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Abstract: Plant Diseases and Pests are a major challenge in the agriculture sector. An accurate and a
faster detection of diseases and pests in plants could help to develop an early treatment technique
while substantially reducing economic losses. Recent developments in Deep Neural Networks have
allowed researchers to drastically improve the accuracy of object detection and recognition systems.
In this paper, we present a deep-learning-based approach to detect diseases and pests in tomato plants
using images captured in-place by camera devices with various resolutions. Our goal is to find the
more suitable deep-learning architecture for our task. Therefore, we consider three main families of
detectors: Faster Region-based Convolutional Neural Network (Faster R-CNN), Region-based Fully
Convolutional Network (R-FCN), and Single Shot Multibox Detector (SSD), which for the purpose of
this work are called “deep learning meta-architectures”. We combine each of these meta-architectures
with “deep feature extractors” such as VGG net and Residual Network (ResNet). We demonstrate the
performance of deep meta-architectures and feature extractors, and additionally propose a method
for local and global class annotation and data augmentation to increase the accuracy and reduce the
number of false positives during training. We train and test our systems end-to-end on our large
Tomato Diseases and Pests Dataset, which contains challenging images with diseases and pests,
including several inter- and extra-class variations, such as infection status and location in the plant.
Experimental results show that our proposed system can effectively recognize nine different types of
diseases and pests, with the ability to deal with complex scenarios from a plant’s surrounding area.
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1. Introduction

Crops are affected by a wide variety of diseases and pests, especially in tropical, subtropical, and
temperate regions of the world [1]. Plant diseases involve complex interactions between the host plant,
the virus, and its vector [2]. The context of this problem is sometimes related to the effects of the
climate change in the atmosphere and how it alters an ecosystem. Climate change basically affects
regional climate variables, such as humidity, temperature, and precipitation, that consequently serve
as a vector in which pathogens, virus, and plagues can destroy a crop, and thus cause direct impacts
on the population, such as economic, health, and livelihood impacts [3].

Diseases in plants have been largely studied in the scientific area, mainly focusing on the biological
characteristics of diseases [4]. For instance, studies on potato [5] and tomato [6,7] show how susceptible
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a plant is to be affected by diseases. The problem of plant diseases is a worldwide issue also related
to food security [8]. Regardless of frontiers, media, or technology, the effects of diseases in plants
cause significant losses to farmers [9]. An earlier identification of disease is nowadays a challenging
approach and needs to be treated with special attention [10].

In our approach, we focus on the identification and recognition of diseases and pests that
affect tomato plants. Tomato is economically the most important vegetable crop worldwide, and
its production has been substantially increased through the years [11]. The worldwide cultivation of
tomato exposes the crop to a wide range of new pathogens. Many pathogens have found this crop to
be highly susceptible and essentially defenseless [6]. Moreover, viruses infecting tomato have been
described, while new viral diseases keep emerging [12].

Several techniques have been recently applied to apparently identify plant diseases [13].
These include using direct methods closely related to the chemical analysis of the infected area
of the plant [14–16], and indirect methods employing physical techniques, such as imaging and
spectroscopy [17,18], to determine plant properties and stress-based disease detection. However, the
advantages of our approach compared to most of the traditionally used techniques are based on the
following facts:

• Our system uses images of plant diseases and pests taken in-place, thus we avoid the process of
collecting samples and analyzing them in the laboratory.

• It considers the possibility that a plant can be simultaneously affected by more than one disease
or pest in the same sample.

• Our approach uses input images captured by different camera devices with various resolutions,
such as cell phone and other digital cameras.

• It can efficiently deal with different illumination conditions, the size of objects, and background
variations, etc., contained in the surrounding area of the plant.

• It provides a practical real-time application that can be used in the field without employing any
expensive and complex technology.

Plant diseases visibly show a variety of shapes, forms, colors, etc. [10]. Understanding this
interaction is essential to design more robust control strategies to reduce crop damage [2]. Moreover,
the challenging part of our approach is not only in disease identification but also in estimating how
precise it is and the infection status that it presents. At this point, it is necessary to clarify the differences
between the notions of image classification and object detection. Classification estimates if an image
contains any instances of an object class (what), unlike a detection approach, which deals with the class
and location instances of any particular object in the image (what and where). As shown in Figure 1,
our system is able to estimate the class based on the probability of a disease and its location in the
image shown as a bounding box containing the infected area of the plant.
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aims to detect both class (what) and location (where) of the affected areas in the image.
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Recent advances in hardware technology have allowed the evolution of Deep Convolutional
Neural Networks and their large number of applications, including complex tasks such as object
recognition and image classification. Since the success of AlexNet [19] in the ImageNet Large Scale
Visual Recognition Challenge [20] 2012 (ILSVRC), deeper and deeper networks [21–26] have been
proposed and achieved state-of-the-art performance on ImageNet and other benchmark datasets [27].
Thus, these results evidence the need to study the depth and width, as deeper and wider networks
generate better results [28].

In this paper, we address disease and pest identification by introducing the application of deep
meta-architectures [29] and feature extractors. Instead of using traditionally employed methods, we
basically develop a system that successfully recognizes different diseases and pests in images collected
in real scenarios. Furthermore, our system is able to deal with complex tasks, such as infection status
(e.g., earlier, last), location in the plant (e.g., leaves, steam), sides of leaves (e.g., front, back), and
different background conditions, among others.

