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Abstract

Binocular rivalry and cross-orientation suppression are well-studied forms of competition in visual cortex, but models of
these two types of competition are in tension with one another. Binocular rivalry occurs during the presentation of
dichoptic grating stimuli, where two orthogonal gratings presented separately to the two eyes evoke strong alternations in
perceptual dominance. Cross-orientation suppression occurs during the presentation of plaid stimuli, where the responses
to a component grating presented to both eyes is weakened by the presence of a superimposed orthogonal grating.
Conventional models of rivalry that rely on strong competition between orientation-selective neurons incorrectly predict
rivalry between the components of plaids. Lowering the inhibitory weights in such models reduces rivalry for plaids, but
also reduces it for dichoptic gratings. Using an exhaustive grid search, we show that this problem cannot be solved simply
by adjusting the parameters of the model. Instead, we propose a robust class of models that rely on ocular opponency
neurons, previously proposed as a mechanism for efficient stereo coding, to yield rivalry only for dichoptic gratings, not for
plaids. This class of models reconciles models of binocular rivalry with the divisive normalization framework that has been
used to explain cross-orientation. Our model makes novel predictions that we confirmed with psychophysical tests.
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Introduction

Binocular rivalry is a visual phenomenon in which perception

alternates between incompatible monocular images presented to

the two eyes [1–4]. For example, when one eye is presented with

an oriented grating and the other eye is presented with an

orthogonal grating, observers experience alternating periods of

dominance in which one grating is visible and the other is invisible

or nearly invisible.

Computational models have been proposed to characterize the

alternating periods of perceptual dominance experienced during

rivalry [5–14]. These models rely on mutual inhibition between

neurons representing the two percepts, so that when one percept is

dominant, the other percept is suppressed. To capture alternations

between the percepts, rivalry models include endogenous noise,

adaptation, or a combination of both.

While these models successfully explain the case of dichoptic

gratings, in which incompatible gratings are presented separately

to the two eyes (Figure 1, top), the binocular rivalry literature has

largely overlooked the case of binocular plaids, in which a pair of

orthogonal gratings are presented superimposed to both eyes

(Figure 1, bottom). Because models of binocular rivalry rely on

strong competition between neurons tuned to orthogonal orien-

tations, they typically predict rivalry between plaid components

that is nearly as strong as the rivalry between dichoptic gratings.

This prediction is not borne out by psychophysical evidence or by

subjective experience. While plaid components show a type of

rivalry known as ‘pattern rivalry’, it is far weaker than the rivalry

experienced with dichoptic gratings [15,16] (Figure 1). Instead of

strong rivalry, plaid components undergo much weaker compe-

tition caused by ‘‘cross-orientation suppression’’, in which the

neural responses to each of the component gratings is lower than it

would have been without superimposing the other component

grating [17–19]. Cross-orientation suppression is well character-

ized by the normalization equation, according to which neural

responses are normalized (i.e., divided) by a common factor, which

includes the summed activity of a large pool of neurons [19,20].

The normalization equation was developed to explain a variety of

response properties of neurons in primary visual cortex, including

cross-orientation suppression, surround suppression, and response

saturation at high contrasts.

Ocular opponency neurons compute the difference in the

signals between the two eyes, and have been identified using both

neurophysiology [21–23] and psychophysics [24,25]. Because of

their potential to reduce redundancies between the eyes, they have

been proposed as part of a theory of efficient stereo coding [26], a

topic which might appear to be unrelated to rivalry and cross-

orientation suppression.

In this paper, we explain how it is possible for dichoptic gratings

to rival strongly while plaid components rival only weakly, and

how to reconcile models of binocular rivalry with the normaliza-

tion model. We propose a firing rate model that relies on ocular

opponency neurons because they uniquely signal when rivalry

should occur. For each orientation, opponency neurons receive

excitation from one eye, and inhibition from the other eye. For

binocular plaids, the opponency neurons in the model are silent
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because their inhibitory and excitatory inputs cancel. Under these

circumstances, conventional normalization causes weak cross-

orientation suppression. For dichoptic gratings, the opponency

neurons are active, and we propose that they inhibit (through

feedback) the monocular neurons corresponding to the eye from

which they receive inhibition, thus amplifying the competition

between the two eyes, resulting in rivalry. To account for the fact

that binocular rivalry suppresses all orientations equally [27],

feedback inhibition is directed towards all orientations. Opponency

neurons may be the neurobiological analogue of rivalry XOR

(exclusive-OR) units; These XOR units were proposed 23 years ago

to prevent plaid component rivalry in a qualitative model of

binocular rivalry [28], but have been overlooked ever since.

