developed 
CCSC. To explain how CCSC works for our experiment we use the following example. Consider an 
image 𝔇𝔇 with pixel values 𝑢𝑢(𝐱𝐱) (in a 2D case, 𝐱𝐱 = (𝑥𝑥,𝑦𝑦) ∈ 𝔇𝔇) as shown in Supplementary figure 10a. A 
classic imaging problem is the binary image segmentation (BIS), which corresponds to partitioning 𝔇𝔇 into 
two disjoint regions; the interior region Σ and the exterior 𝔇𝔇\Σ or Σc .  The measure of similarity that we 
use in this discussion is the intensity values; we essentially presume that the pixels values inside and 
outside Σ concentrate around constant values 𝑢𝑢in  and 𝑢𝑢ex , respectively. The essence of our object 
identification scheme is illustrated with a simple toy example. Consider three disks 𝑆𝑆1, 𝑆𝑆2, and 𝑆𝑆3, the 
boundaries of which are shown by orange the dashed-lines in Supplementary figure 10b. Let's focus on 
the problem of identifying the disk that better represents the dark region in Supplementary figure 10a (a 
quick visual comparison suggests 𝑆𝑆2 to be the solution). We can view this problem as a BIS, where the 
optimal partitioner Σ is restricted to be an element of the set 𝔇𝔇 = {𝑆𝑆1,𝑆𝑆2,𝑆𝑆3}. In a general setting, we refer 
to 𝔇𝔇 as the shape dictionary. 
 
The binary image segmentation (BIS) problem, can in turn be cast as an optimization problem in terms of 
Σ. In images of almost binary nature, where a bimodal histogram is expected for the intensity values, the 
quantities 𝑢𝑢in  and 𝑢𝑢ex  can simply be taken to be the intensities corresponding to the peak frequencies of 
each mode (supplementary figure 10c). For such fixed values 𝑢𝑢in  and 𝑢𝑢ex , a well-known variational 
formulation inspired by the Chan-Vese model19,20 is determining the optimal partition by solving: 
 

Σ∗ = arg minΣ𝜖𝜖{𝑆𝑆1,𝑆𝑆2,𝑆𝑆3} ∫ ∆(𝐱𝐱)𝑑𝑑𝐱𝐱Σ ,    (9) 
 

where 
 
   ∆(𝐱𝐱) ≜ (𝑢𝑢(𝐱𝐱) − 𝑢𝑢in )2 − (𝑢𝑢(𝐱𝐱) − 𝑢𝑢ex )2.   (10) 
 
The first term in ∆(𝐱𝐱) motivates identification of the dictionary elements with the least inner-variations 
around 𝑢𝑢in . The second term motivates elements with the least outer-variations around 𝑢𝑢ex  by 
maximizing the inner-variations around this quantity. Together the two terms form a “push-pull” 

composite cost that promotes the best matching element. Some typical values for 𝒢𝒢(𝑆𝑆𝑖𝑖) = ∫ ∆(𝐱𝐱)𝑑𝑑𝐱𝐱𝑆𝑆𝑖𝑖
, 

𝑖𝑖 = 1,2,3, are presented in supplementary figure 10b, which affirm the optimality of 𝑆𝑆2 with respect to the 
problem in Supplementary Equation (9). 
 
For a dictionary of prototype shapes 𝔇𝔇 = {𝑆𝑆1,𝑆𝑆2, … 𝑆𝑆𝑛𝑛}, a more general shape identification scheme20 
corresponds to the minimization: 
 

min𝐼𝐼⨁,𝐼𝐼⊖ ∫ ∆(𝐱𝐱)𝑑𝑑𝐱𝐱ℛ𝐼𝐼⊕,𝐼𝐼⊖
     s.t.:    �𝐼𝐼⊕�+ �𝐼𝐼⊖� ≤ 𝑠𝑠, (11) 

 
where |.| denotes the cardinality of the underlying sets, 𝑠𝑠 𝜖𝜖 ℕ is the maximum desired cardinality and 
ℛ𝐼𝐼⊕,𝐼𝐼⊖ is a non-redundant composition of the dictionary elements as 



