Supporting information

2	Antiepileptic drug carbamazepine promotes horizontal transfer of plasmid-
3	borne multi-antibiotic resistance genes within and across bacterial genera
4	Running Title: Horizontal gene transfer enhanced by carbamazepine
5	Yue Wang, Ji Lu, Likai Mao, Jie Li, Zhiguo Yuan, Philip L. Bond, Jianhua Guo*
6	Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane,
7	Queensland, Australia, 4072
8	* Corresponding author: j.guo@awmc.uq.edu.au
9	
10	
11	This file includes:
12	Supplementary Texts 1 to 7
13	Supplementary Figures 1 to 7
14	Supplementary Tables 1 to 17
15	Supplementary References
16	

17 Supplementary Methods

18 Text S1. Culture conditions for donor and recipient

- 19 Both donor and recipient were cultured separately in Luria-Bertani (LB) broth (pH 7.0) at 30
- 20 °C for 16 h with the supplementary of appropriate antibiotics. For donor, 17.0 mg/L
- 21 tetracycline (Tet), 33.0 mg/L Kanamycin (Ka), and 100.0 mg/L ampicillin (Amp) were
- added, while 17.0 mg/L chloramphenicol (Chl) was dosed in the LB broth for recipient. After
- 23 culturing, both donor and recipient were washed with phosphate-buffered saline (PBS,
- pH=7.2) twice to eliminate the possible influence induced by culture media. Afterwards, the
- 25 donor and recipient were re-suspended separately in different volumes of PBS to obtain
- 26 initial concentration of 10^8 cfu/ mL based on OD600 values (the relationships between
- 27 OD600 and donor and recipient's concentration were predetermined, the results not shown).
- 28 Then, the donor and recipient were mixed with the ratio of 1:1. The mixtures were applied
- 29 immediately for the conjugation experiment.

30 Text S2. Selection plates for transconjugant and recipient

The selection plates for transconjugant contained all of the four kinds of antibiotics, while those for recipient only contained Chl. Concentrations of the antibiotics were the same as those in the culture media of donor and recipient. i.e., selection plates for transconjugant: 17.0 mg/L Tet, 33.0 mg/L Ka, 100.0 mg/L Amp, and 17.0 mg/L Chl, and selection plates for recipient contained 17.0 mg/L Chl. The results of selection plates are shown as cfu/mL and transfer frequency. All the selection plates were performed at least in triplicate.

37 Text S3. Bacterial growth curves of donor, recipients and transconjugants

38 Bacterial growth curves of donor, recipients and randomly-selected transconjugants were

- 39 performed under the exposure of different concentrations of carbamazepine. OD₆₀₀ was
- 40 monitored hourly. Growth curve fitting and parameter calculation (including both the lag

time and maximum growth rate) were determined according to modified Gompertz Model as
described previously ¹. Biological triplicate experiments were conducted under each
condition.

Text S4. Detection of relative oxidative stress (ROS) and cell membrane permeability 44 45 Bacteria strains were washed twice with PBS and resuspended in PBS to 10⁶ cfu/mL. For ROS detection, bacteria strains were incubated in dark at 37 °C for 30 min with 2', 7'-46 47 dichlorofluorescein diacetate (DCFDA, at a final concentration of 20 uM, abcam[®]). Then, 100 µL of the bacteria stained with DCFDA were treated with different concentrations of 48 49 carbamazepine. 1.5% H₂O₂ was set as positive control, and ethanol was set as negative 50 control. After complete mixing, the mixtures were incubated in dark at 25 °C for 2 h before measurement at 488 nm. As for cell membrane permeability detection, 100 µL of bacteria 51 52 strain was exposed to different concentrations of carbamazepine, and incubated at 25 °C for 2 h. The same volume of ethanol was the negative control, while bacteria strain treated with 53 54 100 °C water was the positive control. The strains were then stained with 1 μ L of propidium 55 iodide (PI, 2 mM, Life Technologies) and incubated in the dark for 15 min before 56 measurement at 561 nm. All data was analysed with CytExpert. Data were presented in a dot 57 plot, in which upper right quadrant indicated DCFDA or PI positive cells (with increased ROS or cell membrane permeability), and upper left quadrant was normal cells. All the 58 59 detections were conducted in triplicate. Relative fold increases in ROS production or cell membrane permeability were calculated as carbamazepine treated samples divided by 60 61 negative control samples according to previous studies².