To test the theory, we performed a psychophysics experiment

that investigated a novel prediction of the model. According to the

model, rivalry is predicted to be weaker following adaptation with

monocular stimuli than binocular stimuli. This prediction follows

from the fact that monocular stimuli evoke strong responses (and

hence adaptation) in the opponency neurons, whereas binocular

stimuli do not. A conventional model without opponency neurons

does not make this prediction. Our psychophysical results, along

with previously published psychophysical results [29] (see Discus-

sion), supported the prediction of the ocular opponency model.

Results

Conventional model
To understand the relationship between rivalry and cross-

orientation suppression, we first implemented a firing rate model

of binocular rivalry that incorporated normalization (Figure 2A).

The model consisted of two left-eye, monocular neurons

selective for orthogonal orientations, two analogous right-eye,

monocular neurons, and two binocular summation neurons that

received feedforward input from the monocular neurons. While

we refer to the units as ‘‘neurons’’ for simplicity, the biological

implementation of each unit may be more accurately described as

an ensemble of (e.g., 50–100) neurons with similar response

properties [30]. The monocular neurons mutually inhibited one

another, and the binocular summation neurons mutually inhibited

one another, yielding competition at both the monocular and

binocular levels. We included inhibitory connections not only

between neurons in different eyes, but also between neurons in the

same eye. This arrangement differs from the many conventional

models that only allow competition between neurons in different

eyes, but similar results supporting the same conclusions were

found to hold from the conventional model even when compe-

tition was restricted to neurons in different eyes.

Mutual inhibition was implemented by the divisive normaliza-

tion equation [19,20] rather than by subtraction, which is typically

used in models of rivalry. The normalization equation is not

intended to be a mechanistic model of suppression, but instead

provides a good description of the computations underlying

inhibitory interactions in cortex. Biophysically plausible imple-

mentations of this equation have been described elsewhere

[19,31]. Lowpass-filtered noise was included in the inputs to each

neuron (see Methods for details). Unfiltered white noise coupled

with neural adaptation would have behaved similarly.

Binocular rivalry occurred in response to dichoptic gratings

when the mutual inhibition in the model was set to be strong (by

assigning high values to certain weights in the denominator of the

normalization equation). Rivalry strength was quantified with a

winner-take-all (WTA) index defined in terms of the responses of

the binocular summation neurons (see Methods for details). The

index was bounded by 0 and 1, where 0 indicated that the two

binocular summation neurons always had identical responses, and

1 indicated complete rivalry, with only one or the other neuron

exhibiting a non-zero response at each time.

Although strong inhibition permitted rivalry in the dichoptic

grating condition, it had the unintended consequence of gener-

ating strong rivalry between plaid components (Figure 2B–D).

Rivalry occurred for both monocular plaids (orthogonal gratings

superimposed in one eye) and for binocular plaids (orthogonal

gratings superimposed in both eyes). While the model’s plaid

component rivalry could be made to be slightly weaker than the

dichoptic grating rivalry (Figure 2B–D), actual plaid rivalry in

psychophysical experiments is much weaker than the rivalry

between dichoptic gratings [15,16].

An intuition for this behavior can be obtained by considering

situations in which the competition between features is either

entirely in the binocular stage or entirely in the monocular stage. If

the competition is in the binocular stage, dichoptic gratings can

easily be made to rival. However, plaids will provide the same

input to the binocular stage as dichoptic gratings, and thus their

components will rival as well. Alternatively, if the competition is in

the monocular stage, a similar problem emerges. The competition

that allows dichoptic gratings to rival will also cause rivalry in the

components of plaids. One might think that rivalry could be

restricted to dichoptic gratings if competition is made to be only

interocular, not intraocular. However, while this arrangement will

prevent rivalry for monocular plaids, it will allow rivalry in

binocular plaids because each component in each eye will compete

with an orthogonal component in the other eye.