    ℛ𝐼𝐼⊕,𝐼𝐼⊖ ≜ �⋃ 𝑆𝑆𝑗𝑗𝑗𝑗𝜖𝜖 𝐼𝐼⊕ �\�⋃ 𝑆𝑆𝑗𝑗𝑗𝑗𝜖𝜖 𝐼𝐼⊖ �.   (12) 

The sets 𝐼𝐼⊕ and 𝐼𝐼⊖ index the shapes we are adding and removing, respectively, \ denotes relative 
complement. The main difference between the proposed scheme in Supplementary Equation (11) and the 
typical minimizations of the form in Supplementary Equation (9) is that instead of identifying a single 
shape, Supplementary Equation (11) allows identification of a composition of the dictionary elements 
formed by �⋃ 𝑆𝑆𝑗𝑗𝑗𝑗𝜖𝜖 𝐼𝐼⊕ �\�⋃ 𝑆𝑆𝑗𝑗𝑗𝑗𝜖𝜖 𝐼𝐼⊖ �. The number of elements present in the composition is controlled by the 
quantity 𝑠𝑠. For instance, in the case of 𝑠𝑠 = 2, the search domain consists of the null-set and all 
compositions of the form 𝑆𝑆𝑗𝑗 , 𝑆𝑆𝑗𝑗 ∪  𝑆𝑆𝑗𝑗 ′  and 𝑆𝑆𝑗𝑗  \ 𝑆𝑆𝑗𝑗 ′ , where 𝑗𝑗, 𝑗𝑗′𝜖𝜖{1,2, … ,𝑛𝑛} and 𝑗𝑗 ≠ 𝑗𝑗′. 
 
The composition form in Supplementary Equation (12) is a flexible model that allows identification of 
objects that consist of overlapping elements or occluded portions20,21. For our character recognition 
problem, this model allows identification of multiple (possibly overlapping) characters within an image in 
presence of partial occlusion resulted from the scattering of neighboring layers. Unfortunately, exact 
minimization of Supplementary Equation (11) is a very hard combinatorial problem. It would require an 
exhaustive search among an exponentially large number of possibilities and is therefore computationally 
intractable. As a remedy, a convex relaxation to Supplementary Equation (11) is proposed22, which not 
only benefits computational tractability, but also provides a similar (and under certain conditions 
identical) performance as Supplementary Equation (11).  
 
For a given shape 𝑆𝑆, the corresponding characteristic function, denoted by 𝜒𝜒S (𝐱𝐱), is a function that takes 
unit values over the points 𝐱𝐱 ∈ 𝑆𝑆 and vanishes elsewhere (Supplementary figure 11a). Construction of the 
proposed convex proxy mainly relies on the fact that basic set operations among given shapes can be 
modeled by superimposing the corresponding characteristic functions (Supplementary figure 11b-c)20–22 
Ultimately, the proposed convex relaxation is cast as the minimization  

min𝛼𝛼 ∫ 𝑚𝑚𝑚𝑚𝑥𝑥(∆(𝐱𝐱)ℒ𝛼𝛼 ,∆(𝐱𝐱)−)𝑑𝑑𝐱𝐱𝔇𝔇      s.t.       ‖𝛼𝛼‖1 ≤ 𝜏𝜏,               (13) 

where 𝔇𝔇 is the domain of imaging,  ℒ𝛼𝛼(𝐱𝐱) = ∑ 𝛼𝛼𝑗𝑗𝜒𝜒𝑆𝑆𝑗𝑗 (𝐱𝐱)𝑛𝑛
𝑗𝑗=1 , the ℓ1 penalty ‖𝛼𝛼‖1 is simply ∑ �𝛼𝛼𝑗𝑗 �𝑛𝑛

𝑗𝑗=1 , and 
the quantity ∆− takes the value of ∆ when ∆< 0 and vanishes otherwise. 
 
Roughly speaking, in relating the minimizer of Supplementary Equation (13) to the optimal index sets 
associated with Supplementary Equation (11), the active 𝛼𝛼𝑗𝑗  values identify the active shapes in the 
composition and their sign determines the index set (𝐼𝐼⊕ or 𝐼𝐼⊖) they belong to. Inspired by ideas from 
sparse recovery23, the ℓ1 constraint is used to control the number of active shapes in the final 
representation and plays a similar role as 𝑠𝑠. An interesting property of the convex proxy Supplementary 
Equation (13) is that 𝜏𝜏 often takes integer values, and as elaborated in supplementary reference 13, for 
many problems of interest it is simply identical to 𝑠𝑠. 
 