62 Text S5. MinION nanopore sequencing and analysis

63 Sequencing library for RP4 plasmid was established following the protocol 1D Native

barcoding genomic DNA, EXP-NBD103 and SQK-LSK108. Briefly, core steps include end-

repair, purification (with AMPure XP beads), ligation of barcodes (1 different barcode per
plasmid) using a ligase Master mix, purification with AMPure XP beads, pool barcoded
plasmids, ligation of sequencing adapter, purification with AMPure XP beads and elution
with ELB. The coordinates of the alignments, as well as identity and scores were analysed
based on BLAST n according to previous research ³.

70 Text S6. RNA data analysis

Bioinformatics for whole-genome RNA sequencing were according to previous research ⁴.
Basically, NGS QC Toolkit (v2.3.3), SeqAlto (version 0.5), and Cufflinks (version 2.2.1)
were applied to treat the raw sequence reads and to analyse the differential expression for
triplicated samples. CummeRbund package in R was used to conduct the statistical analyses
and visualization. Gene expression was calculated as fragments per kilobase of a gene per
million mapped reads (FPKM). Differences in fold changes between different groups were
calculated by log₂ fold-change (LFC) between control and carbamazepine-treated samples.

78 Text S7. Proteomics analysis

IDA data were combined and searched using ProteinPilot software, with the combined 79 databases of E. coli SP only (received from Uniprot on 15th of October 2017) and P. putida 80 KT2440 (received from NCBI on 15th of October 2017), Search setting for enzyme digestion 81 82 was set to Trypsin and alkylation was set to iodoacetamide. Afterwards, the constructed IDA 83 library and SWATH-MS data were loaded into PeakView v2.1 for further processing, with the peptide confidence threshold of 99%, number of peptides per protein of 5, and number of 84 transitions per peptide of 3. A minimum of 2 peptides and 3 transitions was used for 85 86 quantitative analysis. A stringency cut-off of q value less than 0.01 was used to identify the proteins with significant different expression levels. 87

88

89 Supplementary Figures

90

91 Fig. S1. Conjugative transfer frequency of ARGs induced by different concentrations of

- 92 carbamazepine. Significant differences between carbamazepine-dosed samples and the control were
- 93 tested using independent-sample t test, P values were corrected by "Benjamini-Hochberg" method as
- 94 P_{adj} , * $P_{adj} < 0.05$ and ** $P_{adj} < 0.01$.

96 Fig. S2. Colonies growing on transconjugant-selective plates in intergenera transfer process

Fig. S3. Conjugative reverse transfer frequency of ARGs induced by different concentrations of carbamazepine. Significant differences between carbamazepine-dosed samples and the control were tested using independent-sample *t* test, *P* values were corrected by "Benjamini-Hochberg" method as P_{adj} , * $P_{adj} < 0.05$ and ** $P_{adj} < 0.01$.

- 103 Fig. S4. Electrophoresis of plasmid extraction (Transconjugants 1-8: mating system treated with 0.0,
- 104 0.05, 0.5, 5.0, 10.0, 12.5, 25.0, 50.0 mg/L carbamazepine, respectively)

Fig. S5. Growth curves of recipients and their corresponding transconjugants during exposure to
different levels of carbamazepine. (a) Recipient for intragenera transfer and the transconjugant (b)
Recipient for intergenera transfer and the transconjugant.

110 Fig. S6. Effects of carbamazepine on ROS generation and cell membrane in the donor (*E. coli* K-12

111 LE392) and recipient bacterial strains (*E. coli* MG1655 and *P. putida* KT2440). (a) Fluorescence

112 intensity relating to ROS levels. (b) Percentages of PI stained cells. Significant differences between

113 carbamazepine-dosed samples and the control were tested using independent-sample t test, *P* values

114 were corrected by "Benjamini-Hochberg" method as P_{adj} , * $P_{adj} < 0.05$ and ** $P_{adj} < 0.01$.

115

139 Fig. S7. The global transcriptome and proteome response of donor and recipient bacterial strain to 140 carbamazepine exposure. (a) Donor bacterial strain E. coli K-12 LE392. (b) Recipient bacterial strain 141 (P. putida KT2440). The outermost rings are reference genome of donor and recipient bacterial 142 strains, respectively. The second and third rings (with orange background) are transcriptome and 143 proteome response towards 0.05 mg/L carbamazepine. The fourth and fifth rings are transcriptome 144 and proteome response towards 10.0 mg/L carbamazepine. The sixth and seventh rings are 145 transcriptome and proteome response towards 50.0 mg/L carbamazepine. Core genes related to 146 carbamazepine-accelerated conjugative transfer are highlighted along the genome.