Following previous approaches [30–32], we aim to use meta-architectures based on deep detectors
to identify Regions of Interest (ROI) in the image, which correspond to infected areas of the plant.
Each ROI is then classified as containing or not containing a disease or pest compared to the
ground-truth annotated data. Using deep feature extractors, our meta-architecture can efficiently
learn complex variations among diseases and pests found in different parts of the plant and deal with
different sizes of candidates in the image.

The contributions of this paper are as follows: we propose a robust deep-learning-based detector
for real-time tomato diseases and pests recognition. The system introduces a practical and applicable
solution for detecting the class and location of diseases in tomato plants, which in fact represents a main
comparable difference with traditional methods for plant diseases classification. Our detector uses
images captured in-place by various camera devices that are processed by a real-time hardware
and software system using graphical processing units (GPUs), rather than using the process of
collecting physical samples (leaves, plants) and analyzing them in the laboratory. Furthermore,
it can efficiently deal with different task complexities, such as illumination conditions, the size of
objects, and background variations contained in the surrounding area of the plant. A detailed review
of traditional methods for anomaly detection in plants and deep-learning techniques is presented
in Section 2. Our proposed deep-learning-based system and the process for detecting diseases and
pests is detailed in Section 3. In Section 4, we show the experimental results to demonstrate how our
detector is able to successfully recognize nine different diseases and pests and their location in the
images while providing robust real-time results. Moreover, we found out that using a technique-based
data annotation and augmentation method results in better performance. In the last section, we study
some of the detection failures and conclude that, although the system shows outstanding performance
when dealing with all complex scenarios, there is still room for prediction improvements as our dataset
becomes larger and includes more classes.

2. Related Works

2.1. Anomaly Detection in Plants

Plant diseases identification is a critical topic that has been studied through the years, and is
motivated by the need to produce healthy food. However, some desirable elements to take into
account should be cost-effectiveness, user-friendliness, sensitiveness, and accuracy [33]. In the last
decade, several works have proposed some nondestructive techniques to overcome those facts. In [34],
hyperspectral proximal sensing techniques were used to evaluate plant stress to environmental
conditions. Optical technologies are practical tools considered for monitoring plant health; for
example, in [35], thermal and fluorescence imaging methods were introduced for estimating plant
stress produced mainly by increased gases, radiation, water status, and insect attack, among others.
Another important area includes the study of plant defense in response to the presence of pathogens.
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For that effect, in [36], chemical elements were applied to leaves in order to estimate their defense
capabilities against pathogens. To study plant robustness against nutritional facts, in [37], potato plants
were cultivated in the presence of several nutritional elements to evaluate their effects in the crop.

As mentioned earlier, the area of plant anomaly detection has been dealt with by different media.
Although previous methods show outstanding performance in the evaluated scenarios, they do not
provide yet a highly accurate solution for estimating diseases and pests in a real-time manner. Instead,
their experiments are mainly conducted in a laboratory or using expensive techniques. Therefore,
our approach is focused on a cost-effective technique that uses images collected in situ as our source
of information, including variations of the scenario in place. Before Deep Learning became popular
in the Computer Vision field, several handcrafted feature-based methods had been widely applied
specifically for image recognition. A handcrafted method is called so because of all the human
knowledge implied in the development of the algorithm itself and the complex parameters that are
included in the process. Some disadvantages of these methods are also the high computational cost
and time consumption due to the complex preprocessing, feature extracting, and classifying. Some of
the best-known handcrafted feature methods are the Histogram of Oriented Gradients (HOG) [38]
and Scale-Invariant Feature Transform (SIFT) [39], which are usually combined with classifiers such as
Adaptive Boosting (AdaBoost) [40] or Support Vector Machines (SVM) [41].

The facilities of Deep Learning have allowed researchers to design systems that can be trained and
tested end-to-end (all included in the same process), unlike when using handcrafted-based methods that
use separate processes. Due to the outstanding performance of Convolutional Neural Networks (CNNs)
as a feature extractor in image recognition tasks, the idea has been also extended to different areas, such
as in agriculture, automation, and robotics. Some of the applications for agriculture utilize Computer
Vision and CNNs to solve complex tasks, such as plant recognition. For instance, in [42], it is shown how
a CNN-based method outperforms local feature descriptors and bag of visual words techniques when
recognizing 10 types of plants. In [43], the authors found that using a fusion of deep representations and
handcrafted features leads to a higher accuracy of leaf plant classification. They applied a CNN for leaf
segmentation, extracted handcrafted features with image processing techniques, trained an SVM with
feature vectors, and used an SVM with a CNN to identify species among 57 varieties of trees.

Subsequently, due to the recent advance in Machine Learning, the principle of CNN has been
applied to plant diseases recognition in different crops, such as [44] using a CNN-based LeNet and
image processing to recognize two leaf diseases out of healthy ones. In [45], an image processing
and statistical inference approach was introduced to identify three types of leaf diseases in wheat.
In [46], the authors developed a method to discriminate good and bad condition images which
contain seven types of diseases out of healthy ones in cucumber leaves. For that effect, they used
an image-processing technique and a four-layer CNN, which showed an average of 82.3% accuracy
under a 4-fold cross-validation strategy. Another approach for cucumber leaf diseases, [47], used a
three-layer CNN to train images containing two diseases out of healthy ones. To support the application
of machine learning, [48] proposed to use a method called Color and Oriented FAST and Rotated
BRIEF (ORB) to extract features and tree classifiers (Linear Support Vector Classifier (SVC), K-Nearest
Neighbor, Extremely Randomized Trees) to recognize four types of diseases in cassava. As a result,
they present a smartphone-based system that uses the classification model that has learned to do
real-time prediction of the state of health of a farmer’s garden.