To apply the CCSC algorithm to our character extraction problem, we use a dictionary of English 
characters to match the letter in each layer with an element of the dictionary. Since each layer contains a 
single character (either placed on the left, center or the right portion of the image) to reduce the 
unnecessary computational load, the character recognition is performed in a loose window placed about 
the possible location of the character (Supplementary figure 12a). The possible loose x-y window is easily 



localized based on signal level at the time-gated spectral image. To build up the shape dictionary, we 
place stacks of 26 uppercase letters at 9 different pivot points within the designated window. The pivot 
points are placed around the center of the window and at different locations as shown in supplementary 
figure 12a.  
 
Throughout the experiments, the values 𝑢𝑢in  and 𝑢𝑢ex  are simply taken to be the 15% and 85% quantiles of 
the intensity values within each layer. Even such rough estimates of the mean texture values seem 
sufficient for a successful recovery of the characters. To eliminate the low frequency artifacts present in 
deep layers (layers 6 to 9), a slight filtering is performed to generate more homogenous images. 
Performing the convex scheme Supplementary Equation (13) on each image with 𝜏𝜏 = 1, extracts the 
corresponding character. The character extraction results are provided in Fig. 3 of the manuscript for the 
paper and Supplementary figure 12b for plastic. In the case of plastic, we deal with a more challenging 
problem as the images are noisier and the contrast between layer and ink is smaller (e.g. blue pen over 
plastic reflectivity difference is 10% versus 87% or 6B over paper). Despite this, the CCSC algorithm is 
able to extract the correct characters down to layer 7, where the characters are yet visually recognizable. 
For layers 8 and 9 that almost no inference about the underlying character could be made, the identified 
letters are different than the true characters.  
 
Supplementary Note 8- Material Contrast analysis at THz 
The contrast between the reflectivity and transmission of different materials used for paper and written 
content is the ultimate bottleneck for extracting content from deeper layers. The reflection magnitudes are 
found by measuring the amplitude of the waveform in time-domain, which can be considered as 
representative frequency-domain value at peak frequency. Unlike Fresnel equations the measured 
reflectivity is affected by absorption of the material as well. Supplementary table 1 shows the THz 
contrast for a more extended set of different graphite-based pencils and pen inks over different substrate 
materials such as different paper types and plastic. The highest contrast is found for 6B pencil over the 
300 μm-thick drawing paper. The lowest contrast is found for glossy paper with HB or laser printer ink. 
In all of our work we consider content layer or ink layer to be much thinner (about two orders of 
magnitude thinner) than the layer itself.  Contrast is defined as the ratio of reflectivity difference of 
content plus layer divided by reflectivity of the layer material. Surely if one uses highly reflective inks 
(e.g. metallic ink) the contrast can exceed 100%.  
 
While far in frequency and scale, reflection mode THz TDS and Ground Penetrating Radar (GPR) share 
similar essence in principle as they both send EM waves through layered structures. However, layer 
extraction in GPR is usually in the context of locating the dielectric depths after a very thick scattering 
layer based on refraction, diffraction, and amplitude modulation24. In other words the focus would be 
extracting the separating curves between the dielectric layers. That is why methods such as curvelet 
denoising and diffraction hyperbola matching have become dominant in this area of imaging25. Despite 
some level of similarity in principle, the focus of our work is extracting the depth surfaces and 
characterizing the contents within the extracted layers themselves. That is one of the main reasons why 
several advanced computational techniques needs to be cohesively developed in order to address our 
problem.  
More specifically in the case of identifying the layer contents, in reading a closed book we encounter 
problems such as content contrasting, character overlapping, occlusion and basically shape interactions 



which are not the type of problems encountered in GPR. This forces us to not only rely on the mutual 
time information in x-y but rather broad band spectral information at a fixed page. Our application heavily 
depends on the THz nature of the waves to exploit and characterize the spectral differences between 
different types of inks and papers. Table below further contrasts the two techniques.  
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