147 Supplementary Tables

Antibiotics	I				M	Cs (µg/mL)					
1 1110101105	Donor	Recipient	TC 1	TC 2	TC 3	TC 4	TC 5	TC 6	TC 7	TC 8	
Tet	10.24	6.82	15.36	15.36	15.36	15.36	15.36	15.36	15.36	15.36	
Ka	20	2	30	30	30	30	30	30	30	30	
Amp	>120	45	>120	>120	>120	>120	>120	>120	>120	>120	
Chl	0.13	10.24	10.24	10.24	10.24	10.24	10.24	10.24	10.24	10.24	

148 Table S1. Minimum inhibitory concentrations (MICs) of different transconjugants in intragenera transfer*

149 *TC 1-8: transconjugants in mating system treated with 0.0, 0.05, 0.5, 5.0, 10.0, 12.5, 25.0, 50.0 mg/L Carbamazepine, respectively

150 Table S2. Minimum inhibitory concentrations (MICs) of different transconjugants in intergenera transfer*

Antibiotics	2				M	ICs (µg/mL)				
7 millionotics	Donor	Recipient	TC 1	TC 2	TC 3	TC 4	TC 5	TC 6	TC 7	TC 8
Tet	10.24	1.28	10.24	10.24	10.24	10.24	10.24	10.24	10.24	10.24
Ka	20	5	20	20	20	20	20	20	20	20
Amp	>120	6.25	>120	>120	>120	>120	>120	>120	>120	>120
Chl	0.13	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39

151 * TC 1-8: transconjugants in mating system treated with 0.0, 0.05, 0.5, 5.0, 10.0, 12.5, 25.0, 50.0 mg/L Carbamazepine, respectively

152	Table S3. Modelling results for growth curves of donor strain (E. coli LE392) under the exposure of carbamazepine [#]	
101	rucie 55. Modelning results for growth europhic of denot shall (12. 0000 1225) under the empositio of darbamazephic	

	Daramatara				Carbama	zepine Concentra	tion (mg/L)		
	Falameters	0	0.05	0.5	5	10	12.5	25	50
	R ²	0.997±0.	.001 0.995±0.0	002 0.998±0.00	0 0.994±0.001	0.996±0.000	0.997±0.001	0.991±0.004	0.991±0.002
	Maximum growth rate (h	0.664±0.	.018 0.769±0.01	5** 0.696±0.01	9 0.724±0.011*	• 0.737±0.016*	0.730±0.040	0.652±0.015	0.660±0.017
	Lag time (h)	2.722±0.	.207 2.925±0.0	054 3.124±0.18	1 3.081±0.194	3.772±0.152*	3.836±0.294*	3.403±0.125*	3.714±0.211*
154 155 156 157	carbamazepine significant, *: <i>P</i> Table S4. Mod	-dosed groups P _{adj} <0.05 and * delling results	with the LB group *: <i>P_{adj}</i> <0.01.	using independent-s	sample <i>t</i> test, <i>P</i> val	ues were corrected 55) under the exp	by "Benjamini-H	ochberg" method azepine*	as <i>P_{adj}</i> . ns: not
	Daramatara				Carbama	zepine Concentra	tion (mg/L)		
		0	0.05	0.5	5	10	12.5	25	50
	R ²	0.996±0.001	0.990±0.002	0.991±0.001	0.994±0.001	0.991±0.003	0.993±0.001	0.990±0.000	0.988±0.001
	Maximum growth rate (h ⁻¹)	0.627±0.005	0.537±0.009**	0.509±0.007**	0.473±0.010**	0.509±0.007**	0.471±0.006**	0.507±0.027*	* 0.505±0.008**

	Lag time (h)	2.613±0.032	3.527±0.207**	3.590±0.213**	3.355±0.268*	3.103±0.206*	3.191±0.178*	3.011±0.421	3.340±0.275*
158	[#] The modell	ing was based on	modified Gomper	tz Model, Curve Fit	tting Tool in Matla	b R2015b was appl	ied. Significant diff	erences were calcul	ated between
159	carbamazepi	ne-dosed groups	with the LB group	using independent-	sample <i>t</i> test, <i>P</i> val	ues were corrected	by "Benjamini-Hoc	hberg" method as <i>l</i>	<i>adj</i> . ns: not
160	significant, *	$P_{adj} < 0.05 \text{ and } *$	*: <i>P_{adj}</i> <0.01.						

