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Summary
Rust and late leaf spot (LLS) are the two major foliar fungal diseases in groundnut, and their

co-occurrence leads to significant yield loss in addition to the deterioration of fodder quality. To

identify candidate genomic regions controlling resistance to rust and LLS, whole-genome

resequencing (WGRS)-based approach referred as ‘QTL-seq’ was deployed. A total of 231.67 Gb

raw and 192.10 Gb of clean sequence data were generated through WGRS of resistant parent

and the resistant and susceptible bulks for rust and LLS. Sequence analysis of bulks for rust and

LLS with reference-guided resistant parent assembly identified 3136 single-nucleotide poly-

morphisms (SNPs) for rust and 66 SNPs for LLS with the read depth of ≥7 in the identified

genomic region on pseudomolecule A03. Detailed analysis identified 30 nonsynonymous SNPs

affecting 25 candidate genes for rust resistance, while 14 intronic and three synonymous SNPs

affecting nine candidate genes for LLS resistance. Subsequently, allele-specific diagnostic

markers were identified for three SNPs for rust resistance and one SNP for LLS resistance.

Genotyping of one RIL population (TAG 24 9 GPBD 4) with these four diagnostic markers

revealed higher phenotypic variation for these two diseases. These results suggest usefulness of

QTL-seq approach in precise and rapid identification of candidate genomic regions and

development of diagnostic markers for breeding applications.

Introduction

Groundnut or peanut (Arachis hypogaea L.) is one of the major

sources of vegetable oil (48%) and protein (25%) in the semi-arid

tropics. This crop is grown in more than 100 countries worldwide

with the total production of 42.4 million tons from 25.7 million

ha area during 2014 (http://faostat.fao.org/). Two foliar fungal

diseases namely rust (caused by Puccinia arachidis) and late leaf

spot (LLS) (caused by Cercosporidium personatum) cause severe

yield loss and reduce fodder quality. When both diseases occur

simultaneously, the damage could lead to 50%–70% yield loss

(Subramanyam et al., 1984). For instance in an estimate in 2009,

a loss of $326 million by early leaf spot, $467 million by rust and

$599 million by LLS was estimated (Monyo et al., 2009).

Although fungicides are available to control these diseases, their

application increases financial burden on farmers, thereby

increasing the production cost and reduction in the marginal

income. The application of fungicides also has detrimental effects

on human health, soil, underground water and environment

(Monyo et al., 2009). As the control measures using fungicides

are neither cost-effective nor environment-friendly, breeding new

cultivars with genetic resistance is sustainable and environment-

friendly approach.

With the lower productivity and increasing demand supply, the

goal is to develop high-yielding varieties equipped with resistance/

tolerance to biotic and abiotic stresses. The conventional breeding

alonemay not be able to achieve above requiredmilestone and the

integration of genomics tools with the conventional breeding

approaches would be the best option to achieve accelerated

genetic gains through genomics-assisted breeding (GAB) (Pandey

et al., 2012; Varshney et al., 2013; Varshney 2015). However,

availability of linkedmarkers to the trait of interest is prerequisite to

deploy themost successful GAB approach, such as marker-assisted

backcrossing (MABC). The identification of user-friendly markers

for these foliar fungal diseases is required to improve resistance

against rust and LLS diseases in groundnut. The earlier studies

identified one major quantitative trait locus (QTL) for rust and two

major QTLs for LLS resistance using the recombinant inbred line

(RIL) population derived from the cross TAG 24 9 GPBD 4

(Khedikar et al., 2010; Sujay et al., 2012). These studies provided

linked markers for rust and LLS resistance. The QTL for rust

resistance showed 82.6% phenotypic variance explained (PVE),

while both the QTLs for LLS resistance showed 40%–60%PVE. The

linked simple sequence repeat (SSR) markers identified from these

studies were validated and deployed through MABC to improve

resistance for rust and LLS in three elite varieties (Varshney et al.,

2014a). The linkedmarker, IPAHM103, for rust resistance identified

by Khedikar et al. (2010) and Sujay et al. (2012) in TAG

24 9 GPBD 4 and TG 26 9 GPBD 4 mapping populations was

also detected by Mondal et al. (2012) in the VG 9514 9 TAG 24
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mapping population indicating the same genomic segment con-

ferring rust resistance that has come from the same accession ICGV

86855 of Arachis cardenasii in both resistant genotypes (GPBD 4

and VG9514).

Draft genome sequences for both the diploid progenitors of

tetraploid cultivated groundnut have become available recently

(Bertioli et al., 2016; Chen et al., 2016) that could help in finding

the genes and SNPs present in the QTL regions on the diploid

genomes. It is important to note that one major QTL each for

both diseases was colocalized on linkage group AhXV (now A03),

after genome sequencing and assigning the pseudomolecules,

Bertioli et al. (2016), while the second major QTL for LLS

resistance was located on linkage group AhXII (now A02). It is

technically difficult to genotype the populations with the

currently available linked markers. Furthermore, unclear banding

pattern when genotyped on polyacrylamide gel electrophoresis

(PAGE) and complicated peak pattern when analysed on the

capillary electrophoresis demands repetition of experiments. The

other issue is timing involved in genotyping the segregating

breeding populations to select the true hybrid F1 plants for

making backcrosses, which gives only 8–10 days of time window

before flowering ends. The above technical issues hindered large-

scale adoption and deployment of these linked markers in small-

to-medium-sized genotyping laboratories in developing countries.

Therefore, it would be appropriate to dissect these QTLs in order

to identify candidate genes controlling the resistance to rust and

LLS and to develop user-friendly diagnostic markers for use in

GAB.

The evolution in the next-generation sequencing technologies

(NGS) in the last decade has drastically reduced cost of sequenc-

ing that has enabled use of sequence-based trait mapping

approaches to identify the markers (Varshney et al., 2014b). As

compared to traditional QTL mapping approach using RIL

population, the sequence-based trait mapping through genera-

tion of whole-genome resequencing (WGRS) data on complete or

partial mapping population facilitates identification of genome-

wide large number of single-nucleotide polymorphisms (SNPs)

and more specifically from the target candidate QTL region

controlling traits of interest (Chen et al., 2014; Pandey et al.,

2016; Qi et al., 2014; Xu et al., 2013). In case of simple traits

under oligogenic control such as rust and LLS resistance in

groundnut, the cost can be further reduced using bulk segregant

analysis (BSA) to identify the markers linked to the trait of interest

(Michelmore et al., 1991). The BSA can be more effectively

deployed using the NGS technology by generating sequence data

on the extreme bulks and parental genotypes, popularly known

as QTL-seq approach, to locate the candidate genomic regions

and underlying genes more rapidly (Takagi et al., 2013). This

approach has been successfully deployed in locating the genomic

regions and identifying candidate genes in several crops such as

cucumber (Lu et al., 2014), tomato (Illa-Berenguer et al., 2015),

pigeonpea (Singh et al., 2016a) and chickpea (Das et al., 2015;

Singh et al., 2016b). Therefore, this approach was deployed to

locate the genomic region and candidate genes associated with

resistance to rust and LLS in groundnut.

Results

Phenotypic diversity in RIL population and construction
of bulks

The RIL population (TAG 24 9 GPBD 4) used in this study had

high phenotypic variability for both diseases, rust and LLS

(Figures 1 and 2). Therefore, resistant and susceptible bulks were

constituted by mixing equimolar DNA from 25 RILs with extreme

phenotypes, that is resistant and susceptible for both the diseases

as shown in Figures S1 and S2. In the RIL population, the disease

score for rust disease ranged from 3.4 (RIL-146) to 8.1 (RIL-166),

while for LLS, it varied from 3.5 (RIL-2) to 8.5 (RIL-216) (Table S1).

