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Movement artifacts compromise image quality and may interfere with interpretation, 
especially in magnetic resonance imaging (MRI) applications with low signal-to-noise 
ratio such as functional MRI or diffusion tensor imaging, and when imaging small lesions. 
High image resolution has high sensitivity to motion artifacts and often prolongs scan 
time that again aggravates movement artifacts. During the scan fast imaging techniques 
and sequences, optimal receiver coils, careful patient positioning, and instruction may 
minimize movement artifacts. Physiological noise sources are motion from respiration, 
flow and pulse coupled to cardiac cycles, from the swallowing reflex and small spon-
taneous head movements. Par example, in resting-state functional MRI spontaneous 
neuronal activity adds 1–2% of signal change, even under optimal conditions signal 
contributions from physiological noise remain a considerable fraction hereof. Movement 
tracking during imaging may allow for prospective correction or postprocessing steps 
separating signal and noise.

Keywords: acute stroke imaging, dynamic magnetic resonance imaging, motion artifacts, noise reduction, motion 
tracking

BACKGROUND

Movement artifacts are an inherent problem to magnetic resonance imaging (MRI) technology 
where low signal and sensitivity to motion are obstacles driving the development of ever faster 
sequences, e.g., gradient echo, and finer detection equipment, e.g., multichannel phased array coils, 
since the very beginning of nuclear magnetic resonance (NMR) imaging (1). A brief history of 
medical imaging may be found in Ref. (2).

why is Movement a Problem?
Movement artifacts in MRI degrade image quality and may lead to misinterpretation especially 
in MRI acquisitions with low signal-to-noise ratios (SNRs), or for small lesion pathology. In MRI 
sequences with robust visual interpretation, simple motion artifacts can be identified as, e.g., 
ghosting or blurring. In dynamic MRI scans, motion artifacts can cause signal changes that may 
severely confound statistical analysis rendering results unreliable (3, 4).
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FiGURe 1 | Coronal reconstruction of echo planar images (ePi) in volume without motion (volume 60, left) and volume with motion artifacts (volume 
305, right). The striped appearance of volume 305 arises from the interleaved EPI sequence used. Two movement measures are shown: (A) Euclidian translational 
displacement in millimeter and (B) DVARS (percent mean signal change) as defined in Ref. (5). In this study of children, with liberal chosen movement thresholds, we 
discarded volumes exceeding threshold and marked in red.
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Movement Artifacts interfere with image 
interpretation in Dynamic and Static MRi
Functional MRI (fMRI)
Functional MRI measures subtle changes in local blood oxygena-
tion and flow related to neural activity. Head motion artifacts can 
cause signal changes, Figure 1. In the worst case, motion-related 
signal changes may be correlated with activation of interest 
in task-based fMRI rendering results difficult to interpret or 
in resting-state where motion-related signal changes may be 
confused with correlations between regions when measuring 
functional connectivity (3–6). By carefully mapping isolated head 
movement artifacts, spatial patterns resembling the default mode 
network were found (3). Also movement induced signal changes 
introduce spatiotemporal structured noise that invalidate the 
typical assumptions of independent and identically distributed 
Gaussian noise in the statistical analysis (7).

Diffusion-Weighted Imaging (DWI)
Diffusion-weighted imaging shows directional variation of diffu-
sion restriction in diffusion-weighted images. Movement artifacts 
cause misalignment of data and introduce noise in the images 
rendering results unreliable (8). The main compromise usually 
stands between resolution and acquisition time. DWI has long 
acquisition times with repetition times up to 10 s which increases 
sensitivity to motion artifacts. For detection of focal diffusion 
restriction, one usually uses three orthogonal diffusion direc-
tions only, with usual 1–2 mm axial resolution and acquisition 

times around 2  min. Diffusion tensor imaging (DTI) used for,  
e.g., fiber tracking and determination of white mater integrity 
needs imaging along at least six gradient directions, usually 20–60. 
DTI has longer acquisition times, usually 4–5 min, rendering it 
more susceptible to motion artifacts than 3-gradient direction 
DWI, Figure 2. In DWI, artifacts due to physiological noise are 
usually minor and can be handled by gating (9–11).