162 Table S5. Modelling results for growth curves of recipient strain (*P. putida* KT2440) under the exposure of carbamazepine*

Parameters				Carbamaz	epine Concentrat	ion (mg/L)		
0	0	0.05	0.5	5	10	12.5	25	50
R ²	0.994±0.002	0.995±0.001	0.993±0.002	0.991±0.002	0.990±0.003	0.986±0.002	0.986 ± 0.008	0.995±0.001
Maximum								
growth rate	0.778±0.039	0.789±0.025*	0.807±0.036*	0.761±0.034	0.860±0.010**	0.840 ± 0.072	0.507±0.101*	$0.465 \pm 0.040 **$
(h ⁻¹)								
Lag time	<i>A</i> 745+0 168	5 428+0 131**	5 543+0 184**	6 331+0 162**	7 459+0 392**	7	6 260+1 186	6 028+0 342*
(h)	4.74 <i>3</i> ±0.100	5.420±0.151	5.545-0.104	0.551±0.102	7.437±0.372	1.221-0.239	0.200-1.100	0.020-0.542
[#] The modelli	ng was based on	modified Gompert	z Model, Curve Fit	ting Tool in Matlał	R2015b was appli	ed. Significant diff	erences were calcu	lated between

164 carbamazepine-dosed groups with the LB group using independent-sample *t* test, *P* values were corrected by "Benjamini-Hochberg" method as P_{adj} . ns: not 165 significant, *: $P_{adj} < 0.05$ and **: $P_{adj} < 0.01$.

	Daramatars				Carbama	azepine Concentra	ation (mg/L)		
	1 arameters	0	0.05	0.5	5	10	12.5	25	50
	R ²	0.998±0.001	0.995±0.001	0.996±0.001	0.995±0.001	0.994±0.002	0.994±0.001	0.989±0.004	0.992±0.002
	Maximum								
	growth rate	0.663±0.016	0.707±0.092	0.710±0.085	0.526±0.024**	0.531±0.012**	0.532±0.019**	$0.506 \pm 0.006 **$	0.513±0.032**
	(h^{-1})								
	Lag time (h)	2.341±0.208	2.781±0.046*	3.230±0.145**	3.218±0.210*	3.192±0.234*	3.004±0.169*	3.146±0.115**	3.911±0.290**
	Significant	Maximum	ns	ns	ns	ns	ns	ns	ns
	difference	growth rate	110	115	115	115	115	115	115
	compared								
	with the	Lag time	*	ns	ns	ns	ns	ns	ns
	$recipient^{\sim}$								
169	[#] The modellin	ng was based on	modified Gomper	tz Model, Curve Fi	itting Tool in Matla	ab R2015b was app	lied. Significant di	fferences were calcu	ulated between
170	carbamazepine	e-dosed groups v	with the LB group	using independent	-sample <i>t</i> test, <i>P</i> va	lues were corrected	l by "Benjamini-Ho	ochberg" method as	P_{adj} . ns: not
171	significant, *:	$P_{adj} < 0.05 \text{ and } **$	*: $P_{adj} < 0.01$. ^ Cor	npared with the ma	ximum growth rate	and lag time of the	e same concentratio	on in Table S2.	
172									
173	Table S7. Mo	odelling results	for growth curv	es of transconjuga	ant strain from <i>P</i> .	<i>putida</i> KT2440 u	nder the exposure	e of carbamazepin	e*
	Daramatara				Carbam	azepine Concentr	ation (mg/L)		
	rarameters	0	0.05	0.5	5	10	12.5	25	50

168 Table S6. Modelling results for growth curves of transconjugant strain from *E. coli* MG1655 under the exposure of carbamazepine*