Other works that use deep convolutional neural networks for diseases recognition have been also
proposed, showing good performance on different crops. For instance, [49] developed a CNN-based
system to identify 13 types of diseases out of healthy ones in five crops using images downloaded from
the internet. The performance of that approach shows a top-1 success of 96.3% and top-5 success of
99.99%. In [50], the authors evaluate two CNN approaches based on AlexNet [19] and GoogleNet [23],
to distinguish 26 diseases included in 14 crops using the Plant Village Dataset [51]. Another work in the
same dataset shows a test accuracy of 90.4% using a VGG-16 model trained with transfer learning [52].
However, the Plant Village Dataset contains only images of leaves that are previously cropped in the
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field and captured by a camera in the laboratory. This is unlike the images in our Tomato Diseases and
Pest Dataset, which are directly taken in-place by different cameras with various resolutions, including
not only leaves infected by specific pathogens at different infection stages but also other infected parts
of the plant, such as fruits and stems. Furthermore, the challenging part of our dataset is to deal with
background variations mainly caused by the surrounding areas or the place itself (greenhouse).

Although the works mentioned above show outstanding performance on leaf diseases recognition,
the challenges, such as pattern variation, infection status, different diseases or pests and their location
in the image, and surrounding objects, among others, are still difficult to overcome. Therefore,
we consider a technique that not only recognizes the disease in the image but also identifies its location
for the posterior development of a real-time system.

2.2. Deep Meta-Architectures for Object Detection

Convolutional Neural Networks are considered nowadays as the leading method for object
detection. As hardware technology has been improved through the years, deeper networks with better
performance have been also proposed. Among them, we mention some state-of-the-art methods for
object recognition and classification. In our paper, we focus principally on three recent architectures:
Faster Region-Based Convolutional Neural Network (Faster R-CNN) [30], Single Shot Multibox Detector
(SSD) [31], and Region-based Fully Convolutional Networks (R-FCN) [32]. As proposed in [29], while
these meta-architectures were initially proposed with a particular feature extractor (VGG, Residual
Networks ResNet, etc.), we now apply different feature extractors for the architectures. Thus, each
architecture should be able to be merged with any feature extractor depending on the application or need.

2.2.1. Faster Region-based Convolutional Neural Network (Faster R-CNN)

In Faster R-CNN, the detection process is carried out in two stages. In the first stage, a Region
Proposal Network (RPN) takes an image as input and processes it by a feature extractor [30]. Features at
an intermediate level are used to predict object proposals, each with a score. For training the RPNs,
the system considers anchors containing an object or not, based on the Intersection-over-Union
(IoU) between the object proposals and the ground-truth. In the second stage, the box proposals
previously generated are used to crop features from the same feature map. Those cropped features
are consequently fed into the remaining layers of the feature extractor in order to predict the class
probability and bounding box for each region proposal. The entire process happens on a single
unified network, which allows the system to share full-image convolutional features with the detection
network, thus enabling nearly cost-free region proposals.

Since the Faster R-CNN was proposed, it has influenced several applications due to its outstanding
performance on complex object recognition and classification.

2.2.2. Single Shot Detector (SSD)

The SSD meta-architecture [31] handles the problem of object recognition by using a feed-forward
convolutional network that produces a fixed-size collection of bounding boxes and scores for the
presence of an object class in each box. This network is able to deal with objects of various sizes
by combining predictions from multiple feature maps with different resolutions. Furthermore,
SSD encapsulates the process into a single network, avoiding proposal generation and thus saving
computational time.

2.2.3. Region-based Fully Convolutional Network (R-FCN)

The R-FCN framework [32] proposes to use position-sensitive maps to address the problem of
translation invariance. This method is similar to Faster R-CNN, but instead of cropping features from
the same layer where region proposals are predicted, features (regions with a higher probability of
containing an object or being part of it) are cropped from the last layer of features prior to prediction [29].
By the application of that technique, this method minimizes the amount of memory utilized in region
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computation. In the original paper [32], they show that using a ResNet-101 as feature extractor can
generate competitive performance compared to Faster R-CNN.

2.3. Feature Extractors

In each meta-architecture, the main part of the system is the “feature extractor” or deep
architecture. As mentioned in the previous section, year by year different deep architectures have been
proposed and their application drastically depends on the complexity of problem itself. There are
some conditions that should be taken into consideration when choosing a deep architecture, such as
the type or number of layers, as a higher number of parameters increases the complexity of the system
and directly influences the memory computation, speed, and results of the system.

Although each network has been designed with specific characteristics, all share the same goal,
which is to increase accuracy while reducing computational complexity. In Table 1, some of the feature
extractors used in this work are mentioned, including their number of parameters and performance
achieved in the Image Net Challenge. We select some of the recent deep architectures because of their
outstanding performance and applicability to our system.