Arterial Spin Labeling (ASL)
Arterial spin labeling is a perfusion imaging technique that uses 
endogenous blood water labeled as “paramagnetic tracer” to esti-
mate cerebral blood flow. One labels blood water prior to inflow 
into the imaging region and subtracts labeled images from control 
images to find a measure proportional with cerebral blood flow. 
Bulk motion during free breathing introduces additional blur-
ring. Breath-hold timing and background suppression schemes 
enhance image quality using series of additional saturation and 
inversion pulses (12).

Structural Images
In structural images movement, artifacts are a smaller problem, 
here the strong SNR enables visual acuity to robustly differentiate 
between anatomical structure and artifact. Yet, challenges remain 
especially in areas with high intrinsic motion, e.g., cardiac MRI 
encounters both cardiac pumping and respiration. Head motion 
has been shown to compromise T1-derived volumetric measure-
ments of cortical thickness, where a seeming reduction imitates 
cortical atrophy (13).
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FiGURe 2 | (A) Three and (B) 20-gradient direction diffusion-weighted 
imaging (DWI) images of 68 years female with 2 h lasting transient ischemic 
attack symptoms including right hand paresis and slurred speech. In  
(B), note the occipital ring artifact, blurred contours of the right-sided cortical 
diffusion lesion and blurred cortex outline due to motion. Three-gradient 
direction DWI had acquisition time 2 min and 7 s and 20-gradient direction 
DWI had 4 min and 39 s, both were standard vendor protocols.
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Small Lesions
Small lesions, 3 mm or below, are challenging to image with high 
fidelity and to confidently categorize (14, 15), yet evidence grows 
of their clinical importance as, e.g., small stroke suspect lesion 
presence is associated with increased mortality and morbidity 
(16). Intra- and interrater agreement show deviations <5% and 
2 ml for acute ischemic DWI lesions over 15 ml (17). For smaller 
lesions in a combined minor stroke and TIA cohort with mean 
DWI lesion volume 3.4  ml, measurement intra- and interrater 
agreement were very good (ICC 0.96 and 0.94) (18). Still, 3.4 ml 
corresponds to 1.5 cm lesion length using simple cubic calcula-
tion. While these results are excellent, there still is a way to lesions 
around 3 mm, the usual cutoff value for ischemic lesion inclusion 
(19), these would have volumes of 0.027 ml. Only recently, the 
Standards for Reporting Vascular Changes on Neuroimaging 
group has included lesions below 3 mm as potential signs of small 
vessel disease (14). The goal is to image structures with enough 
detail and minimal distortion to achieve proper identification. 
One path is noise reduction.

Higher Field Strengths Yield Higher 
Resolution and Higher Sensitivity to 
Motion Artifacts
There is a general trend toward higher magnetic field strengths 
(1). At 7  T, angiographic MRI studies using susceptibility-
weighted imaging (20) or Time Of Flight (21) achieve resolutions 
similar to CT (about 0.4 mm in-plane) without contrast agents or 
ionizing radiation. The increase in imaging sensitivity at higher 
field strengths comes with an increase in sensitivity to physi-
ological noise and motion, i.e., the proportion of noise increases 
even without increasing resolution. Higher B fields allow higher 
resolution, where even smaller movement artifacts compromise 
image quality. Also high resolution demands long acquisition 

times and motion artifacts worsen with longer acquisition times. 
The problem remains in future.

Aim
This text aims to assess if subject-related movement artifacts in 
MRI are problematic, i.e., interfere with interpretation, to identify 
where this is the case, investigate the magnitude of movement 
artifacts compared with MR signal and other noise sources, and to 
explore strategies to attenuate or circumvent movement artifacts.

This review is rooted in neuroimaging in a clinical context 
but extends into the realm of research, as many clinicians are 
involved in research budding from clinics striving to improve 
current practice. The intended audience is the interested neurolo-
gist in the interface between clinics and neuroscientific research. 
The review’s scope is introductory, to provide a background for 
understanding the underlying causes of motion artifacts and 
strategies for their mitigation. This is a narrative review based on 
a practical approach; a systematic literature review is beyond the 
scope of this text.