R ²	0.993 ± 0.003	0.995±0.001	0.994 ± 0.002	0.991±0.002	0.990 ± 0.001	0.993 ± 0.001	0.990±0.001	0.991 ± 0.002
Maximum								
growth rate	0.799±0.013	0.782±0.016	0.778±0.027	0.732±0.025*	0.712 ± 0.042	0.695±0.032*	0.660±0.019*	0.594±0.052**
(h ⁻¹)								
Lag time (h)	4.408±0.245	4.633±0.108	5.073±0.343	5.381±1.180	6.099±0.770*	6.630±0.613*	6.147±0.942	6.140±0.337*
Significant	Maximum	ns	ns	ns	*	ns	ns	ns
difference	growth rate							
compared								
with the	Lag time	**	ns	ns	ns	ns	ns	ns
recipient								

[#] The modelling was based on modified Gompertz Model, Curve Fitting Tool in Matlab R2015b was applied. Significant differences were calculated between

175 carbamazepine-dosed groups with the LB group using independent-sample t test, P values were corrected by "Benjamini-Hochberg" method as P_{adj}. ns: not

176 significant, *: $P_{adj} < 0.05$ and **: $P_{adj} < 0.01$. Compared with the maximum growth rate and lag time of the same concentration in Table S3.

Cono	COC Annotation	Lo	og ₂ (Fold Change of FPKN	A ()*
Gene		Low-dosage	Medium-dosage	High-dosage
ahpC	Alkyl hydroperoxide reductase subunit AhpC (peroxiredoxin)	1.17	0.78	0.65
ahpF	Alkyl hydroperoxide reductase subunit AhpF	0.71	1.03	0.60
alkB	Alkylated DNA repair dioxygenase AlkB	-0.48#	-1.32#	0.19#
gor	Pyruvate/2-oxoglutarate dehydrogenase complex, dihydrolipoamide dehydrogenase (E3) component or related enzyme	0.75	0.58#	0.29#
oxyR	DNA-binding transcriptional regulator, LysR family	1.06	0.95	0.93
rutA	Flavin-dependent oxidoreductase, luciferase family (includes alkanesulfonate monooxygenase SsuD and methylene tetrahydromethanopterin reductase)	6.21	5.57	5.20
rutC	Enamine deaminase RidA, house cleaning of reactive enamine intermediates, YjgF/YER057c/UK114 family	5.87#	5.27#	4.87#

Table S8. Genes relevant to ROS production and SOS response in donor bacteria *E. coli* K-12 LE392 after exposure of carbamazepine

Cono	COC Annotation	Lo	og ₂ (Fold Change of FPKN	(1)*
Othe		Low-dosage	Medium-dosage	High-dosage
rutD	Homoserine acetyltransferase	6.21#	5.45#	5.09#
sodA	Superoxide dismutase	2.15	1.50	0.92
sodB	Superoxide dismutase	0.75	0.63	0.25#
sodC	Cu/Zn superoxide dismutase	0.85	0.60#	0.30#
soxR	DNA-binding transcriptional regulator, MerR family	1.34#	1.27#	2.34#
soxS	AraC-type DNA-binding domain and AraC- containing proteins	0.81	1.01	0.98
trxB	Thioredoxin reductase	0.19#	0.25#	0.30#
trxC	Negative regulator of GroEL, contains thioredoxin- like and TPR-like domains	0.74#	1.30#	1.47#
lexA	SOS-response transcriptional repressor LexA (RecA-mediated autopeptidase)	0.10#	0.40#	0.91
recA	RecA/RadA recombinase	0.28#	0.34#	0.52

C		Log ₂ (Fold Change of FPKM)*				
Gene	COG Annotation	Low-dosage	Medium-dosage	High-dosage		
recX	SOS response regulatory protein OraA/RecX, interacts with RecA	-0.77#	-0.22#	-0.56#		
sulA	Cell division inhibitor SulA, prevents FtsZ ring assembly	0.64	0.81	0.90		
umuD	SOS-response transcriptional repressor LexA (RecA-mediated autopeptidase)	1.86#	1.72#	2.11#		
yebG	dsDNA-binding SOS-regulon protein, induction by DNA damage requires cAMP	0.92	1.03	1.62		
yedK	Putative SOS response-associated peptidase YedK	0.38#	1.45#	0.11#		

183 Table S9. Proteins relevant to ROS production and SOS response in donor bacteria *E. coli* K-12 LE392 after exposure of carbamazepine