The average disease score for rust disease was 3.7 for resistant

bulk and 7.7 for susceptible bulk, while the average disease score

for LLS disease was 4.4 for resistant bulk and 8.1 for susceptible

bulk. The mean disease score for susceptible (TAG 24) parent for

rust and LLS disease was 7.5 and 8.4, respectively, while the

mean disease score of resistant parent (GPBD 4) for rust and LLS

resistance was 3.0 and 3.7, respectively. The Figure S1 shows the

phenotypic variability in the RIL population and between suscep-

tible as well as resistant bulks.

Sequencing and mapping of reads to the genome

The WGRS data were generated for five samples namely GPBD 4

(resistant parent for rust and LLS), resistant bulk for rust

(Rust_Rbulk), susceptible bulk for rust (Rust_Sbulk), resistant bulk

for LLS (LLS_Rbulk) and susceptible bulk for LLS (LLS_Sbulk). A

total of 395.70 million reads for resistant parent (GPBD 4), 423.76

million reads for (Rust_Rbulk), 371.52 million reads for (Rust_S-

bulk), 365.22 million reads for (LLS_Rbulk) and 384.24 million

reads for (LLS_Sbulk) were generated (Tables 1 and S2). The

maximum sequencing data were obtained for Rust_Rbulk

(41.95 Gb) followed by resistant parent (39.17 Gb), LLS_Sbulk

(38.04 Gb), Rust_Sbulk (36.78 Gb) and LLS_Rbulk (36.16 Gb).

The highest mapping of reads to the genome was obtained for

the resistant parent (280.77 million reads) followed by Rust_Rbulk

(270.88 million reads), Rust_Sbulk (266.82 million reads),

LLS_Sbulk (249.85 million reads) and LLS_Rbulk (249.60 million

reads).

The alignment of reads generated for the resistant genotype

(GPBD 4) achieved 86.57% genome coverage and 11.6 X of

average read depth and resulted in development of reference-

guided based assembly, that is GPBD 4 assembly (Figure S2). In

the case of rust resistance, mapping of reads for Rust_Rbulk to

the GPBD 4 assembly resulted in 86.75% coverage and 11.2 X

read depth, while Rust_Sbulk to the GPBD 4 assembly resulted in

86.86% coverage and 11.0 X read depth (Tables 1 and S2).

Similarly for LLS resistance, mapping of reads for LLS_Rbulk to the

GPBD 4 assembly resulted in 86.64% coverage and 10.3 X read

depth, while LLS_Sbulk to the GPBD 4 assembly resulted in

86.62% coverage and 10.3 X read depth. After analysing the

resistant and susceptible bulks, a total of 259 621 genomewide

SNPs for rust resistance, while 243 262 genomewide SNPs for LLS

were identified (Table S3). Of these, 75 203 SNPs for rust and

62 358 SNPs for LLS were homozygous between bulks which

were used for further investigation and identification of effective

SNPs.

Candidate genomic region(s) for rust and late leaf spot
resistance

To identify the candidate genomic region(s) controlling resistance

to rust and LLS, the SNP index was calculated for each bulk by

comparing to the GPBD 4 assembly. In simple terms, the

frequency of parental alleles in the population of bulked samples

represents the SNP index. For example, the SNP index will be 0.5 if

both the parents contribute equally to the population. The

deviation of allele frequency from 0.5 indicates presence of more

alleles of one parent than the other for a particular genomic
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position. Therefore, genomewide SNP index was calculated with

the sliding window of 2-Mb interval with 50 kb increment for

resistant and susceptible bulks to detect the candidate genomic

regions which deviated from 0.5 for both the diseases (Figures

S4–S10). After calculating the SNP index, ΔSNP index with a

statistical confidence of P < 0.05, significant genomic positions

were identified on A03 linkage group for both the disease.

For rust resistance, 3.06 Mb (131.60–134.66 Mb) genomic

region was identified after analysing the sequences of resistant

and susceptible bulk on the A03 pseudomolecule of A-genome

GPBD 4 – resistant parent (RP) for 
rust disease 

TAG 24 – susceptible parent (SP) for 
rust disease

Construction of resistant (RB) and 
susceptible (SB) bulks SNP index plots for rust resistance
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Figure 1 QTL-seq approach for mapping genomic regions controlling rust resistance. (a) TAG 24: susceptible parent for rust disease; (b) GPBD 4: resistant

parent for rust disease; (c) frequency distribution for rust resistance showing phenotypic variation in RIL population. The DNA of 25 RILs with extreme

phenotypes (high and low disease score) was used to develop susceptible and resistant bulks; (d) SNP index plot between resistant bulk and GPBD 4

assembly (top), susceptible and GPBD 4 assembly (middle) and ΔSNP index plot (bottom) of pseudomolecule A03 with statistical confidence interval under

the null hypothesis of no QTLs (orange, P < 0.01 and green P < 0.05). The significant genomic region identified for rust resistance is shaded (131.60–

134.66 Mb).

ª 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 15, 927–941

Genomics regions and diagnostic markers for foliar disease resistance in groundnut 929



(Figure 1). This genomic region had 3136 SNPs with read depth

of ≥7 and ΔSNP index = �1. The negative sign of ΔSNP index

indicates presence of biasedness in the inheritance of parental

genomes in the bulks towards resistant parent (Table S3). The

resistant bulk had SNP index = 0 at all the 3136 SNP positions

indicating the contribution of alleles coming from the resistant

parent GPBD 4 (Table S4). Similarly, the susceptible bulk scored

SNP index = 1 indicating the source of alleles for susceptibility

from susceptible parent TAG 24. Of the 3136 SNPs, 2455 SNPs

were intergenic, 434 intronic, 30 nonsynonymous, one resulted in

ex
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Figure 2 QTL-seq approach for mapping genomic regions controlling late leaf spot resistance. (a) TAG 24: Susceptible parent for LLS disease; (b) GPBD 4:

Resistant parent for LLS disease; (c) Frequency distribution for LLS resistance showing phenotypic variation in RIL population. The DNA of 25 RILs with

extreme phenotypes (high and low disease score) was used to develop susceptible and resistant bulks; (d) SNP index plot between resistant bulk and GPBD

4 assembly (top), susceptible and GPBD 4 assembly (middle) and ΔSNP index plot (bottom) of pseudomolecule A03 with statistical confidence interval under

the null hypothesis of no QTLs (orange, P < 0.01 and green P < 0.05). The significant genomic region identified for LLS resistance is shaded (131.67–

134.65 Mb).
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stop codon, 144 synonymous, two without any effect, 58 in 30

UTR and 12 in 50 UTR. The above approach identified 30

nonsynonymous SNPs affected 25 candidate genes relating to

plant growth and defence (Table 2).

Similarly for LLS resistance, 2.98 Mb (131.67–134.65 Mb)

genomic region was identified upon analysing the sequences of

resistant and susceptible bulk on A03 pseudomolecule (Figure 2).