An exhaustive grid search through plausible weight values and

noise amplitudes did not find a single parameterization that

produced reasonable responses to plaids and gratings. While there

were a few parameterizations that produced stronger rivalry for

dichoptic gratings compared to plaids, all of these parameteriza-

tions had such high noise amplitudes and weight values that they

behaved implausibly during the presentation of monocular

gratings, with responses so volatile that they occasionally

responded more strongly to a non-presented orthogonal orienta-

tion than to the grating that was presented (see Methods and

Figure 3). If these models were correct, human observers viewing a

Author Summary

Binocular rivalry is a visual illusion that occurs when the
two eyes are presented with incompatible images. Instead
of perceiving a mixture of the two images, most people
tend to experiences alternations in which they only see
one image at a time. Binocular rivalry is more than just an
interesting illusion: it reflects actual competition between
neurons in the brain, and therefore provides a rare window
into neural dynamics. To help us understand these
mechanisms, researchers have developed several compu-
tational models of binocular rivalry. Yet surprisingly, as we
show in this paper, previous computational models of
rivalry make an incorrect prediction. They predict that
certain types of images (similar to checkerboards) will
cause strong perceptual alternations even when viewed
normally. Since this prediction doesn’t hold up, the
existing models must not be telling the whole story. In
this paper, we develop a new model of binocular rivalry
that doesn’t make this prediction. The model also makes
novel predictions – not made by conventional models –
that stand up to experimental test. Our model thus
provides a better account of how neurons in the visual
system interact with one another.

Rivalry and Cross-orientation Suppression
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single grating monocularly would occasionally perceive an

orthogonal grating instead.

We confirmed that a standard model of binocular rivalry [11],

with subtractive instead of divisive inhibition, also failed to solve

this problem. This model appropriately exhibited strong rivalry for

dichoptic plaids, but it also inappropriately exhibited equally

strong rivalry with periods of complete dominance for binocular

plaids, and sustained dominance with no alternations for

monocular plaids (Figure 4). Although we did not explicitly test

every previous model of binocular rivalry, we infer that they

likewise would exhibit the same problem because none of them

include a mechanism to modulate the strength of inhibition

depending on whether the two component gratings are dichoptic,

binocular, or monocular [9].

Opponency model
A robust solution to the plaid problem was obtained by adding

ocular opponency neurons to the conventional model. Each

opponency neuron computed a difference between the responses

of two monocular neurons corresponding to the same orientation

but different eyes (Figure 5A). This difference was then halfwave

rectified (setting negative values to zero) and normalized (see

Methods for details). Through feedback, the opponency neurons

linearly inhibited (i.e., via subtraction) both monocular neurons

corresponding to the eye from which they received inhibition.

There were a total of 4 opponency neurons, so that both

orientations and both differences (right-left and left-right) were

included in the model, although only one is shown in Figure 5A.

Rivalry was more than three times as strong for dichoptic

gratings compared to plaids (Figure 5B–D). As with the

conventional model, we again quantified the strength of rivalry

with a WTA index defined in terms of the responses of the

binocular summation neurons. Unlike in even the best parame-

terizations of the conventional model, there were periods of near

complete dominance for dichoptic gratings but not plaids, without

requiring implausible responses to monocular gratings presented

alone. The model accomplished this using fewer parameters than

the conventional model (Tables 1 and 2).

Ocular opponency neurons solved the plaid problem by

responding during conditions in which binocular rivalry might

occur. When presented with binocular plaids, the opponency

neurons were silent. Under these circumstances, weak cross-

orientation suppression occurred because of normalization. In

contrast, when dichoptic gratings were presented, the opponency

neurons became active and suppressed activity in monocular

neurons corresponding to the opposite eye. This suppression

amplified the normalization-based competition between the eyes.