Protein	Cono description	Log ₂ (Fold Change of Protein Abundance) [*]		
	Gene description	Low-dosage Medium-dosage	High-dosage	
AhpF	alkyl hydroperoxide reductase subunit F	-0.06	-0.20	-0.55
Gor	glutathione reductase	-0.74	-0.29	-0.23

184 *: Comparing with the control group without carbamazepine dosage

185

186 Table S10. Genes relevant to ROS production and SOS response in recipient bacteria *P. putida* KT2440 after exposure of carbamazepine

Cono	Cono description	Lo	Log ₂ (Fold Change of FPKM)*	
Gene		Low-dosage	Medium-dosage	High-dosage
ahpC	peroxiredoxin/alkylhydroperoxide reductase small subunit	0.80	0.81	0.59#
ahpF	alkyl hydroperoxide reductase subunit F	-0.94#	0.57#	-0.40#
gor	glutathione reductase	0.93	0.79	0.88
oxyR	oxidative and nitrosative stress transcriptional dual regulator	0.74	0.72	0.61
sodA	superoxide dismutase	2.83#	1.63#	1.82#

Cana	Cons description	Log ₂ (Fold Change of FPKM		ange of FPKM)*	
Gene	Gene description	Low-dosage	Low-dosage Medium-dosage High-de		
sodB	superoxide dismutase	0.56	0.28#	-0.17#	
hexR	DNA-binding transcriptional regulator	0.77#	0.77#	0.03#	
soxR	DNA-binding transcriptional regulator	1.04#	0.41#	-1.34#	

188 [#]: false discovery rate (FDR) > 0.05

189

190 Table S11. Proteins relevant to ROS production and SOS response in recipient bacteria *P. putida* KT2440 after exposure of carbamazepine

Protoin	Cono description	Log ₂ (Fold Change of Protein A		Abundance)*	
Trotem		Low-dosage	Medium-dosage	High-dosage	
SodB	superoxide dismutase	-0.27	0.09	-0.85	
NP_744587.1	peroxiredoxin/alkylhydroperoxide reductase small subunit	0.71	0.80	0.25	

191 *: Comparing with the control group without carbamazepine dosage

Como	COC Appatation	Log ₂ (Fold Change of FPKM)*			
Gene	COG Annotation	Low-dosage	Medium-dosage	High-dosage	
csgF		1.38#	1.60#	0.60#	
cusC	Outer membrane protein TolC	3.68#	4.08#	3.75#	
ompA	Cell wall/membrane/envelope biogenesis	0.88	1.04	0.60	
ompN	Cell wall/membrane/envelope biogenesis	0.24#	1.32#	-inf	
sfmD	Cell motility; [W] Extracellular structures	1.07#	2.56#	0.95#	
uidC		2.22#	0.83#	1.08#	
yfaZ		2.58#	1.48#	0.96#	
yfeN		-0.04#	1.94#	0.46#	
yiaD	Outer membrane protein OmpA and related peptidoglycan-associated (lipo)proteins	0.77#	1.20#	1.41#	
yiaT	Cell wall/membrane/envelope biogenesis	2.61#	0.87#	1.16#	

193 Table S12. Genes relevant to cell membrane in donor bacteria *E. coli* K-12 LE392 after exposure of carbamazepine

194 *: Comparing with the control group without carbamazepine dosage

195 [#]: false discovery rate (FDR) > 0.05

Protoin	Protoin description	Log ₂ (Fold Change of Protein Abundance		
1 I Utem		Low-dosage	Medium-dosage	High-dosage
BamB	Outer membrane protein assembly factor BamB	0.25	0.14	-0.03
OmpC	Outer membrane protein C (Outer membrane protein 1B) (Porin OmpC)	1.77	1.03	-0.15
OmpF	Outer membrane protein F (Outer membrane protein 1A) (Outer membrane protein B) (Outer membrane protein IA) (Porin OmpF)	3.23	1.51	0.32
Slp	Outer membrane protein Slp	0.13	0.46	-0.41
<i>TolC</i> Outer membrane protein TolC (Multidrug efflux pump subunit TolC) (Outer membrane factor TolC)		0.61	-0.08	-0.22