This is the same genomic region as detected for rust resistance as

detected above for rust resistance. This genomic region con-

tained 66 SNPs with a minimum read depth of 7 and ΔSNP
index = �1 (Table S5). The resistant bulk had SNP index = 0 at

all 66 SNP positions indicating the contribution of alleles coming

from the resistant parent GPBD 4, while the susceptible bulk

scored SNP index = 1 indicating the source of susceptibility

alleles from susceptible parent TAG 24. Of the 66 SNPs, no SNP

was nonsynonymous. However, 14 intronic and three synony-

mous SNPs were identified in nine candidate genes (Table 3).

Further, the genomic region identified for rust and LLS resistance

on pseudomolecule A03 were overlapped. Interestingly, the

genomic region is underlying the QTL identified earlier by

traditional QTL mapping (Sujay et al. 2012), for rust and LLS

resistance (Figure 3).

Putative candidate genes associated with rust and late
leaf spot resistance

Of the 25 putative candidate genes found associated with rust

resistance, four putative candidate genes (Aradu.L0AQP, Ara-

du.PNQ8T, Aradu.6U7NW and Aradu.H715D) were predicted to

code for either uncharacterized or unknown protein (Table 2).

Two putative candidate genes namely Aradu.7P7FQ and Ara-

du.G696X code for alpha/beta-hydrolase superfamily protein. The

remaining putative candidate genes code for different types of

proteins such as ATP binding microtubule motor family (Aradu.

B0A4N), ATP/DNA-binding (Aradu.N20HG), 2-oxoglutarate (2OG)

and Fe(II)-dependent oxygenase superfamily (Aradu.FAV4Y),

purple acid phosphatase (Aradu.H1HIG), transthyretin-like

(Aradu.7MV8U), protein kinase superfamily (Aradu.9C8P4),

reticulon family (Aradu.N7C0U), C2H2-like zinc finger

(Aradu.AB2YQ), remorin-like (Aradu.5N8I2), dentin

sialophosphoprotein-like isoform (Aradu.1ZB11), UDP-Glycosyl-

transferase superfamily (Aradu.KU7EH), disease resistance (TIR-

NBS-LRR class) (Aradu.Z87JB), PIF1-like helicase (Aradu.L63AM),

beta galactosidase (Aradu.9E85R), glucan endo-1%2C3-beta-

glucosidase4-like (Aradu.NG5IQ), NADH:ubiquinone oxidoreduc-

tase intermediate-associated (Aradu.LSV4Q) and nucleobase-

ascorbate transporter (Aradu.YAN03).

Similarly for LLS resistance, total nine putative candidate genes

were identified which code for different types of proteins such as

purple acid phosphatase (Aradu.PHU5I), transthyretin-like protein

(Aradu.7MV8U), xyloglucan endotransglucosylase/hydrolase (Ara-

du.RT35T), heat shock transcription factor (Aradu.RVF1V), recep-

tor kinase (Aradu.98U3Z), MACPF domain (Aradu.BS3D3),

cytochrome B561 (Aradu.8X6B9) and putative Myb family tran-

scription factor (Aradu.VP5WD) and glutathione S-transferase

family (Aradu.V4NFM) (Table 3). A maximum of five effective

SNPs were identified for putative candidate gene Aradu.7MV8U.

Marker development, genetic map and QTL analysis

A total of 47 SNPs (30 SNPs for rust and 17 SNPs for LLS

resistance) were targeted for development of allele-specific

markers. Of the 30 SNPs for rust resistance, allele-specific

primers were successfully developed for 17 SNPs, while no

primers could be designed for remaining 13 SNPs. Of the 17

SNPs for rust resistance, primers were developed for both alleles

of 14 SNPs and single allele of remaining three SNPs. Similarly

for LLS resistance, 17 SNPs were targeted for primer designing.

Of the 17 SNPs, primers were successfully developed for eight

SNPs, while no primer was designed for remaining nine SNPs. Of

the eight SNPs for LLS, primers were developed for both alleles

of six SNPs and single allele of remaining two SNPs. In total, a

total of 45 allele-specific markers were developed for potential

use in breeding, that is 31 for rust resistance and 14 for LLS

resistance (Table S6).

All 45 allele-specific markers were checked for polymorphism

between parental genotypes of the RIL population (TAG

24 9 GPBD 4). Of the 45 markers, 36 markers (27 for rust and

nine for LLS resistance) gave good amplification, while nine

markers did not amplify in parental genotypes. Of the 36

amplified markers, only three (GMRQ517, GMRQ786 and

GMRQ843) markers for rust resistance and one (GMLQ975)

marker for LLS resistance were found polymorphic between

parental genotypes. Of these four markers, three markers

amplified the allele of resistant parent ‘GPBD 4’, while marker

‘GMRQ843’ amplified the allele of susceptible parent ‘TAG 24’.

Complementary alleles of these markers were found monomor-

phic between the resistant and susceptible parents.

Genotyping data on complete mapping population were

generated for these four polymorphic markers (three for rust

resistance and one for LLS resistance) and were used for

mapping to the linkage group (LG) of existing genetic map. All

the four markers were mapped on the upstream of marker loci

GM2009. The map distance of LG reduced from 116.5 cM to

94.4 cM, while marker loci increased from 12 to 16. QTL analysis

using the genotyping and phenotyping data resulted in identi-

fication of one consistent QTL identified in different seasons

between the marker loci GMRQ5157 and GM1536. The LOD

value ranged from 3.5 to 49.9, while PVE varied from 9.0% to

83.6% (Table 4; Figure S11). This consistent QTL for rust

resistance with 42.7–83.6% PVE identified in eight seasons

while consistent QTL for LLS resistance with 9.0–63.1% PVE was

identified in three seasons.

Table 1 Summary of disease score and Illumina sequencing of

parental lines and bulks for rust and late leaf spot resistance

Sample

Mean

disease

score Illumina sequencing

Rust LLS

Data

generated

(Gb)

%

Alignment

%

Genome

coverage

Average

depth (X)

GPBD 4* 3.0 3.7 39.17 95.8 86.6 11.6

Rust_Rbulk† 3.7 41.95 95.8 86.8 11.2

Rust_Sbulk† 7.7 36.78 94.4 86.9 11.0

LLS_Rbulk† 4.4 36.16 96.5 86.6 10.3

LLS_Sbulk† 8.1 38.04 96.5 86.6 10.3

*GPBD 4 short reads were aligned to the publicly available genome of diploid

progenitors Arachis duranensis and Arachis ipaensis (PeanutBase: http://pea

nutbase.org/).
†The short reads of bulks were aligned to the GPBD 4 ‘reference sequence’

developed by replacement of SNPs between GPBD 4 and diploid progenitors.
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Validation of allele-specific markers

A total of 45 allele-specific markers developed in this study were

used for validation and identification of diagnostic markers for

these two foliar diseases. Although the initial screening on

parental genotypes of the RIL population produced amplification

for 36 markers, only five of these markers could be scored for

polymorphic alleles. These five polymorphic markers were then

validated on a panel of diverse genotypes containing susceptible

genotypes (GJ 9, GJ 20, GJGHPS 1, SunOleic 95R, ICGV 07368,

ICGV 06420, TMV 2, DH 86, TAG 24, TG 26, ICGV 91114 and JL

24), resistant parent (GPBD 4) of the RIL population and 11

introgression lines (four in the genetic background of ICGV

91114, three in JL 24 and four in TAG 24) developed through

marker-assisted backcrossing (MABC) approach. Of these five

markers, three markers (GMRQ517, GMRQ786 and GMRQ843)

showed clear differentiation between resistant and susceptible

genotypes for rust resistance, while one marker (GMLQ975) was

identified for LLS resistance (Table 5; Figure S12). The first

diagnostic marker ‘GMRQ517’ for rust resistance amplified 150-

bp fragment in the resistant parent and null allele in the

susceptible genotypes. The second diagnostic marker for rust

resistance ‘GMRQ786’ amplified 200-bp fragment in the resistant

parent and null allele in rust susceptible genotypes. In contrast to

these two diagnostic markers, the third diagnostic marker

‘GMRQ843’ amplified 200-bp fragment in the susceptible parent

Table 2 Identification of SNPs in putative candidate genes in the genomic region for rust resistance on pseudomolecule A03