Table 1. Properties of the deep feature extractors used in this work and their performance on the
ImageNet Challenge.

Feature Extractor Parameters (M) Number of Layers Top-5 Error

AlexNet [19] 61 8 15.3
ZFNet - 8 14.8

VGG-16 [22] 138 16 7.40
GoogLeNet [23] 6.9 22 6.66
ResNet-50 [24] 25 50 3.57

ResNet-101 [24] 42.6 101 -
ResNetXt-101 [26] 42.6 101 3.03

As shown in Figure 2, our system proposes to treat the deep meta-architecture as an open system
on which different feature extractors can be adapted to perform on our task. The input image captured
by a camera device with different resolutions and scales is fed into our system, which after processing
by our deep network (feature extractor and classifier) results in the class and localization of the infected
area of the plant in the image. Thus, we can provide a nondestructive local solution only where the
damage is presented, and therefore avoid the disease’s expansion to the whole crop and reduce the
excessive use of chemical solutions to treat them.
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Figure 2. Flow chart of the deep meta-architecture approach used in this work. Our system proposes to
treat a deep meta-architecture as an open system on which different feature extractors can be adapted
to perform on our task. The system is trained and tested end-to-end using images captured in-place.
The outputs are the class and localization of the infected area in the image.

3. Deep Meta-Architectures-Based Plant Diseases and Pest Recognition

3.1. System Background

Tomato plants are susceptible to several disorders and attacks caused by diseases and pests.
There are several reasons that can be attributable to the effects on the crops: (1) abiotic disorders due
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to the environmental conditions, such as temperature, humidity, nutritional excess (fertilizer), light,
and species of plant; (2) some pest that spread the disease from plant to plant, such as whiteflies, leaf
miners, worms, bugs, etc; and (3) the most common diseases that include bacterial, virus, and fungal
diseases. Those diseases and pests along with the plant may present different physical characteristics,
such as a variety of shapes, colors, forms, etc. Therefore, due to similar patterns, those variations are
difficult to be distinguished, which furthermore makes their recognition a challenge, and an earlier
detection and treatment can avoid several losses in the whole crop.

Based on the facts above mentioned, we consider the following characteristics for our analysis:

• Infection status: A plant shows different patterns along with their infection status according to
the life cycle of the diseases.

• Location of the symptom: It considers that diseases not only affect leaves, but also other parts of
the plant such as stem or fruits.

• Patterns of the leaf: Symptoms of the diseases show visible variations either on the front side or
the back side of the leaves.

• Type of fungus: Identifying the type of fungus can be an easy way to visibly differentiate between
some diseases.

• Color and shape: Depending on the disease, the plant may show different colors or shapes at
different infection stages.

In Figure 3, we show a representation of the diseases and pests under different conditions and
variations identified in our work. A detailed study of each disease’s and pest’s symptoms is described
in [10].
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deficiency, (i) Powdery mildew. The images are collected under different variations and 
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(c) Leaf mold, (d) Plague, (e) Leaf miner, (f) Whitefly, (g) Low temperature, (h) Nutritional excess or
deficiency, (i) Powdery mildew. The images are collected under different variations and environmental
conditions. The patterns help to distinguish some proper characteristics of each disease and pest.
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3.2. System Overview

Our work aims to identify nine classes of diseases and pests that affect tomato plants using Deep
Learning as the main body of the system. A general overview of the system is presented in Figure 4.
Following we describe in detail each component of the proposed approach.
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Figure 4. System overview of the proposed deep-learning-based approach for plant diseases and pest
recognition. Our deep meta-architecture approach consists of several steps that use input images as a
source of information, and provide detection results in terms of class and location of the infected area
of the plant in the image.

3.3. Data Collection

Our dataset contains images with several diseases and pests in tomato plants. Using simple camera
devices, the images were collected under several conditions depending on the time (e.g., illumination),
season (e.g., temperature, humidity), and place where they were taken (e.g., greenhouse). For that
purpose, we have visited several tomato farms located in Korea and fed our dataset with various types
of data, including:

• Images with various resolutions.
• Samples at early, medium, and last infection status.
• Images containing different infected areas in the plant (e.g., stem, leaves, fruits, etc.).
• Different plant sizes.
• Objects surrounding the plant in the greenhouse, etc.

These conditions help to estimate the infection process and determine how a plant is affected by
the disease or pest (origin or possible developing cause).

3.4. Data Annotation

Starting with the dataset of images, we manually annotate the areas of every image containing
the disease or pest with a bounding box and class. Some diseases might look similar depending on the
infection status that the present; therefore, the knowledge for identifying the type of disease or pest
has been provided by experts in the area. That has helped us to visibly identify the categories in the
images and infected areas of the plant.

This annotation process aims to label the class and location of the infected areas in the
image. The outputs of this step are the coordinates of the bounding boxes of different sizes
with their corresponding class of disease and pest, which consequently will be evaluated as the
Intersection-over-Union (IoU) with the predicted results of the network during testing. To make it
more clear, an example of an annotated bounding box can be visualized in Figure 1. The red box shows
the infected areas of the plant, and parts of the background.

Since our images are collected in the field, many areas corresponding to the background could be
included in the image, making the problem more challenging. Therefore, when collecting the images,
we find out that the best way to get more precise information is to capture the samples containing the
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ROIs as the main part of the image. As previously presented in Figure 1, the problem formulation of
recognition and localization of the infected part of the plant makes our system different from others
that are basically focused only on classification.