THe SiGNAL AND THe NOiSe

Outlining the Problem: Accurate imaging 
at High Resolution
Small objects are most susceptible to motion artifacts. If the 
resolution, voxel size, is near or larger than the imaged objects, 
their contours appear smeared or blurred and the effect is 
called partial volume. Similarly, movement artifacts degrade 
image quality, because some voxels will be moved to another 
part of the object that may have different signal intensity, e.g., 
in the brain a white matter voxel is moved into gray matter or 
cerebrospinal fluid filled cavities as the lateral ventricles. Thus, 
motion artifacts are most prominent at contrast edges (22), i.e., 
the border between the brain and the skull or air-filled sinuses, 
borders between gray and white matter and around the lateral 
ventricles.

In image acquisition, in-plane acceleration schemes (23–25) 
are attractive as they allow decreasing the length of readout trains. 
This greatly reduces distortions allowing shorter echo times and 
higher resolutions to be achieved. However, in this context, 
it is important to note that these acceleration schemes come 
at the price of reduced SNR (25–27) and importantly can lead 
to increased motion sensitivity, in particular if motion occurs 
during the reference/auto-calibrating signal scans. Furthermore, 
accelerated imaging may cause complicated motion artifacts that 
are more difficult to identify. Simultaneous multislice (SMS) 
acquisition schemes (28, 29) allow speeding up echo planar 
imaging (EPI) acquisition with little or no penalty in the SNR 
for moderate acceleration factors. When compared to in-place 
acceleration schemes, SMS is typically considered to increase 
motion sensitivity to a lesser extent; however, it should be noted 
that SMS can also complicate the identification of motion artifacts 
as they will affect several slices simultaneously and may lead to 
reconstruction artifacts.

One may attempt to correct for motion artifacts, i.e., motion-
induced voxel misplacement relative to adjacent structures, 
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TABLe 2 | Contributions to rs-fMRi signal change in whole brain gray 
matter at voxel level in 7 T.

Low frequency drift due to scanner instability 3.2%
Thermal noise 2.3%
Spontaneous neuronal activity 1.9%
RETROICORa 0.1%
Cardiac rate 0.1%
Respiration volume per unit time 0.1%

From Ref. (34).
aEight regressors correlated with physiological activity.

TABLe 1 | Spatial resolution.

B (T) Resolution (mm3)

3 T anatomical images 1 × 1 × 1
3 T functional MRI (fMRI) and perfusion contrast 2 × 2 × 2a

7 T anatomical images 0.5 × 0.5 × 0.5
7 T fMRI 1 × 1 × 1a

From Ref. (1).
aSpatial resolution is inferior to anatomical because the small signal changes, only a few 
percent of the available signal. The use of higher resolutions generally reduces both 
image signal-to-noise ratio and contrast-to-noise ratio.
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by retrograde realignment of the acquired image slices. The 
procedure is called six parameter rigid body transformation and 
mitigates motion-related noise (30, 31). One assumes that the 
imaged volume, i.e., the head, is a rigid body and that its move-
ments can be described with six vectors, three translational along 
orthogonal axes, and three rotational. Retrograde calculations 
of translational and rotational movements are based on the 
assumption that motion happens only between volumes. In real-
ity, most sequences use most of the time for either magnetization 
or readout. Also the method does not account for non-linear 
motion effects or movements in previous scans and their effects 
on field inhomogeneity and spin history (32). Motion artifacts, 
here mostly head motion, cause local changes in the magnetic 
field showing for echo planar sequences as warping in the phase 
encoding direction and for spiral acquisition as blur (22). Yet, the 
six-parameter rigid body transformation greatly reduces motion 
effects and is a common preprocessing step in fMRI.

Scaling the Signal and the Noise
Back to Basics—How Are MR Images Made?
When an object is within a strong magnetic field, one may send 
in a radio wave and receive an echo (the MR signal). The echo is 
determined by two physical constants, T1 and T2. Each tissue has 
unique T1 and T2 relaxation curves.

The MRI signal is created by a strong static magnetic field (B0) 
formed by a superconductive coil combined with one or more 
radiofrequency (RF) fields (B1) created through the application 
of RF pulses and several weak magnetic fields generated by gradi-
ent coils.

For anatomic MR signal (echo) localization in voxels, one 
forms a grid with three orthogonal directions: the RF excita-
tion pulse creates a weaker B1 field. A slice-selective gradient 
cuts the B1 field into two-dimensional (2D) slices, and in each 
2D slice magnetic field gradients encode phase and frequency 
forming cubes (voxels) with unique anatomic localization. The 
RF pulse is tuned to the NMR frequency of hydrogen, which is 
determined by the strength of the B0 field and the gyromagnetic 
ratio of hydrogen. When a patient enters the scanner, the mag-
netic moments of protons in the body tend to align with the B0 
field. The RF pulse is applied and forces the magnetic moments 
to precess at their resonant frequency creating the B1 field. This 
precession and its decay after the RF pulse is switched off (the 
echo) are detected by one or more receive coils as the signal. For 
more details, see, e.g., Ref. (2, 33).