Gene

Position

(bp)

GPBD 4 assembly

(resistant parent)

base

Resistant

bulk

base

Susceptible

bulk

base

DSNP

index

Amino

acid

change Function U99 L99

Nonsynonymous SNPs and candidate genes for rust resistance

Aradu.FAV4Y 131657367 C C A �1 caG/caT 2-oxoglutarate (2OG) and Fe(II)-dependent

oxygenase superfamily protein

0.714 �0.714

131657379 G G C �1 caC/caG 0.700 �0.700

Aradu.H1HIG 131739517 A A C �1 Tct/Gct Purple acid phosphatase 0.700 �0.700

Aradu.L0AQP 131752809 T T C �1 gAa/gGa Unknown protein 0.700 �0.700

Aradu.7MV8U 131783499 C C G �1 Gtg/Ctg Transthyretin-like protein 0.714 �0.714

131783520 C C T �1 Gat/Aat 0.750 �0.750

Aradu.PNQ8T 131788843 C C T �1 Gaa/Aaa Unknown protein 0.714 �0.714

Aradu.9C8P4 131918196 G G C �1 cCa/cGa Protein kinase superfamily protein 0.636 �0.636

Aradu.14X1M 131937796 G G A �1 Gat/Aat ATP binding microtubule motor

family protein isoform 1

0.750 �0.750

131938803 A A T �1 aAc/aTc 0.615 �0.615

Aradu.N7C0U 131950239 A A T �1 Atg/Ttg Reticulon family protein 0.750 �0.750

Aradu.AB2YQ 132022031 C C T �1 Cat/Tat C2H2-like zinc finger protein 0.750 �0.750

Aradu.5N8I2 132617185 C C T �1 gCg/gTg Remorin-like 0.714 �0.714

Aradu.7P7FQ 132700619 A A G �1 Aca/Gca Alpha/beta-Hydrolases

superfamily protein

0.750 �0.750

Aradu.1ZB11 132977576 C C T �1 tCg/tTg Dentin sialophosphoprotein-like

isoform X4

0.700 �0.700

Aradu.B0A4N 133407585 C C T �1 Gag/Aag ATP binding microtubule

motor family protein

0.714 �0.714

Aradu.6U7NW 133497786 T T A �1 Agc/Tgc Uncharacterized protein 0.643 �0.643

133498045 G G T �1 ttC/ttA 0.636 �0.636

Aradu.KU7EH 133527661 C C G �1 caC/caG UDP-Glycosyltransferase

superfamily protein

0.714 �0.714

Aradu.3AT2D 133594028 A A C �1 Agc/Cgc Selenium-binding protein 0.750 �0.750

Aradu.Z87JB 133780314 T T C �1 Att/Gtt Disease resistance protein

(TIR-NBS-LRR class)

0.750 �0.750

Aradu.L63AM 133783696 G G A �1 Gat/Aat PIF1-like helicase 0.700 �0.700

Aradu.9E85R 133796773 G G A �1 aGa/aAa Beta galactosidase 0.750 �0.750

Aradu.N20HG 133814877 G G T �1 aCt/aAt ATP/DNA-binding protein 0.750 �0.750

Aradu.NG5IQ 133999438 G G C �1 tCt/tGt Glucan endo-1%

2C3-beta-glucosidase 4-like

0.714 �0.714

Aradu.G696X 134170720 C C T �1 Cgt/Tgt Alpha/beta-hydrolase

superfamily protein

0.643 �0.643

Aradu.H715D 134280699 G G A �1 Cgc/Agc Uncharacterized protein 0.667 �0.667

134280707 G G C �1 aaG/aaC Isoform X4 0.750 �0.750

Aradu.YAN03 134343833 A A C �1 caA/caC Nucleobase-ascorbate transporter 0.700 �0.700

Aradu.LSV4Q 134476055 T T C �1 Atc/Gtc NADH: ubiquinone oxidoreductase

intermediate-associated protein

0.750 �0.750

DSNP index of each SNP positions was calculated using following formula: DSNP index = SNP index of susceptible bulk—SNP index of resistant bulk. U99: 99%

confidence interval upper side; L99: 99% confidence interval lower side.
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and null allele in resistant genotypes. Most importantly, these

three diagnostic markers can be used in combination

(GMRQ517 + GMRQ843) in the segregating population to dif-

ferentiate the homozygotes and heterozygotes; that is, resistant

lines will have 150-bp allele from marker ‘GMRQ517’ and

susceptible lines will have a 200-bp allele from marker

‘GMRQ843’. In case of LLS resistance, the diagnostic marker

‘GMLQ975’ amplified a 150-bp band in the resistant parent and

null allele in susceptible genotypes. These markers are very useful

for selecting breeding lines with resistance to rust and LLS.

Discussion

Genomics-assisted breeding (GAB) is a powerful tool for accel-

erated improvement of elite cultivars for few important and

selected traits (Varshney et al., 2013). To deploy GAB in routine

breeding programme in a given crop, making available tightly

linked markers for agronomically important traits is the key to

track the favourable alleles of target genes in the breeding

population (Pandey et al., 2016). Of the two available trait

mapping approaches, that is linkage mapping and linkage

disequilibrium (LD) or association mapping, the success rate for

identifying the linked markers with high PVE was higher in case of

linkage mapping as majority of the markers currently deployed in

GAB have come from linkage mapping approach. The linkage

mapping requires development of mapping population by cross-

ing two contrasting genotypes with diverse phenotypes followed

by their genotyping and phenotyping to conduct QTL analysis for

identification of linked markers. Similar to other crops, this

approach has also been very successful in identifying linked

markers for target traits in groundnut for traits like resistance to

rust and LLS (Pandey et al., 2012, 2016; Varshney et al., 2013).

The utility of such diagnostic markers has fostered breeding

programmes leading to development of improved breeding lines

for foliar disease resistance and oil quality in groundnut (Janila

et al., 2016; Varshney et al., 2014a).

It is important to note that genetic map with optimum

density is required for effective QTL identification and devel-

opment of diagnostic markers for target traits. Studies

conducted over last 7 years in groundnut have shown a very

low level of polymorphism between the parental genotypes of

the mapping populations (Varshney et al., 2013). The low

polymorphism led to development of sparse/less dense genetic

maps for QTL analysis which not only failed to provide tightly

linked markers but also could not provide any information on

the candidate genes controlling the target traits. The genetic

mapping in cultivated groundnut started just 7 years back, that

is 2009 when the first SSR-based genetic map with 135 marker

loci was developed using RIL population (TAG 24 9 ICGV

86031) (Varshney et al., 2009). This study could achieve 12%

polymorphism (150 SSR loci) upon screening a total of 1145

SSR markers on the parental genotypes. It was even more

difficult to add markers to this map further as after screening

another set of 2070 SSRs on parents, only 3% (65 SSRs) were

found polymorphic which led to development of improved

genetic map with mere 191 marker loci (Ravi et al., 2011).