3.5. Data Augmentation

Although Deep Neural Network systems have shown outstanding performance compared
to traditional machine learning or computer vision algorithms, the drawback of these systems is
the overfitting problem. Overfitting is often referred to the hyper-parameters selection, system
regularization, or a number of images used for training. Following [19], data augmentation is necessary
to pursue when the number of images in the dataset is not enough. We use several techniques that
basically increase the number of images of our dataset. These techniques consist of geometrical
transformations (resizing, crop, rotation, horizontal flipping) and intensity transformations (contrast
and brightness enhancement, color, noise).

3.6. Disease and Pest Detection

We now describe our main method for detecting diseases and pests. Our goal is to detect and
recognize the class and location of disease and pest candidates in the image. To detect our target, we
need to accurately localize the box containing the object, as well as identify the class to which it belongs.

As shown in Figure 2, our proposed solution aims to overcome such a complex problem by a
simple and accurate form. We extend the idea of a meta-architecture-based object detection framework
to adapt it with different feature extractors that detect diseases and pests and localize their position in
the image. For that purpose, we have considered three meta-architectures due to their high performance
in object detection. In the following, we explain in detail each meta-architecture and feature extractor.

3.6.1. Faster R-CNN

We extend the application of Faster R-CNN [30] for object recognition and its Region Proposal
Network (RPN) to estimate the class and location of object proposals that may contain a target
candidate. The RPN is used to generate the object proposals, including their class and box coordinates.
Then, for each object proposal, we extract the features with an RoI Pooling layer and perform object
classification and bounding-box regression to obtain the estimated targets.

3.6.2. SSD

We follow the methodology described in [31]. SSD generates anchors that select the top most
convolutional feature maps and a higher resolution feature map at a lower resolution. Then, a sequence
of the convolutional layer containing each detection per class is added with spatial resolution used
for prediction. Thus, SSD is able to deal with objects of various sizes contained in the images.
A Non-Maximum Suppression method is used to compare the estimated results with the ground-truth.

3.6.3. R-FCN

We follow the implementation of R-FCN [32] as another meta-architecture to perform our
approach. Similar to Faster R-CNN, R-FCN uses a Region Proposal Network to generate object
proposals, but instead of cropping features using the RoI pooling layer it crops them from the last layer
prior to prediction. We used batch normalization for each feature extractor, and train end-to-end using
an ImageNet Pretrained Network.

We have selected the feature extractors based on their performance and number of parameters
from Table 1. These are VGG-16, ResNet 50-152, and ResNeXt-50 for Faster R-CNN, ResNet-50 for
SSD, and ResNet-50 for R-FCN. To perform the experiments, we have adapted the feature extractors
to the conditions of each meta-architecture. For instance, in Faster R-CNN, each feature extractor
includes the RPN and features are extracted from the “conv5” layer of VGG-16, the last layer of the
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“conv4” block in ResNet 50-152, as well as from the “conv4” block in ReNeXt-50. In SSD, in contrast to
the original work, we use ResNet-50 as its basis feature extractor. In R-FCN, ResNet-50 is used as its
feature extractor and the features are extracted from the “conv4” block.

Our training objective is to reduce the losses between the ground-truth and estimated results, as
well as to reduce the presence of false positives in the final results, by Non-Maximum Suppression
(NMS) of each meta-architecture, which selects only candidates only with an IoU > 0.5 compared to
their initial annotated ground-truth. The loss functions and bounding-box encoding used in this work
are presented in Table 2.

Table 2. Details of Deep Learning Meta-architectures and Feature Extractors.

Meta-Architecture Feature Extractor Bounding Box Loss Function

Faster R-CNN

VGG-16
ResNet-50
ResNet-101
ResNet-152
ResNeXt-50

[
xc
wa

, yc
ha

, log w, log h
]

SmoothL1

SSD ResNet-50
[

xc
wa

, yc
ha

, log w, log h
]

SmoothL1

R-FCN ResNet-50
[

xc
wa

, yc
ha

, log w, log h
]

SmoothL1

Faster R-CNN: faster region-based convolutional neural network; SSD: single shot detector; R-FCN: region-based
fully convolutional network.

4. Experimental Results

4.1. Tomato Diseases and Pests Dataset

Our dataset consists of about 5000 images collected from farms located in different areas of the
Korean Peninsula. The images were taken under different conditions and scenarios. They include
diseases that can develop depending on the season and variables such as temperature and humidity.
Since not all diseases can be found all year round, but rather in seasons, the number of images
corresponding to each class is different. The categories and the number of annotated samples used in
our system can be seen in Table 3. The number of annotated samples corresponds to the number of
bounding boxes labeled in the images after data augmentation. Every image contains more than one
annotated sample depending on the infection areas of the plant, and the background class is collected
as a transversal category (hard negatives) that is annotated in most of the images. The background
class has been called so because it contains areas of the image that correspond to healthy parts of the
plant and from the background itself, such as the structure of the greenhouse.

Table 3. List of Categories included in Our Tomato Diseases and Pests Dataset and their Annotated Samples.