It was critical that the opponency neurons inhibited monocular

neurons they received inhibition from, rather than exciting

monocular neurons they received excitation from. While the

latter arrangement encouraged rivalry in dichoptic gratings and

not in binocular plaids, it created rivalry (inappropriately) in

monocular plaids, because monocular plaids excited the oppo-

nency neurons. In the correct arrangement, monocular plaids

excited the opponency neurons, but the inhibitory feedback had a

negligible effect, because the unstimulated monocular neurons

were already responding only very weakly.

Empirical test of the models
The simulation results demonstrated how an opponency model,

but not a conventional model, can exhibit both rivalry and cross-

orientation suppression under appropriate circumstances. Never-

theless, the simulation results only showed how it is theoretically

possible that opponency cells contribute to rivalry; they did not

provide evidence that opponency models are necessary for rivalry.

We therefore designed an experiment, using adaptation, to test a

prediction of the opponency model. Adaptation is a powerful

psychophysical tool, because it supports inferences about selectiv-

ity [32,33], in this case, selectivity for ocular opponency.

Human observers participated in two experimental sessions with

different adaptors. During one session, observers adapted to

orientation-alternating grating stimuli presented binocularly prior

to rivalry (Figure 6; see Methods). According to both the

conventional model and the opponency model, these stimuli

should activate, and therefore adapt, the monocular neurons and

binocular neurons, but not the opponency neurons. During the

other session, observers adapted to orientation-alternating stimuli

presented monocularly, where one orientation was always

presented to the left eye and the orthogonal orientation was

always presented to the right eye, with only one or the other

orientation presented at a time. According to both models, these

stimuli should activate, and therefore adapt, the monocular

neurons and the binocular neurons. The critical difference

between the two models is that according to the opponency

model (but not the conventional model), the monocular adaptors

will also adapt the opponency neurons.

Following adaptation, observers viewed rival stimuli, with one

orientation presented to one eye and the other orientation to the

other eye. The rival stimuli were dichoptic gratings, identical in

both sessions. Observers reported their percepts with button

presses. Intuitively, the opponency model predicts that the

monocular adaptation condition should result in weaker rivalry

than the binocular adaptation condition, because the monocular

condition adapts the opponency neurons that amplify the

Figure 1. Demonstration of strong binocular rivalry and weak
pattern rivalry. Although experiments on rivalry are typically done
under controlled laboratory conditions with prisms or stereoscopes,
some readers may be able to experience the effect by crossing their eyes,
aligning the left and right boxes so that a total of six boxes are observed,
rather than four. If done correctly, the top middle box will display
dichoptic gratings, and observers experience strong rivalry, with clear
alternations in dominance between leftward-oriented and rightward-
oriented gratings. The bottom middle box will display binocular plaids,
where each eye is shown the same two superimposed orthogonal
components (leftward and rightward gratings), for which any alterna-
tions in the perceived strength of the components are very weak.
doi:10.1371/journal.pcbi.1002991.g001

Rivalry and Cross-orientation Suppression
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suppression, resulting in rivalry. The conventional model, which

lacks opponency neurons, does not make this prediction.

To make the predictions explicit, we first ran simulations on the

two models after adaptation to the two conditions. A long-term

adaptation variable (time constant = 80 sec) was added to both

models to capture the slow buildup of adaptation produced by our

experimental manipulations (see Methods). This type of adaptation

is slower than the adaptation that is sometimes used in other

models of binocular rivalry to capture percept alternations. We

could not directly measure the WTA index in human participants,

so we relied instead on the percentage of ‘‘mixed’’ percepts as a

proxy measure, where a high percentage of mixed percepts

corresponds to a low WTA index. The conventional model, which

lacks opponency neurons, predicts that monocular adaptation will

result in a slightly lower percentage of mixed perception during

rivalry compared to binocular adaptation (Figure 7A; see Methods).

In contrast, the opponency model predicts that monocular

adaption will result in a higher percentage of mixed percepts

compared to binocular adaptation (Figure 7B).

Psychophysical tests on human participants supported the

opponency model. We found a higher percentage of mixed

perception following monocular adaptation (M = 25.3, SD = 19.1)

compared to binocular adaptation (M = 20.1, SD = 18.4; paired

t(29) = 2.9, p,.01; Figure 7C–D). These results suggest that

opponency neurons contribute to rivalry.