197 Table S13. Proteins relevant to cell membrane in donor bacteria *E. coli* K-12 LE392 after exposure of carbamazepine

198 *: Comparing with the control group without carbamazepine dosage

Gene Gene description		Log ₂ (Fold Change of FPKM) [*]		
Gene	Gene description	Low-dosage	Medium-dosage	High-dosage
czcB-I	Function of homologous gene experimentally demonstrated in an other organism%3B Product type m: membrane component%3B Transport and binding proteins	0.60# 0.98#		1.28
exbD	TonB-gated outer membrane transporter gating inner membrane protein	1.27	0.97#	0.54#
fpvA	TonB-dependent outer membrane ferripyoverdine receptor FpvA	1.25 1.15		1.09
ompQ	outer membrane pyoverdine efflux protein	1.25# 0.52#		1.32#
ompR	two-component system DNA-binding response regulator	0.64	0.66	0.48#
opdH	tricarboxylate-specific outer membrane porin	0.17#	1.10#	0.45#
oprC	copper receptor OprC	2.20	2.12	2.50
oprJ	outer membrane protein OprJ	0.31#	1.08#	$0.07^{\#}$
yidH	Putative membrane component	3.63#	0.12#	2.56#

200 Table S14. Genes relevant to cell membrane in recipient bacteria *P. putida* KT2440 after exposure of carbamazepine

Cene	Cene description	Log ₂ (Fold Change of FPKM)*				
Othe	Gene description	Low-dosage	Medium-dosage	High-dosage		
PP_2754	OprD family outer membrane porin	1.51#	0.37#	1.40#		
PP_2669	outer membrane protein	0.98#	1.64#	0.59#		
PP_2558	outer membrane efflux protein	1.06#	0.15#	0.33#		
PP_2069	multidrug MFS transporter outer membrane protein	2.64#	0.93#	1.48#		
PP_4825	MarC family membrane protein	0.03#	1.52#	$0.28^{\#}$		
PP_3477	type II secretion protein	-0.63#	2.80#	1.11#		
PP_4839	iron-regulated membrane protein	1.53	1.66	1.42		
PP_5505	Transmembrane protein	-inf	-0.40#	$1.08^{\#}$		
PP_3085	transmembrane sensor	-0.10#	1.65#	1.38#		
PP_0668	transmembrane sensor	0.48#	1.13#	$1.14^{\#}$		
PP_0358	Membrane protein	1.32#	1.11#	1.68		
PP_0431	Membrane protein	1.78	1.81	1.99		
PP_0487	Membrane protein	1.07#	0.69#	0.39#		
PP_0523	Membrane protein	-0.07#	-0.30#	1.03#		

Gene	Gene description	Lo	og ₂ (Fold Change of FPKN	M)*	
Gene	Gene description	Low-dosage	Medium-dosage	High-dosage	
<i>PP_0647</i>	Membrane protein	0.70#	1.25#	2.35#	
<i>PP_0717</i>	Membrane protein	1.13#	1.26#	0.98#	
PP_0984	Membrane protein	-0.22#	-0.24#	1.48#	
PP_1124	Membrane protein	0.29#	1.31#	1.01#	
PP_2202	Membrane protein	0.37#	1.35#	0.99#	
PP_2611	Membrane protein	1.50#	1.77#	2.18#	
PP_2612	Membrane protein	0.91#	1.03#	1.18#	
PP_3083	Membrane protein	-0.27#	-0.15#	1.41#	
PP_3131	Membrane protein	0.85#	1.16#	1.08#	
PP_3331	Membrane protein	1.14#	0.42#	0.89#	
PP_3512	Membrane protein	1.25#	0.54#	-0.27#	
<i>PP_4057</i>	Membrane protein	1.16#	0.67#	2.27#	
PP_4134	Membrane protein	1.58#	0.38#	0.09#	
<i>PP_4537</i>	Membrane protein	1.62#	0.17#	-0.008#	

Cana	Cana description	Log ₂ (Fold Change of FPKM)*				
Gene	Gene description	Low-dosage Medium-dosage Hi		High-dosage		
PP_5091	Membrane protein	0.96	1.02	0.88		
<i>PP_5423</i>	_5423 Membrane protein		0.63#	1.89#		
<i>PP_5447</i>	Membrane protein	-0.34#	0.87#	1.82#		
<i>PP_5454</i>	Membrane protein	1.40#	1.70#	$0.79^{\#}$		
PP_5460	Membrane protein	0.42#	0.64#	1.05#		
<i>PP_5537</i>	Membrane protein	2.65#	-1.40#	2.66#		
PP_5718	Membrane protein	0.65#	0.93#	1.25#		
PP_2966	Conserved membrane protein	-0.05#	0.43#	2.16#		
PP_4023	Conserved membrane protein	1.10#	0.99#	0.94#		
PP_2244	putative membrane component	2.52	2.29	2.10		
PP_5096	putative membrane component	0.96	1.04	0.95		
<i>PP_5743</i>	putative membrane component	0.64#	1.02#	1.05#		