Realizing the genome size of tetraploid genome, the sparse

genetic maps are not good for conducting high-resolution

Table 3 Identification of SNPs in putative candidate genes in the identified genomic region on pseudomolecule A03 for late leaf spot resistance

Gene

Position

(bp)

GPBD 4 assembly

(resistant parent)

base

Resistant

bulk base

Susceptible

bulk base

DSNP

index

Amino acid

change Function U99 L99

Intronic SNPs and candidate genes for LLS resistance

Aradu.PHU5I 131755141 G G A �1 Purple acid

phosphatase 3

0.714 �0.714

131755149 G G C �1 0.750 �0.750

Aradu.7MV8U 131784975 G G A �1 Transthyretin-like

protein

0.714 �0.714

131784990 G G C �1 0.667 �0.667

131785313 T T C �1 0.750 �0.750

131785314 C C A �1 0.750 �0.750

131785428 G G A �1 0.714 �0.714

Aradu.RT35T 131813401 T T C �1 Xyloglucan endotransglucosylase/

hydrolase

0.714 �0.714

Aradu.RVF1V 134565541 C C T �1 Heat shock transcription

factor

0.667 �0.667

Aradu.98U3Z 134642651 A A G �1 Receptor kinase 0.667 �0.667

134643689 C C T �1 0.750 �0.750

134644076 C C T �1 0.714 �0.714

Aradu.BS3D3 134654808 T T A �1 Membrane attack complex component/

perforin (MACPF) domain protein

0.750 �0.750

134656184 C C A �1 0.714 �0.714

Synonymous SNPs and candidate genes for LLS resistance

Aradu.8X6B9 131844849 G G A �1 Att Cytochrome 0.750 �0.750

Aradu.VP5WD 134284373 G C A �1 aaT Putative Myb family transcription

factor

0.667 �0.667

Aradu.V4NFM 134503983 C T �1 ctT Glutathione S-transferase family

protein

0.714 �0.714

DSNP index of each SNP positions was calculated using following formula: DSNP index = SNP index of susceptible bulk—SNP index of resistant bulk. U99: 99%

confidence interval upper side; L99: 99% confidence interval lower side.
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mapping in groundnut. Nevertheless, genotyping-by-sequencing

(GBS) approach has good potential in developing dense genetic

maps for conducting high-resolution genetic mapping (Zhou

et al., 2014). However, recent advances in NGS technologies

and availability of the reference genomes for both diploid

progenitors (A- and B-genome) have opened new opportunities

for conducting high-resolution trait mapping and identifying

candidate genes/diagnostic markers quickly.

Of the several NGS-based trait dissection and gene discovery

approaches, QTL-seq approach has been popular because it can

rapidly detect genomic region(s) controlling target trait and

candidate genes underlying in that region (Pandey et al., 2016;

Figure 3 Colocalization of QTLs identified

through traditional genetic mapping and QTL-seq

approach for resistance to rust and late leaf spot.

(a) Colocalization of QTLs mapped for rust

resistance through traditional and QTL-seq

method. (A) Psuedomolecules of reference

genome Arachis duranensis (B) Upper probability

values at 99% confidence (P < 0.01) and 95%

confidence (P < 0.05) for declaring significant

DSNP index (C) genomewide DSNP index (red dots

denote DSNP index ranged from 0 to �1 and

contributed by susceptible parent (TAG 24) and

green dots denote DSNP index ranged from 0 to 1

and contributed by resistant parent (GPBD 4), (D)

lower probability values at 99% confidence

(P < 0.01) and 95% confidence (P < 0.05), (E)

physical position of earlier mapped QTL (Sujay

et al., 2012) for rust resistance through traditional

mapping approach. The physical position of QTL

was estimated through blast the flanking primers

into the A. duranensis genome and (F) common

genomic positions on pseudomolecule A03 were

observed through both the approaches. (b)

Colocalization of QTLs mapped for LLS resistance

through traditional and QTL-seq method. (A)

Psuedomolecules of reference genome

A. duranensis, (B) Upper probability values at

99% confidence (P < 0.01) and 95% confidence

(P < 0.05) for declaring significant DSNP index, (C)

genomewide DSNP index (red dots denote DSNP

index ranged from 0 to �1 and contributed by

susceptible parent (TAG 24) and green dots

denote DSNP index ranged from 0 to 1 and

contributed by resistant parent (GPBD 4), (D)

lower probability values at 99% confidence

(P < 0.01) and 95% confidence (P < 0.05), (E)

physical position of earlier mapped QTL (Sujay

et al., 2012) for late leaf spot resistance through

traditional mapping approach. The physical

position of QTL was estimated through blast the

flanking primers into the A. duranensis genome,

and (F) common genomic positions on

pseudomolecule A03 were observed through both

the approaches.
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Takagi et al., 2013). It is important to note that QTL-seq approach

takes clues from the very popular trait mapping approach ‘bulked

segregant analysis (BSA)’ proposed by Michelmore et al. (1991)

and hence does not require genotyping of large population. This

approach is a cost-effective and is very successful when applied

on a RIL population where multiseason phenotyping data are

available for selection of appropriate RILs for pooling and

sequencing. This approach has been successfully deployed for

mapping: (i) blast resistance in rice (Takagi et al., 2013), (ii) early

flowering trait in cucumber (Lu et al., 2014), (iii) fruit weight and

locule number loci in tomato (Illa-Berenguer et al., 2015), (iv) 100

seed weight and root traits in chickpea (Das et al., 2015; Singh

et al., 2016b) and (v) fusarium wilt and sterility mosaic disease

resistance in pigeonpea (Singh et al., 2016a). This approach not

only provides candidate genes for further cloning experiments but

most importantly provides a variety of diagnostic markers for use

in breeding.

The earlier genetic mapping studies with sparsely dense genetic

maps identified one major QTLs for rust resistance in the RIL

population (TAG 24 9 GPBD 4) (Khedikar et al., 2010). Addition

of more markers onto this genetic map helped in identification of

the major QTL for rust resistance explaining up to 82.96% PVE,

while the major QTL for LLS resistance explained up to 67.98%

PVE (Sujay et al., 2012). The identified SSR markers for rust were

then validated not only on germplasm but also were validated in

two other RIL populations involving synthetic genotypes as one

parent in another study (Sukruth et al., 2015). Similarly, another

study (Kolekar et al., 2016) further added adding 139 new SSR

and transposable element (TE) markers and detected the same

QTL as detected by Sujay et al. (2012). While improving the

earlier map developed by Sujay et al. (2012), Kolekar et al. (2016)

experienced changed position and order of the markers on the

map. In addition, two new TE markers linked to rust resistance

were identified and validated. A difference in markers order

among genetic maps was expected because genetic mapping

provides only relative position of the markers to each other

(Sourdille et al., 2003). The markers identified and validated for

rust and LLS resistance, as reported in Khedikar et al. (2010) and

Sujay et al. (2012), were successfully deployed in GAB for

improving foliar disease resistance in three popular varieties of

India namely TAG 24, JL 24 and ICGV 91114 (Varshney et al.,

2014a). Several of these improved lines have shown 39%–79%
higher pod yield and 25%–89% higher mean haulm yield over

original parents in addition to keeping intact early maturity,

drought tolerance and other desirable pod features (Janila et al.,

2016). Several promising lines are under multilocation testing

under All India Coordinated Research Project on Groundnut

(AICRP-G), India, for possible varietal release.