Class Number of Images in
the Dataset 1

Number of Annotated
Samples (Bounding Boxes) 2

Percentage of Bounding
Box Samples (%)

Leaf mold 1350 11,922 27.47
Gray mold 335 2768 6.37

Canker 309 2648 6.10
Plague 296 2570 5.92
Miner 339 2946 6.78

Low temperature 55 477 1.09
Powdery mildew 40 338 0.77

Whitefly 49 404 0.93
Nutritional excess 50 426 0.98

Background 3 2177 18,899 43.54

Total 5000 43,398 100
1 Number of images in the dataset; 2 Number of annotated samples after data augmentation; 3 Transversal category
included in every image.
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4.2. Experimental Setup

We perform experiments on our Tomato Diseases and Pests dataset that includes nine annotated
diseases and pest categories. As explained in the previous section, since the number of images in
our dataset is still small and in order to avoid overfitting, we apply extensive data augmentation,
including the techniques mentioned in Section 3.4. To perform the experiments, our dataset has been
divided into 80% training set, 10% validation set, and 10% testing set. The training is proceeded on the
training set, after that the evaluation is performed on the validation set, and when the experiments
seem to achieve the expected results, the final evaluation is done on the testing set (unknown data).
As in the Pascal Visual Object Classes (VOC) Challenge [53], the validation set is a technique used for
minimizing overfitting and is a typical way to stop the network from learning. We use the training
and validation sets to perform the training process and parameter selection, respectively, and the
testing set for evaluating the results on unknown data. Our proposed system has been trained and
tested end-to-end with an Intel Core I7 3.5 GHz Processor on two NVidia GeForce Titan X GPUs.
Figure 5 illustrates the resultant loss curve for a number of two hundred thousand iterations, which
demonstrates that our network efficiently learns the data while achieving a lower error rate at about
one hundred thousand iterations.
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4.3. Quantitative Results

Our proposed system implements meta-architectures and different feature extractors to deal with
the detection and recognition of complex diseases and pests in the images. The performance of our
system is evaluated first of all in terms of the Intersection-over-Union (IoU), and the Average Precision
(AP) that is introduced in the Pascal VOC Challenge [53].

IoU(A, B) =
∣∣∣∣A ∩ B

A ∪ B

∣∣∣∣ (1)

where A represents the ground-truth box collected in the annotation, and B represents the predicted
result of the network. If the estimated IoU outperforms a threshold value, the predicted result is
considered as a true positive, TP, or if not as a false positive, FP. TP is the number of true positives
generated by the network, and FP corresponds to the number of false positives. Ideally, the number of



Sensors 2017, 17, 2022 12 of 21

FP should be small and determines how accurate is the network to deal with each case. The IoU is a
widely used method for evaluating the accuracy of an object detector.

The Average Precision is the area under the Precision-Recall curve for the detection task. As in
the Pascal VOC Challenge, the AP is computed by averaging the precision over a set of spaced recall
levels [0, 0.1, . . . , 1], and the mAP is the AP computed over all classes in our task.

AP =
1

11 ∑
r∈{0, 0.1,..., 1}

pinterp(r) (2)

Pinterp(r) = max
r̃:r̃≥r

p(r̃) (3)

where p(r̃) is the measure precision at recall r̃. Next, we compute the mAP averaged for an IoU = 0.5
(due to the complexity of the scenarios). The detection results are shown in Table 4.

Table 4. Detection Results of Our Proposed System using Deep-Learning Meta-architectures and
Feature Extractors.

Meta-Architectures

Faster R-CNN R-FCN SSD

Class/Feature
Extractor VGG-16 ResNet-50 ResNet-101 ResNet-152 ResNeXt-50 ResNet-50 ResNet-50

Leaf mold 0.9060 0.8827 0.803 0.8273 0.840 0.8820 0.8510
Gray mold 0.7968 0.6684 0.449 0.4499 0.620 0.7960 0.7620

Canker 0.8569 0.7580 0.660 0.7154 0.738 0.8638 0.8326
Plague 0.8762 0.7588 0.613 0.6809 0.742 0.8732 0.8409
Miner 0.8046 0.7884 0.756 0.7793 0.767 0.8812 0.7963

Low temperature 0.7824 0.6733 0.468 0.5221 0.623 0.7545 0.7892
Powdery mildew 0.6556 0.5982 0.413 0.4928 0.505 0.7950 0.8014

Whitefly 0.8301 0.8125 0.637 0.7001 0.720 0.9492 0.8402
Nutritional excess 0.8971 0.7637 0.547 0.8109 0.814 0.9290 0.8553

Background 0.9005 0.8331 0.624 0.7049 0.745 0.8644 0.8841
Total mean AP 0.8306 0.7537 0.590 0.6683 0.711 0.8598 0.8253

* The bold numbers correspond the more challenging classes and best results among other meta-architectures.
AP: average precision.

The comparative results show that, in our task, plain networks perform better than deeper
networks, such as the case of Faster R-CNN with VGG-16 with a mean AP of 83%, compared to the
same meta-architecture with ResNet-50 that achieves 75.37% or ResNeXt-50 with 71.1%. In contrast,
SSD with ResNet-50 performs at 82.53% and R-FCN with ResNet-50 as feature extractor achieves
a mean AP of 85.98%, which is slightly better than Faster R-CNN overall and is comparable in
some classes.