201 *: Comparing with the control group without carbamazepine dosage

202 [#]: false discovery rate (FDR) > 0.05

Protein	Protein description	Log ₂ (Fold Change of Protein Abune		undance)*
Trotein		Low-dosage	Medium-dosage	High-dosage
OmpA	OmpA family lipoprotein	-0.25	0.03	0.87
OprG	outer membrane protein OprG	1.64	1.41	0.37
OprL	Peptidoglycan-associated lipoprotein	-1.48	0.14	1.77
TtgC	Probable efflux pump outer membrane protein TtgC	0.05	0.40	0.09
NP_742435.1	outer-membrane porin D	1.05	0.74	0.29
NP_742402.1	outer-membrane porin E	0.55	0.17	-0.31
NP_743345.1	outer membrane protein H1	1.36	0.67	-0.51
NP_745593.1	multidrug RND transporter membrane fusion protein	0.36	-0.15	0.81
WP_010954246.1	outer membrane protein assembly factor BamA	0.37	0.42	-0.20

Table S15. Proteins relevant to cell membrane in recipient bacteria *P. putida* KT2440 after exposure of carbamazepine

205 *: Comparing with the control group without carbamazepine dosage

207	Table S16. Genes relevant	to pilus generation ir	donor bacteria E. coli	K-12 LE392 after exposure o	f carbamazepine
-----	---------------------------	------------------------	------------------------	-----------------------------	-----------------

Gene	COG Annotation	Log ₂ (Fold Change of FPKM)*		
		Low-dosage	Medium-dosage	High-dosage
fimB	Replication, recombination and repair; Mobilome: prophages, transposons	0.22#	1.30#	0.49#
fimF	Pilin (type 1 fimbria component protein)	1.03#	2.46#	1.19#
fimG	Cell motility	-0.64#	0.19#	1.57#
fimH	Pilin (type 1 fimbria component protein)	-0.31#	1.41#	0.53
yagI	DNA-binding transcriptional regulator, IclR family	2.61	2.23	2.21

Table S17. Genes relevant to pilus production and transfer regulation in RP4 plasmid after exposure of carbamazepine

Cono	COG Annotation	Log ₂ (Fold Change of FPKM)*		
Gene		Low-dosage	Medium-dosage	High-dosage
traA		0.99	0.81	0.84
traB		1.49	1.15	1.35

Cono	COG Annotation	Log ₂ (Fold Change of FPKM)*		
Othe		Low-dosage	Medium-dosage	High-dosage
traH		2.05#	1.80#	3.10#
traL		0.87	1.01	0.70
traP		2.16	1.63#	1.35#
traC1		1.18	0.78	0.70
traC2		1.51#	1.37#	1.61#
traI		1.14#	0.87#	0.77#
traJ		-0.31#	0.55#	1.06#
traM		0.73#	1.22	0.66#
trbA		-0.05#	0.18#	0.36#
trbB		0.09#	0.14#	-0.06#
trfA		0.42	0.26#	0.51
<i>korA</i>		-0.52#	-0.92#	-0.26#

212 *: Comparing with the control group without carbamazepine dosage

213 [#]: false discovery rate (FDR) > 0.05

215 References in Supporting Information

216	1	Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & Van't Riet, K. (1990). Modeling of the
217		bacterial growth curve. Applied and environmental microbiology, 56(6), 1875-1881.
218	2	Zhang Y, Gu AZ, He M, Li D, Chen JM. Subinhibitory concentrations of disinfectants promote the
219		horizontal transfer of multidrug resistance genes within and across genera. Environ Sci Technol. 2017;
220		51: 570-580.
221	3	Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput
222		<i>Biol.</i> 2000; 7: 203-214.
223	4	Gao SH, Fan L, Peng L, Guo JH, Agullo-Barcelo M, Yuan ZG, et al. Determining multiple responses of
224		pseudomonas aeruginosa pao1 to an antimicrobial agent, free nitrous acid. Environ Sci Technol. 2016;
225		50: 5305-5312.