Currently available linked SSR markers for foliar disease

resistance are not user-friendly as they need to be genotyped

on PAGE which is tedious and time taking. In this study,

successful deployment of QTL-seq approach identified putative

candidate genes and development of user-friendly diagnostic

markers for rust and LLS resistance. In this context, the RIL

population (TAG 24 9 GPBD 4) was used for making bulks

with extreme phenotypes for both foliar fungal diseases, that is

Table 4 Mapping of validated markers and

re-estimation of phenotypic effect for QTLs

controlling rust and late leaf spot resistance

QTLs

Position

(cM)

LOD

value

Marker

interval

Nearest

marker

Phenotypic

variance

explained

(PVE%)

Additive

effect (a0)

Rust resistance

qRust80D_06 31.6 36.1 GMRQ517-Seq2B10 IPAHM103 83.6 1.365

qRust90D_06 30.6 24.1 GMRQ517-Seq2B10 IPAHM103 75.4 1.540

qRust 80D_07 31.6 49.9 GMRQ517-Seq2B10 IPAHM103 65.4 1.307

qRust 90D_07 31.6 47.2 GMRQ517-Seq2B10 IPAHM103 73.1 1.309

qRust 80D_08 31.6 35.2 GMRQ843-Seq2B10 IPAHM103 69.7 0.946

qRust 90D_08 31.6 49.2 GMRQ517-Seq2B10 IPAHM103 63.7 1.977

qRust 80D_09 31.6 16.0 GMRQ517-Seq2B10 IPAHM103 48.9 0.896

qRust 90D_09 31.6 14.6 GMRQ517-Seq2B10 IPAHM103 42.7 1.036

Late leaf spot resistance

qLLS70D_08 31.6 4.6 GM2009-Seq2B10 IPAHM103 14.9 �0.279

qLLS 90D_08 30.6 21.1 GMRQ517-Seq2B10 IPAHM103 63.1 �1.415

qLLS 90D_09 26.2 3.5 GMRQ517-Seq2B10 GM2009 9.0 �0.492

GMRQ517 and GMRQ843 are the newly designed markers from this study.

Table 5 Validated user-friendly diagnostic markers for rust and LLS resistance for use in genomics-assisted breeding

Trait

Diagnostic

markers

Forward

sequence

Reverse

sequence

Annealing

temperature (°C)

Amplicon

size (bp)

Rust GMRQ517 TGTACCTGAAATGCAAGTTGAGAC AATGTATGTGTGTTGGGCCC 59 150

Rust GMRQ786 AACATTGTAACACTCACCTGGCTA TCATGCTTGAACTGTGCCTC 59 200

Rust GMRQ843 AGCCTTGCGACTAGGTTCAT CATGGTGAGAGACGCGTAAG 59 200

LLS GMLQ975 GGTATCATGATGAATTTTTAGAAGACTAGG GAAATTTGGCTTTGGGTTCA 59 150
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rust and LLS. This RIL population showed good phenotypic

variability for both diseases and was utilized for conducting

genetic mapping and QTL analysis resulting in identification of

major QTLs for both diseases (Kolekar et al., 2016; Sujay et al.,

2012). The number of samples to be used in pooling was

higher than any other previous studies such as ten samples (Das

et al., 2015 in chickpea; Lu et al., 2014 in cucumber) and 15

samples (Singh et al., 2016a in pigeonpea; Singh et al., 2016b

in chickpea). The increased number of samples for pooling

provided high accuracy in SNP predictions, and therefore,

results obtained in this study are reliable.

As cultivated groundnut is tetraploid crop with two different

subgenomes (A and B), and therefore, more sequence data were

generated than the other studies conducted in diploid species to

achieve optimum genome coverage and read depth. The genome

size of A-genome progenitor (Arachis duranensis) and B-genome

progenitor (Arachis ipaensis) has been estimated to be 1.1 and

1.4 Gb, respectively (Bertioli et al., 2016). In the case of diploid

species of medium genome sized crop plants, mere 57–65 million

reads were generated (Das et al., 2015 in chickpea; Lu et al.,

2014 in cucumber; Singh et al., 2016a in pigeonpea and Singh

et al., 2016b in chickpea) and successfully achieved higher

(>90%) genome coverage. Keeping in mind the large genome

size, 365.22–423.76 million reads were generated which helped

in successfully achieving 86.57%–86.86% genome coverage and

11.0–11.6 X average read depth for resistant parent (GPBD 4)

and different resistant and susceptible bulks. The above gener-

ated sequencing data with moderate genome coverage and read

depth allowed for detailed sequence analysis. The possible

reasons behind moderate genome coverage include sequencing

library used, sequencing errors, structural rearrangements or

insertions in the query genome, or deletions in the reference

genome (Sims et al., 2014).

Upon analysing the sequence data generated for resistant and

susceptible bulk samples in comparison with the GPBD 4

assembly, genomic region of 3.06 Mb (131.60–134.66) for rust
resistance and 2.98 Mb (131.67–134.65) for LLS resistance on

the A-genome, that is A03, were identified with >99% signifi-

cance (Figures 1–3). Gowda et al. (2002) indicated that A. car-

denasii (A-genome) might be source of resistance alleles present

in the resistant genotype, GPBD 4. The above results are of

immense importance in confirming the source of resistance, that

is A-genome as above-mentioned studies did not predict the

resistance source. In addition, the present study also provides

evidence to the current understanding that the resistance alleles

have come from the interspecific derivative, ICGV 86855 (CS16),

as this genotype has similar alleles for all the four diagnostic

markers to GPBD 4. It is important to note that ICGV 86855 was

used as one of the resistant parent while developing the resistant

variety, GPBD 4.

For rust resistance, a total of 3136 SNPs were identified with

the contribution of resistant alleles from the resistant parent

GPBD 4 and susceptible alleles from the susceptible parent TAG

24. Total 30 nonsynonymous SNPs affecting 25 putative candi-

date genes related to plant growth and defence mechanism were

identified. Similarly for LLS resistance, 66 SNPs were identified

indicating GPBD 4 as the source for resistance alleles and TAG 24

for susceptible alleles. As none of the identified SNP was

nonsynonymous in nature, 17 SNPs (14 intronic and three

synonymous) representing nine putative candidate genes were

targeted for identification of diagnostic markers for LLS resis-

tance. Of the 25 putative candidate genes identified for rust

resistance and nine putative genes for LLS resistance, based on

the marker validation results in this study, four interesting

putative candidate genes were found with their possible role in

contributing towards providing genetic resilience against the

fungal pathogens. Two putative candidate genes namely

Aradu.PNQ8T and Aradu.6U7NW identified for rust resistance

are reported to code for unknown/uncharacterized proteins, and

therefore, their further role could not be predicted. One putative

candidate gene each for rust, that is Aradu.H1HIG (Figure 4), and

LLS, that is Aradu.7MV8U (Figure 5), are known to code for

purple acid phosphatase (PAP) and transthyretin-like protein,

respectively. Interestingly, the Aradu.7MV8U gene showed max-

imum number of effective SNPs (five SNPs) among all putative

candidate genes identified in this study. More interestingly, the

putative candidate gene Aradu.7MV8U was identified for both

the fungal diseases, therefore, seems to be very important in

providing disease resistance against the fungal diseases.