Previous research has found that contrast adaptation alone can

decrease dominance durations [34]. However, the difference in

mixed perception between conditions in our experiment cannot be

Figure 2. Conventional model. (A) Schematic. Monocular neurons drive iso-oriented binocular summation neurons with excitatory feedforward connections
(green). Mutual inhibition within each layer is implemented by a normalization pool (gray shadows). (B–D) Model simulations. Top row: dichoptic gratings. Middle
Row: monocular plaid. Bottom row: binocular plaids. (B) Stimulus conditions. (C) Example response time-courses of the two binocular summation neurons. (D)
Winner-take-all (WTA) index. The conventional model shows dichoptic grating rivalry that is only slightly stronger than plaid component rivalry.
doi:10.1371/journal.pcbi.1002991.g002

Rivalry and Cross-orientation Suppression
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explained by this mechanism, as overall contrast adaptation would

be expected to be higher in the binocular adaptation condition

than the monocular adaptation condition. Indeed, the conven-

tional model predicts slightly more mixed perception after

binocular adaptation compared to monocular adaptation

(Figure 7A), contrary to what we found.

The different adaptor conditions did not cause different eye

imbalances. We defined eye imbalance as the absolute difference

in the fraction of time that the left eye and right eye delivered the

dominant percept. The mean absolute eye imbalance was 0.15

after monocular adaptation, and 0.16 after binocular adaptation.

This difference was not significant. (t(29) = 0.31, p..05).

The effect of our adaptation manipulation on mixed perception,

while significant, was not very large. Small effects are common in

adaptation experiments [35–37], presumably because the neurons

are only partially adapted, not completely silenced. Indeed, our

own model simulations predict small effects for this reason. Partial

adaptation was a particularly important issue in our experiment,

because the opponency neurons were adapted not only by the

monocular adaptors, but also by the subsequent rival stimuli that

were presented in both conditions. Thus, it was expected that the

opponency adaptation condition would generate only marginally

more opponency adaptation than the binocular adaptation

condition.

Discussion

We developed a computational model that resolves a tension

between theories of binocular rivalry and cross-orientation

suppression. Once specified, we used the model to make novel

predictions about the effects of adaptation prior to rivalry.

Whereas conventional models predict that adaptation to monoc-

ular gratings, compared to binocular gratings, will cause a small

decrease in mixed perception during rivalry, the opponency model

predicts an increase in mixed perception. The opponency model

makes this prediction because monocular stimuli uniquely adapt

the opponency neurons that amplify the suppression, resulting in

rivalry. Psychophysical tests confirmed the predictions of the

model, with subjects reporting more mixed perception following

adaptation to monocular gratings than binocular gratings.

Models of binocular rivalry
Conventional models of binocular rivalry rely on strong

competition, between neurons tuned to orthogonal orientations,

to generate rivalry between dichoptic gratings. Because of this

strong competition, conventional models make the incorrect

prediction that plaid components, which are also orthogonally

oriented, will strongly rival. This problem cannot be solved by

adjusting the connection weights between neurons, as demon-

strated by an exhaustive parameter search. Lowering the

inhibitory weights reduces rivalry for plaids, but also reduces it

for dichoptic gratings.

Using ocular opponency neurons, we developed a model of

binocular rivalry that solves the plaid problem much more

effectively than a conventional model, despite using fewer

parameters. The new opponency model makes a clear and novel

connection between two of the most well-studied forms of

competition in visual cortex: binocular rivalry and cross-orienta-

tion suppression. The model also makes predictions about

functional interactions between monocular neurons, binocular

summation neurons, and ocular opponency neurons. Under our

interpretation, binocular rivalry and cross-orientation suppression

rely on the same neural computations: orientation-selectivity,

rectification, and normalization. In binocular rivalry, however,

competition is amplified by feedback from ocular opponency

neurons.