Hydrogen (1H) is the most abundant and commonly used. 
19F, 31P, 7L1, 129Xe, 23Na, 13C, and 17O are examples of other 
nuclei that possess the required spin property, and each requires 
its own RF pulse tuned to its frequency.

How Does the MR Signal Relate to Field Strength?
Higher magnetic field strengths improve image SNR and contrast-
to-noise ratio (CNR) yielding higher resolution. Images with 
higher resolution are more sensitive to motion artifacts. Table 1 
shows that higher spatial resolution is achievable at higher field 
strength and that the spatial resolution of fMRI is inferior to the 
anatomical resolution because signal changes are small, only a 
few percent of the available signal (Table 2). All other conditions 

equal, higher spatial resolution requires longer acquisition times. 
Presumably, one could obtain higher resolution in the same or 
shorter time if one increases the SNR/CNR accordingly.

fMRi Signal
The anatomical basis of the fMRI signal are perfusion and oxygen-
ation-related local changes in venous blood [blood oxygenation 
level-dependent (BOLD) signal] in the cortex and pial vessels 
related to local neuronal activity (35, 36). Deoxyhemoglobin is 
paramagnetic and oxyhemoglobin is diamagnetic. The paramag-
netic deoxyhemoglobin causes a focal artifact of signal loss in 
T2*-weighted sequences because it causes a focal inhomogeneity 
in the magnetic field that increases T2* decay. The metabolic 
demand of neural activity increases local perfusion and oxy-
genation, decreasing local deoxyhemoglobin concentration. The 
relative absence of deoxyhemoglobin and its related signal loss 
is seen as BOLD signal increase. For more details, see, e.g., Ref. 
(37). Movement may veil or obliterate these subtle local field 
homogeneity changes.

The changes in BOLD signal amplitude are only a few percent 
of the signal and are too small for visual assessment. They require 
statistical analysis for detection (Table 2). fMRI precision esti-
mation depends not only on image SNR but also on the signal 
stability on repetition of the image acquisition as reflected in the 
temporal SNR (tSNR) (38).

Breaking Down the Noise into its 
Components—Nuisance Modeling
In fMRI signal, variability may stem from four principal 
sources as thermal and scanner noise arising from system insta-
bilities, physiological noise of BOLD origin (spontaneous neural  
activity), and other physiological noise arising from subject 
motion, cardiac cycles, and respiration (34).

Table 2 shows noise sources’ relative contribution to resting-
state fMRI signal changes.

http://www.frontiersin.org/Neurology/
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TABLe 3 | Displacement sizes.

Respiratory motion of the diaphragm Several cm
Respiratory motion of the chest wall Several mm
Cardiac motion >1 cm (44)
Head motion 1 mm (32)
Brain pulsation 0.1 mm (45)

TABLe 4 | Common sources of motion artifacts and practical tips.

Motion source Mitigation strategy

Situational 
subject motion

Protocol design matches population  
(e.g., shorter protocols in acute settings)
Patient preparation including management  
of pain, claustrophobia, or other discomfort
Information, scanner familiarization
Comfortable positioning and optimal head  
support by padding
Reminders
Structural magnetic resonance imaging:  
sedation, if clinically indicated
Functional MRI: task pretraining

Physiological Monitoring
Imaging in chosen intervals on respiratory/cardiac function curve
Skip data with motion above predefined threshold
Post hoc motion correction as estimated from data
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Thermal noise is related to the scanning process and has white 
noise characteristics (uniform power spectral density) and origi-
nates from both the brain tissue and from detector electronics. 
It can be reduced using high B-fields and multichannel detector 
array receive coils.

Non-thermal, physiological noise sources generally cause 
signal fluctuations that scale with the absolute signal strength 
(39–41). In fMRI, the noise sources, physiological and non-
physiological, need to be properly characterized and separated 
from the signal (34, 42). Otherwise they limit the improvements in 
detection sensitivity available with high B-fields (27, 43).