Although the mean AP for the whole system shows a performance of more than 80% for the best
cases, some diseases, such as leaf mold, gray mold, canker, and plague, show a variable performance.
Both Faster R-CNN and R-FCN use the same method of Region Proposal Network (RPN) to extract
features from the last layer of the CNN, but using different feature extractors as in our experiment,
with VGG-16 and ResNet-50 for Faster R-CNN and R-FCN, respectively, shows comparable results
and outstanding performance in the more challenging classes. An early estimation of diseases or
pests in the plant could avoid several losses in the whole crop; therefore, we consider leaf mold, gray
mold, canker, and pest as the most complex and main classes due to their high intra-class variation
(e.g., infection status, location of the infection in the plant, side of leaf, type of fungus, etc.) and
some inter-class similarities, especially in the last state of infection when the plant is already dead.
Despite the complexity of the scenarios, Faster R-CNN with VGG-16 shows better recognition results
especially on the classes above mentioned.

The number of samples is another fact that influences the generation of better results. That could
be the case for leaf mold, since our dataset contains a number of samples of this class. The background
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class is a transversal category that is annotated in most of the images, including healthy parts of the
plant as well as parts of the scenario. Furthermore, as we know, the implementation of deep learning
systems requires a large number of data that can certainly influence the final performance. In Table 5,
we show how the use of a data augmentation technique has allowed our system to improve the Average
Precision for each case compared to a previously trained system without using data augmentation.

Table 5. Influence of the Data Augmentation Technique in the Final Results 1.

Class Without Data Augmentation With Data Augmentation

Leaf mold 0.6070 0.9060
Gray mold 0.5338 0.7968

Canker 0.5741 0.8569
Plague 0.5870 0.8762
Miner 0.5390 0.8046

Low temperature 0.5242 0.7824
Powdery mildew 0.4392 0.6556

Whitefly 0.5591 0.8301
Nutritional excess 0.6010 0.8971

Background 0.6033 0.9005

Total mean AP 0.5564 0.8306
1 Experiments using the same meta-architecture and feature extractor (Faster R-CNN with VGG-16).

4.4. Qualitative Results

We evaluate the performance of bounding-box regression and the class score for each class in our
Tomato Disease and Pest dataset. As shown in Figure 6, our system is able to effectively detect the
class and location of diseases and pests. We compared the estimated results with the ground-truth
using an IoU > 0.5. Thus, the regions of interest can be estimated while avoiding false positives.

Each class is independent of each other, not only by its origin or cause but also visibly as they show
different patterns and characteristics. We find the best results are generated when the main part of the
image consists of the target candidate, in contrast with images that include large background regions.

Using meta-architectures and deep feature extractors, the system shows several advantages
compared to previous traditional methods when dealing for instance with objects of various sizes (e.g.,
Gray mold vs. Whitefly), shapes (e.g., Leaf Mold vs. Canker), color (e.g., Plague vs. Leaf mold), etc.
Moreover, the proposed approach introduces a fast and effective solution performing at about 160 ms
per image.
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Figure 6. Detection results of diseases and pests that affect tomato plants with Faster R-CNN and a 
VGG-16 detector. From left to right: the input image, annotated image, and predicted results. (a) Gray 
mold; (b) Canker; (c) Leaf mold; (d) Plague; (e) Leaf miner; (f) Whitefly; (g) Low temperature; (h) 
Nutritional excess or deficiency; (i) Powdery mildew. 

  

Figure 6. Detection results of diseases and pests that affect tomato plants with Faster R-CNN and
a VGG-16 detector. From left to right: the input image, annotated image, and predicted results.
(a) Gray mold; (b) Canker; (c) Leaf mold; (d) Plague; (e) Leaf miner; (f) Whitefly; (g) Low temperature;
(h) Nutritional excess or deficiency; (i) Powdery mildew.
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4.5. Deep Network Visualization

Understanding a neural network can be interpreted as a deep analysis of how each neuron
interacts in the learning process to generate the final results. For that effect, the most popular
approach is to use Deconvolutional Neural Networks (DeConv). Using an input image, it aims
to highlight which pixels in that image contribute to a neuron firing. This deconvolutional operation
can be generated like a convolutional operation but in reverse, such as un-pooling feature maps and
convolving un-pooled maps.

As mentioned earlier, diseases and pests in tomato plants can be produced by different causes,
such as temperature, humidity, nutrients, lighting conditions, etc. At some point of their infection
status, some diseases show similar characteristics or develop visible patterns in the plant that help to
distinguish one from another. Therefore, by this experiment, we aim to find a feature map for each
class which allows us to understand better their content and representation.

After passing the images by a deconvolutional neural network, which is similar in structure to
our main CNN but in a reverse procedure, the final representations are shown in Figure 7. Each feature
map illustrates how our neural network system interprets a disease in the context after being classified
by a SoftMax function.
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Figure 7. Deep feature maps visualization of diseases and pest (a) Canker; (b) Gray mold; (c) Leaf 
mold; (d) Low temperature; (e) Miner; (f) Nutritional excess; (g) Plague; (h) Powdery mildew;  
(i) Whitefly. Each feature map illustrates how our neural network system interprets a disease in the 
context after being classified by a SoftMax function. 