A number of published dynamical systems models have

characterized the alternating periods of perceptual dominance

for dichoptic gratings, but none has provided simulations showing

weak rivalry in plaid components in the same model. One

published model proposed separate mechanisms for interocular

and intraocular suppression, but it is not clear how this type of

model could avoid rivalry in binocular plaids, where both

Figure 3. Reliability of simulated binocular layer responses to
monocular gratings. (A) Example responses to a monocular grating
for one of the 6 parameterizations of the conventional model that
passed the initial two criteria (see Methods). Magenta, simulated
response time-course for a neuron tuned to the orientation of the
monocular grating. Cyan, simulated response time-course for a neuron
with orthogonal orientation preference. While this parameterization of
the model produced stronger rivalry for dichoptic gratings compared to
plaids, the model behaved implausibly when presented with a
monocular grating. Specifically, the model occasionally showed
stronger responses for the non-presented orthogonal grating. (B)
Simulated responses of the opponency model were stable, and did not
any show any switches in dominance.
doi:10.1371/journal.pcbi.1002991.g003

Figure 4. Demonstration that a previously published model
(Wilson, 2003) does not show weaker rivalry for binocular
plaids and monocular plaids. (A) Standard rivalry under dichoptic
conditions. Our simulation results are identical to those of Figure 2A in
Wilson (2003). (B) Binocular plaid conditions result in full rivalry. (C)
Monocular plaid conditions results in sustained dominance.
doi:10.1371/journal.pcbi.1002991.g004

Rivalry and Cross-orientation Suppression
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interocular and intraocular mechanisms may contribute to

suppression [38]. Another published report showed how rivalry

occurred in a strong-inhibition variant of a model, whereas weak

suppression occurred in a low-inhibition variant of the model, but

it was not explained how the inhibition strengths were controlled

depending on whether plaids or dichoptic gratings were viewed

[39]. Using opponency neurons, our model demonstrates the

appropriate behavior for both types of stimuli with a fixed set of

parameters. Opponency neurons may be the neurobiological

analogue of rivalry XOR (exclusive-OR) units. These XOR units

were proposed 23 years ago in a qualitative model of binocular

rivalry [28], but the need for this kind of computation has been

overlooked ever since.

Empirical support for ocular opponency
Neurophysiological studies have identified opponency neurons

that algebraically subtract the input between the two eyes [21–23],

but these neurons have received little attention, in large part

Figure 5. Ocular opponency model. (A) Schematic. An opponency neuron computes a response difference between the two eyes for a particular
orientation preference and retinotopic location. The opponency neuron inhibits activity in the opposite eye (curved red line), thus amplifying the
winner-take-all behavior of normalization (gray shadow). Not shown are three other opponency neurons (a R-L neuron selective for the orthogonal
orientation, and two L-R neurons). Also not shown are the two normalization pools for the opponency neurons (one for R-L opponency neurons, and
another for L-R opponency neurons). (B–D) Model simulations (same format as Figure 2). The opponency model shows dichoptic grating rivalry that is
much stronger than plaid component rivalry.
doi:10.1371/journal.pcbi.1002991.g005

Rivalry and Cross-orientation Suppression
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because the functional significance of these cells was unknown.

Livingstone and Hubel (1984) remarked that they were ‘‘at a loss

to imagine any plausible benefit’’ for the subtraction operation

between eyes. Subsequent theoretical work provided one possible

benefit, that opponency neurons may play a critical role in efficient

stereo coding [26].

Previous psychophysical studies have provided evidence for

ocular opponency, but none have tested the role of opponency in

binocular rivalry [24,25]. Of most relevance is the observation

that the amount of mixed perception increases over the course of

binocular rivalry due to long-term adaptation during rivalry, and

that this effect is not simply due to contrast adaptation [40].

While this effect has been attributed to adaptation of a generic

‘‘rivalry mechanism’’, these results are easily explained under our

framework. During the presentation of rival stimuli, as oppo-

nency neurons become increasingly adapted, they become unable

to effectively enforce rivalry. Greater mixed perception following

adaption was later replicated both with binocular adaptors and

monocular adaptors [29]. This latter experiment was very similar

to our own, and thus provides additional support for our model.

However, it was also observed that when subjects were deprived

of stimulation for an hour after binocular adaptation, subsequent

mixed perception was still strong. This suggests that long-term

plasticity, and not just adaptation, may have been involved. This

form of plasticity is not present in the current version of our

model. The authors of that study attributed their results to ‘‘anti-

Hebbian’’ learning, in which inhibitory connections are weak-

ened following stimulation by monocular or dichoptic stimuli. In

the context of our model, anti-Hebbian learning could be

incorporated into the inhibitory connections between opponency

neurons and monocular neurons, thus providing a mechanism for

long-term plasticity.