The phosphatases are well known for their key role in the

production, transport and recycling of inorganic phosphorus

which not only helps the cellular metabolism and bioenergetics

but also play important role in bacterial killing (Kaida et al.,

2010). The degradation of DNA by PAPs from yellow lupin seeds

implies a role in plant growth and repair and in pathogen defence

(Antonyuk et al., 2014). On the other hand, the putative

candidate gene Aradu.7MV8U which produces transthyretin-like

protein seems to play important role in plant growth and defence.

It is reported that Arabidopsis thaliana transthyretin-like protein

(TTL) serves as a potential substrate to BRASSINOSTEROID-

INSENSITIVE 1 (BRI1), a leucine-rich-repeat (LRR) receptor kinase

that functions as a critical component of a transmembrane BR

receptor (Nam and Li, 2004). It is believed that BRI1 becomes

activated through hetero-dimerization with BRI1-associated

receptor kinase 1 (BAK1), a similar LRR receptor kinase, in

response to BR signal. As this putative candidate gene has been

detected for both the fungal foliar diseases, further study is

required to gain insights on their specific role in defence

mechanism for both the foliar fungal diseases. More than 80

different mutations in the transthyretin (TTR) gene have been

identified in human leading to several diseases (http://www.ge

necards.org/cgi-bin/carddisp.pl?gene=TTR). For example, one of

its variant known as ‘TTR-52’ produces TTR-52 protein in

Caenorhabditis elegans, which facilitates recognition of apoptotic

cells (Wang et al., 2010). It is important to note that phagocytosis

and removal of apoptotic cells are the key process in tissue

remodelling, suppression of inflammation and regulation of

immune response in humans (Henson et al., 2001; Savill et al.,

2002).

Allele-specific markers which can be simply scored on agarose

gel electrophoresis are the most cost-effective assays to genotype

the breeding population in order to select plants with desired

allele. Of the 45 SNPs targeting 34 putative candidate genes,

allele-specific primers were successfully developed for 25 SNPs

targeting 25 putative candidate genes. Further, of the 25 SNPs,

primers were designed for 20 SNPs for both alleles, while for

remaining five SNPs, only one allele could be developed. The

possible solution to such a problem is to design allele-specific

primers with an additional base pair mismatch of the third bases

close to the SNP site between alleles. Albeit, designing primer for

other mismatches to increase primer particularity is a tough for

more number allele-specific markers (Liu et al., 2012). Of the 45

primers tested, 36 were amplified and four of these were found

polymorphic. Despite designing primers for both the alleles of
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each SNP, amplification of markers was not observed for both the

alleles of a SNP. Nonamplification of few markers may be due to

not perfectly complemented to the DNA template (You et al.,

2008). It was observed that three of these markers amplified

resistance allele, while marker ‘GMRQ843’ amplified susceptible

allele. It was interesting to note that complementary allele of

these markers was found monomorphic which might be due to

nondiscrimination between the alleles of a SNP.

QTL analysis using the genotyping (including four new marker

loci) and phenotyping data identified 11 QTLs with comparatively

higher LOD value and phenotypic variance. It was encouraging to

note that newly developed marker ‘GMRQ517’ flanked the QTL

region across seasons with GM1536. Four polymorphic markers

identified on parental genotypes were further validated on a panel

of genotypes containing susceptible genotypes, both the parents

of mapping population and selected introgression lines. Three of

these markers have shown clear differentiation between resistant

and susceptible genotypes for rust resistance, while one diagnostic

marker was identified for LLS resistance. It is worth mentioning

here that two diagnostic markers for rust resistance can be used in

combination (GMRQ517 + GMRQ843) in the segregating popula-

tion to differentiate the homozygotes and heterozygotes.

In summary, the currently deployed genetic markers from the

previous study for selecting resistant plants in the field are not
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Figure 4 Validation of putative candidate

gene-based marker for rust resistance. (a)

Pseudomolecule A03 of Arachis duranensis

showing genomic region explaining 83.6% PVE

for rust resistance, (b) putative candidate gene

Aradu.H1HIG gene which produces purple acid

phosphatase (E1 to E5 refer to exon numbers

while I1 to I4 refer to intron numbers), (c) SNP

variation in Aradu.H1HIG gene and (d) marker

validation on a validation set comprising on a set

comprising bulks (resistant and susceptible),

susceptible genotypes (GJ 9, GJ 20, GJGHPS 1,

SunOleic 95R, ICGV 07368, ICGV 06420, TMV 2,

DH 86, TG 26, ICGV 91114 and JL 24), both the

parents (TAG 24 and GPBD 4).
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Figure 5 Validation of putative candidate gene-

based marker for late leaf spot resistance. (a)

Pseudomolecule A03 of Arachis duranensis

showing genomic region explaining 83.6% PVE

for controlling late leaf spot resistance, (b)

putative candidate gene Aradu.7MV8U gene

which produces transthyrectin-like protein (E1 to

E5 refer to exon numbers while I1 to I4 refer to

intron numbers), (c) SNP variation in

Aradu.7MV8U gene and (d) marker validation on

a validation set comprising on a set comprising

bulks (resistant and susceptible), susceptible

genotypes (GJ 9, GJ 20, GJGHPS 1, SunOleic 95R,

ICGV 07368, ICGV 06420, TMV 2, DH 86, TG 26,

ICGV 91114 and JL 24), both parents (TAG 24 and

GPBD 4) of mapping population and selected

introgression lines (four in the genetic background

of ICGV 91114, three in JL 24 and four in TAG 24)

developed through marker-assisted backcrossing

(MABC) approach.
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user-friendly as they require not only skill and technical expertise

but also are expensive and not cost-effective. This study has

provided allele-specific PCR-based markers for both diseases

which are user-friendly as they can be simply scored on agarose

gel electrophoresis. These newly developed markers are cost-

effective and very easy to genotype for developing improved

groundnut lines with enhanced resistance to LLS and rust.

Materials and methods

Plant materials and construction of bulks

The RIL mapping population TAG 24 9 GPBD 4 comprising of

266 individuals was used in this study. The resistant parent,

GPBD 4, is derived from the cross KRG 1 9 ICGV 86855 (CS 16)

and is used as a national check for resistance to both foliar

fungal diseases, that is rust and LLS resistance in All India

Coordinated Research Project on Groundnut (AICRP-G) in India.

It is important to note that ICGV 86855 (CS 16), an interspecific

derivative of A. cardenasii, was the resistance source for both

diseases in breeding GPBD 4 variety (Gowda et al., 2002). In

addition to the disease resistance, this variety is popular in the

Karnataka state of India because of its good agronomic features

such as medium maturity duration, high yield and high pod

growth rate with high oil content (Sujay et al., 2012). The

susceptible parent ‘TAG 24’ of the RIL population is an early

maturing popular variety with high harvest index, better parti-

tioning coefficient and tolerance to bud necrosis, but is highly

susceptible to rust and LLS diseases (Sujay et al., 2012).

Extensive phenotyping data for rust and LLS resistance were

assembled at the University of Agricultural Sciences, Dharwad,

India, for 6 years/seasons (2004–2009). The details on pheno-

typing were provided by Sujay et al. (2012). The above-

mentioned phenotyping data were used for construction of

two bulks with extreme phenotypes, that is resistant and

susceptible bulks in this study (Figure S1; Table S1).

DNA isolated from 25 RILs with lowest rust disease score was

pooled to constitute rust resistance bulk (Rust_Rbulk), while DNA

from 25 RILs with highest disease score was pooled to constitute

rust susceptible bulk (Rust_Sbulk) (Figure S2). Similarly, resistance

(LLS_Rbulk) and susceptible (LLS_Sbulk) bulks were constituted

for LLS resistance.