Movement-Related Noise and Its Size
Even healthy and cooperative adults show spontaneous head 
movements up to a millimeter (32). Friston and colleagues (32) 
divided movement-related signal components into differences in 
the position of the object in the scanner and differences due to the 
history of the position of the object. Table 3 shows displacement 
sizes for respiratory, cardiac, and head motion.

Respiration and Cardiac Cycles
During normal breathing, the diaphragm moves several cen-
timeters and the chest wall several millimeters. Most imaging 
strategies involve tracking of the respiratory cyclic motion and 
imaging within a chosen interval of the cycle (gating).

Cardiac motion and arterial pulsation have implications for 
imaging, especially for heart and brain studies. Cardiac pump-
ing consists of longitudinal and radial contraction and causes 
displacements measuring over 1 cm in healthy individuals (44). 
Also beat-to-beat variations in blood flow may cause artifacts 
(46). Further reading on motion in cardiovascular imaging can 
be found in Ref. (47).

Brain pulsation cause non-rigid displacements of up to 
0.1 mm in some brain regions (45). Timing the MRI pulse with 
respiratory and cardiac cycles (gating) may be necessary when 
imaging at submillimeter resolutions in research settings.

Other fMRi- and Dwi-Relevant Artifacts
Susceptibility Artifacts at Tissue Boundaries
The EPI sequence used for fMRI and DWI is vulnerable to sus-
ceptibility artifacts. Differences in tissue magnetic susceptibility 
cause field inhomogeneity at tissue boundaries, which cause spins 
to dephase faster and frequency shifts that produce low signal 
areas. Bone and air have much lower magnetic susceptibility 
than most soft tissues; thus, the signal loss is most pronounced at 
brain–air or brain–bone interfaces.

HANDLiNG THe NOiSe

To achieve as good and reliable data as possible to draw valid 
conclusions from it is an advantage to know if and when motion 

has occurred and its extent. Ideally, external motion tracking is 
preferable to motion estimation from data itself as motion may 
compromise the acquired data. The effective tracking system aims 
to provide real-time tracking with subpixel accuracy and must 
not introduce extra artifacts (48).

General Strategies to Avoid or Reduce 
Physiologic Noise—Quick and Snug
The use of fast imaging sequences and optimal receive coils 
minimizes acquisition times and hence subject motion. One may 
consider using shorter protocols with for restless patient groups. 
Usually these protocols have a compromise between resolution 
and acquisition time, they are useful in, e.g., acute settings where 
quick information without detail is better than no information. 
Careful considerations on comfortable positioning of patients 
in the scanner, instruction and reminding of the importance of 
staying still during the scan are essential. Sedation or anesthesia 
may be necessary for difficult cases. Table 4 summarizes common 
sources of motion artifacts and practical tips.

Shielding
Motion artifacts occur in the phase direction. Saturation bands 
are areas where RF pulses are used to suppress MR signal from 
moving tissues outside the structure one wants to image, e.g., if 
on axial spine images the phase direction is anterior–posterior, 
the saturation band is placed to cover the throat and esophagus to 
avoid motion artifacts from swallowing on the spine.

Alternative Acquisition Patterns in k-Space
Motion artifacts on sequences with simple linear data acquisi-
tion in k-space result in concentrated motion artifacts in certain 
areas of the scan according to the time of the motion event, e.g., 
a single slice becomes unreadable. Alternative, e.g., propeller-
shaped data acquisition patterns fill the center of the k-space 
repeatedly and thereby enabling motion correction between the 
propeller blades if inconsistencies occur (49, 50).

Handling Noise from Respiration and 
Cardiac Cycles in Advanced Neuroimaging
In functional MRI, changes in respiration rate and depth over 
time cause non-neuronal BOLD signal changes, i.e., the varying 
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TR due to, e.g., breath hold will cause T1 effects in BOLD imag-
ing that are difficult to handle. The most common approach in 
neuroimaging is a combination of careful instruction, respiration 
monitoring, skip-and-redo, and post hoc modeling to eliminate 
respiration-induced signal changes (51). Other specific strategies 
to handle artifacts from respiration are respiratory gating or trig-
gering, respiratory compensation or phase re-ordering (52) and 
navigator echoes (53).