4.6. Diseases Effects in the Plant 

The infection symptoms of diseases and pests in the plants start by different ways. It could be 
started either by a disease originating in the plant itself or infection from other surrounding plants. 
Therefore, it is useful to identify all the possible causes affecting the plant in order to develop an early 
detection approach. As shown in Figure 8, diseases and pests can simultaneously affect a plant when 
it becomes vulnerable due to its condition. For example, Figure 8a shows how the effect of the white 
fungus, which is a characteristic of powdery mildew, appears to generate spot areas in the leaves 
where a plague can be developed easily. Furthermore, Figure 8b illustrates the detection results of 
low temperature, gray mold, and miners in the same plant. Figure 8c,d represent an example of intra-

Figure 7. Deep feature maps visualization of diseases and pest (a) Canker; (b) Gray mold; (c) Leaf mold;
(d) Low temperature; (e) Miner; (f) Nutritional excess; (g) Plague; (h) Powdery mildew; (i) Whitefly.
Each feature map illustrates how our neural network system interprets a disease in the context after
being classified by a SoftMax function.

4.6. Diseases Effects in the Plant

The infection symptoms of diseases and pests in the plants start by different ways. It could be
started either by a disease originating in the plant itself or infection from other surrounding plants.
Therefore, it is useful to identify all the possible causes affecting the plant in order to develop an early
detection approach. As shown in Figure 8, diseases and pests can simultaneously affect a plant when
it becomes vulnerable due to its condition. For example, Figure 8a shows how the effect of the white
fungus, which is a characteristic of powdery mildew, appears to generate spot areas in the leaves
where a plague can be developed easily. Furthermore, Figure 8b illustrates the detection results of low
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temperature, gray mold, and miners in the same plant. Figure 8c,d represent an example of intra-class
variations, such as in leaf mold, where the sample leaf corresponds to the same class but with different
patterns on its front side and back side. Figure 8e,f show the intra-class variations because of the
infection status. Although both images belong to the same class, they visibly show different patterns at
an early and the last stage, respectively. Figure 8g,h extend the idea of disease and pest identification
to other parts of the plants, such as stem and fruits. Those are also special features that help to identify
a pathogen affecting a plant. This experiment gives an idea of how our system is able to efficiently
deal with inter- and intra-class variations and its importance as an early detection approach when the
symptoms have just appeared.
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sample (Gray mold, low temperature, and miners); (c) Leaf mold affecting the back side of the leaf; 
(d) Leaf mold affecting the front side of the leaf; (e) Gray mold in the early stage; (f) Gray mold in the 
last stage; (g) Plague can be also detected on other parts of the plant, such as fruits or stem; (h) Plague 
affecting the tomato production. 

Figure 8. Detection results of inter- and intra-class variation of diseases and pests in the images. (a) Two
classes affecting the same sample (powdery mildew and pest); (b) Three classes in the same sample
(Gray mold, low temperature, and miners); (c) Leaf mold affecting the back side of the leaf; (d) Leaf
mold affecting the front side of the leaf; (e) Gray mold in the early stage; (f) Gray mold in the last stage;
(g) Plague can be also detected on other parts of the plant, such as fruits or stem; (h) Plague affecting
the tomato production.
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4.7. Confusion Matrix

Due to the complexity of the patterns shown in each class, especially in terms of infection status
and background, the system tends to be confused on several classes that results in lower performance.
In Figure 9, we present a confusion matrix of the final detection results. Based on the results, we can
visually evaluate the performance of the classifier and determine what classes and features are more
highlighted by the neurons in the network. Furthermore, it helps us to analysis a further procedure in
order to avoid those inter-class confusions. For instance, the canker class shows to be confused in more
intensity with gray mold, but also with leaf mold and low temperature. Similarly, the low-temperature
class shows confusion with the nutritional excess class.
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4.8. Failures Analysis and Discussion

Although our system shows an outstanding performance on the evaluated cases, it also presents
difficulties in some cases that could be a possible topic for a further study. Due to the lacking number
of samples, some classes with high pattern variation tend to be confused with others, resulting in false
positives or lower average precision. As shown in Figure 10, for the white fly (e.g., eggs and whiteflies)
and leaf mold classes, the presence of targets with different mature status makes their recognition hard
when comparing the visible characteristics between them.
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5. Conclusions

In this work, we have proposed a robust deep-learning-based detector for real-time tomato
diseases and pests recognition. This system introduces a practical and applicable solution for detecting
the class and location of diseases in tomato plants, which in fact represents a main comparable
difference with other methods for plant diseases classification. Our detector applied images captured
in-place by various camera devices and processed them by a real-time hardware and software system
using GPUs, rather than using the process of collecting physical samples (leaves, plants) and analyzing
them in the laboratory. Furthermore, our tomato plant diseases and pest dataset contains different task
complexities, such as illumination conditions, the size of objects, background variations, etc., included
in the surrounding area of the plant. Our goal was to find the more suitable deep-learning architecture
for our task. Thus, the experimental results and comparisons between various deep-meta-architectures
with feature extractors demonstrated how our deep-learning-based detector is able to successfully
recognize nine different categories of diseases and pests, including complex intra- and inter-class
variations. In addition, we found that using technique-based data annotation and augmentation results
in better performance. We expect that our proposed system will make a significant contribution to
the agriculture research area. Future works will be focused on improving the current results, and a
promising application will be to extend the idea of diseases and pest recognition to other crops.
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