Construction of sequencing libraries and Illumina
sequencing

A total of five samples, that is resistant parent (GPBD 4),

resistant bulk for rust (Rust_Rbulk), susceptible bulk for rust

(Rust_Sbulk), resistant bulk for LLS (LLS_Rbulk) and susceptible

bulk for LLS (LLS_Sbulk), were prepared and used for sequenc-

ing on Illumina HiSeq 2500 (Illumina Inc., San Diego, CA, USA).

One Illumina library each was prepared for all the five samples

using TruSeq DNA Sample Prep kit LT, (set A) FC-121-2001. To

construct a library, 2 lg DNA from each of these five samples

was first sheared using diagenode Bioruptor� NGS (Diogenode,

Liege, Belgium) and then was subjected to end repairing and

adapter ligation. Realizing the importance of size selection for

use in resequencing, 2% agarose gel was used for size

separation and selected desired insert size of 500–600 bp.

These selected libraries of desired sizes were first purified and

then enriched using adaptor compatible PCR primers. To ensure

size distribution of libraries, the amplified DNA libraries were

also checked on an Agilent Technologies 2100 Bioanalyzer

(Agilent Technologies, Palo Alto, CA, USA) using a high-

sensitivity chip. These selected DNA libraries were then used

for generating 250 bases pair-end reads by sequencing on

Illumina HiSeq platform with Reagent Kit v2 (500-cycles).

Construction of reference-guided assembly for the
resistant parent

After generating the sequence on all five samples, the QTL-seq

pipeline (http://genome-e.ibrc.or.jp/home/bioinformatics-team/

mutmap) was used for calculating SNP index. This pipeline was

developed at Iwate Biotechnology Research Center, Japan. A

reference tetraploid genome assembly was developed using

diploid genome assemblies of both the progenitors, that is

assemblies for A-genome (A. duranensis) and B-genome

(A. ipaensis) (Bertioli et al., 2016). After downloading and

installing the QTL-seq pipeline, the cleaned reads of resistant

parent (GPBD 4) were first aligned to the above-mentioned

reference tetraploid genome assembly using inbuilt BWA aligner.

After aligning sequence reads to both diploid genomes sepa-

rately, the Coval software was used for postprocessing and

filtering of the alignment files (Kosugi et al., 2013). The variants

were called between resistant parent (GPBD 4) and both diploid

reference genomes. These variants were then used to develop

reference-guided assembly of the resistant parent; GPBD 4

(hereafter referred as GPBD 4 assembly) using synthetic tetraploid

genome assembly by substituting the bases with confidence

variants calls in the genome. After developing GPBD 4 assembly,

the reads from rust and LLS resistance (both resistant and

susceptible bulks) were then aligned onto GPBD 4 assembly. The

variants (SNP index) were then called for all the four bulk samples

with GPBD 4 assembly.

Calculation of SNP index

SNP index for both the set of bulks was calculated by comparing

with the GPBD 4 assembly following the formula suggested by

Abe et al. (2012). SNP index at a position in a pseudomolecule is

derived by division of the counts of alternate base with the

number of reads aligned. The SNP positions with read depth <7 in

both the bulks and SNP index <0.3 in either of the bulks were

filtered out. ΔSNP index was then calculated by subtracting SNP

index of resistant bulk from SNP index of susceptible bulk. It is

important to mention that only those SNPs were selected for

ΔSNP index calculation that had homozygous alleles in both

bulks, that is resistant as well as susceptible. Further, only those

SNP positions considered as the causal SNPs responsible for the

trait of interest which passed the criteria of having ΔSNP
index = �1. ΔSNP index = �1 indicate that the allele called in

resistant bulk was same as that of resistant parent while alternate

base in susceptible bulk (Figure S3). As the QTLs for both the

resistance traits were found in A03 pseudomolecule, emphasis

was given more on the SNP indices calculated for the pseudo-

molecule A03 for further discovery of candidate genes and

marker development.

Marker–trait association and re-estimation of QTL effect

Based on the SNP index values of rust and LLS bulks, allele-

specific primers were designed for markers targeting the

promising SNPs differentiating the bulks using BatchPrimer3

(You et al., 2008). Genotyping for these markers was done

following the PCR conditions explained in Varshney et al.

(2009) and Sujay et al. (2012). After PCR amplification, the

alleles were scored on 2% agarose gel as present and absent.

Initially, all the markers were amplified on both parents (TAG
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24 and GPBD 4) of the RIL population. The genotyping data for

newly developed polymorphic markers were generated on

complete RIL population and were integrated into the linkage

group of existing genetic map using JoinMap 4.0 (Van Ooijen,

2006). The Kosambi map function (Kosambi, 1944) with

recombination frequency of 0.45 was used achieving the map

order for these new markers by keeping the order fixed for

earlier marker loci. The genetic map for this linkage group was

then redrawn using MapChart for Windows for better visual-

ization (Voorrips, 2002). This genetic information together with

phenotyping data was used for conducting QTL analysis using

the composite interval mapping model in the software WinQTL

cartographer 2.5 (Wang et al., 2007). The optimum analysis

parameters were set for the analysis such as 1 cM walking

speed, 10 cM window size and 5 cM for number of control

markers. The QTLs which had LOD values >2.5 were considered

as ‘significant’ QTLs.

Validation of allele-specific markers

The above-mentioned four promising markers were validated on a

set of 26 samples including 12 introgression lines and a set of ten

susceptible parental lines, parents of RIL population and both the

bulks to see their utility inGAB. The introgression lines included four

ILs (ICGV 13185, ICGV13186, ICGV13189 and ICGV13193) in the

genetic background of ICGV 91114, three ILs (ICGV 13120, ICGV

13128 and ICGV 13130) in the genetic background of JL 24 and

four ILs (ICGV 13199, ICGV 13200, ICGV 13206 and ICGV 13209)

in the genetic background of TAG 24. These introgression lines

were developed using marker-assisted backcrossing (MABC)

approach (Varshney et al., 2014a) using the then available linked

SSRmarkers (IPAHM103, GM2301, GM1536 andGM2079) for the

rust resistance ingroundnut identifiedbyKhedikar et al. (2010) and

Sujay et al. (2012). Remaining ten genotypes included nine

susceptible genotypes namely TMV 2, GJ 9, GG 20, GJGHPS1,

SunOleic 95R, ICGV 07368, DH 86, TAG 24 and TG 26 and one

resistant genotype, GPBD 4.
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Figure S12Validation of four identified diagnostic markers in a

set of germplasm for rust and late leaf spot resistance.

Table S1 Details on the recombinant inbred lines (RILs) selected

for construction of resistant and susceptible bulks.

Table S2 Details on whole-genome resequencing data generated

on parental genotypes and bulked samples using Illumina HiSeq

2500.

Table S3 Pseudomolecule-wise SNPs distribution between resis-

tant and susceptible bulks for rust and late leaf spot resistance.

Table S4 Identification of SNPs between resistant and susceptible

bulks using QTL-seq approach for rust resistance.

Table S5 Identification of SNPs between resistant and susceptible

bulks using QTL-seq approach for late leaf spot resistance.

Table S6 List of allele-specific primers developed for rust and late

leaf spot resistance.

Table S7 Associated markers identified on A03 for rust and

late leaf spot resistance using single marker analysis

(SMA).

ª 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 15, 927–941

Genomics regions and diagnostic markers for foliar disease resistance in groundnut 941