Cardiac cycles may be tracked either centrally with ECG 
nodes or peripherally with pulse oximeters. While traveling in 
the arteries, the pulse cycle is delayed and deformed with distance 
to the heart, so the tracking position depends on what one wants 
to image: imaging the heart will yield the best results by tracking 
the cardiac motion. Imaging the brain one can use peripheral 
tracking as the distance between heart and a fingertip is similar 
to the distance between heart and brain.

Noise from respiratory and cardiac cycles may be removed by 
regression using the recorded data in a tape-and-filter strategy  
(7, 51, 54). An alternative strategy is noise removal as estimated 
from the data itself (6, 55, 56).

Head Motion
Head motion can be mitigated through careful instruction and 
comfortable fixating strategies as cushions and straps. Several 
tracking systems to monitor head motion have been developed 
and are described below. The main challenge is real-time integra-
tion of motion-tracking data and image acquisition.

The Case for Prospective versus Retrospective Head 
Motion Correction
Retrospective and intra-image methods for head motion registra-
tion perform image acquisition and head position registration in 
the same data set. Attempts at motion correction within the data 
cannot correct for through-plane motion (57), and also cannot 
account for movements in previous scans with effects on field 
inhomogeneity and spin history (32). The method may introduce 
blurring artifacts through interpolation.

The solution is image acquisition with simultaneous pros-
pective motion correction (57–60). Thesen and colleagues (58) 
deve loped Prospective Acquisition CorrEction (PACE) that 
acquired images for a volume while monitoring the head position 
and realigned the 3D grid to the head position before scanning 
the next volume in a stepwise process with high precision. The 
main disadvantage is that movements are not corrected until they 
are detected in the image, so rigid body transformation is still 
necessary.

Scanner-External Motion Tracking Strategies
The most common strategy for prospective, slice-by-slice head 
movement registration is to optically monitor a marker attached 
to the patient’s forehead with one or more video cameras and 
synchronize data continuously between scanner-external the 
camera space (where the head is) and the magnet space (where 
BOLD signals are recorded) (59–61). This requires are extra 
hardware (camera and marker setup), line of sight between 
camera and head marker, extra software for position registration 
and regular synchronization with the BOLD signal. In addition, 

the initial setup requires time [ca. 30  min (60)] and may be a 
constraint to the patient flow. If the system requires calibration 
for individual patients this prolongs the in-bore patient time and 
worsens motion artifacts akin to prolonged scan time. On the pro 
side, it is universally applicable to all scanner types and relatively 
cheap.

ReMAiNiNG CHALLeNGeS

Power and colleagues (5) have shown that movement artifacts 
imitating functional connectivity correlations between brain 
regions persist even after on-line scanner motion corrections as 
proposed by Thesen and colleagues (58). Here, motion-induced 
artifacts occurred with movements in the order of a few tenths 
of a millimeter or less. They propose a skip-and-redo strategy of 
motion tracking and removal of acquired volumes with tracked 
movement artifacts over a chosen threshold. tSNR may provide 
a quality measure of functional connectivity data (3). Further 
information on postprocessing strategies for noise removal may 
be found in Ref. (3, 4, 6).

At present, scanner internal and external motion correction 
solutions exist, and their main application is to find the areas 
with excessive motion during the scan, so these data can be 
discarded and reacquired. The remaining problem is to integrate 
data continuously from a motion correction setup during image 
acquisition.

CONCLUSiON

In summary, movement artifacts are a problem in applications 
with low SNR, and they are exacerbated at high resolution and 
long acquisition times. Basic important strategies for motion 
reduction are comfortable patient positioning, instruction, and 
reminding of the importance to keep still during the scan. Fast 
imaging techniques are essential for short acquisition times. 
Common preprocessing techniques include realignment and six 
parameter rigid body transformation, and measures to detect 
motion, e.g., DVARS (percent mean signal change). Regression 
of physiological noise from cardiac and respiratory motion is 
recommended employing a nuisance modeling strategy, alterna-
tively, if former is futile, as estimated from the data itself. External 
motion tracking yields best control of motion artifacts that may 
compromise data but requires extra equipment and setup. Its 
main challenge is real-time data integration. Prospective tracking 
of cardiac and respiratory cycles and head motion provide pos-
sibilities for motion correction. Head motion artifacts are ideally 
handled by correction using tracked parameters, or combined 
with a skip-and-redo strategy for movements over a chosen 
threshold.
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