Normative accounts of opponency feedback
We do not commit to any normative account for why the visual

system would develop the circuitry used in our model, and it

remains an open question. No feedback was included in previous

models of efficient stereo coding [26]. Instead, gain control was

applied to output of the summation and opponency channels to

optimize their sensitivities, with stronger gain on the opponency

signal. The feedback in our model, which has the effect of

increasing the opponency signal more than the summation signal,

may be one mechanism by which this gain control is accom-

plished. Alternatively, some researchers have proposed that

binocular rivalry may be a rational form of Bayesian inference,

where sampling from the two eyes is used to approximate a

posterior distribution over causes [41]. Under this interpretation,

the opponency mechanism might be required to allow rivalry only

when it is rational (i.e. under dichoptic conditions).

Model limitations
We made no attempt to account for all of the known properties

of binocular rivalry. Instead, we focused on what has been an

under-appreciated shortcoming of binocular rivalry theories. For

simplicity, our model uses only a few parameters to address that

shortcoming. We believe that some of the remaining properties of

binocular rivalry could be accounted for by straightforward

extensions to our model.

Table 1. Ocular opponency model parameters.

Parameter Value Description

s 0.5 Semisaturation constant for monocular and summation neurons

sopp 0.9 Semisaturation constant for opponency neurons

a 0.05 Noise amplitude (SD of Gaussian white noise)

s 800 ms Noise smoothness (SD of Gaussian temporal filter)

t 50 ms Time constant

The model was robust enough that all connection weights were set to 1.
doi:10.1371/journal.pcbi.1002991.t001

Table 2. Parameter values used in the conventional model grid search.

Parameter Candidate values

Monocular normalization weight: Self-connection 0.4, 0.8, 1.2, 1.6, 2

Monocular normalization weight: Same eye, orthogonal orientation 0.4, 0.8, 1.2, 1.6, 2

Monocular normalization weight: Opposite eye, same orientation 0.4, 0.8, 1.2, 1.6, 2

Monocular normalization weight: Opposite eye, orthogonal orientation 0.4, 0.8, 1.2, 1.6, 2

Summation layer normalization weight: Same orientation 0.4, 0.8, 1.2, 1.6, 2

Summation layer normalization weight: Orthogonal orientation 0.4, 0.8, 1.2, 1.6, 2

Feedforward weights 0.4, 0.8, 1.2, 1.6, 2

Noise amplitude (a) 0.01, 0.03, 0.05, 0.09, 0.13

Semisaturation constant (s) 0.5

Noise smoothness (s) 800 ms

Time constant (t) 50 ms

doi:10.1371/journal.pcbi.1002991.t002
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Figure 6. Schematic of a block from the psychophysics experiment. In the binocular adaptation condition (left sequence), the gratings were
shown to both eyes. In the monocular adaptation condition (right sequence), the gratings were shown to only one eye at a time, alternating at
0.94 Hz. After the adaptation period, observers viewed orthogonal (rival) stimuli in each eye for 80 sec and reported their percepts with button
presses.
doi:10.1371/journal.pcbi.1002991.g006

Figure 7. Model predictions and psychophysical results from the adaptation experiment. (A) Conventional model predictions. (B)
Opponency model predictions. (C) Psychophysical results. Error bars are the standard error for repeated measures. (Standard error after each
observer’s mixed percept fractions were recentered to the mean across observers and conditions.)
doi:10.1371/journal.pcbi.1002991.g007
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While we included long-term adaptation to simulate our

adaptation experiment, we did not include any fast adaptation

dynamics, a process that almost certainly plays a role in perceptual

alternations during binocular rivalry. Models that incorporate

adaptation can account for the gamma distribution of dominance

durations and the observation that changing the contrast of one

eye primarily affects only the dominance durations of the other eye

[42], although the generality of this observation has been called

into question [43,44].

There has been considerable debate about whether binocular

rivalry occurs primarily between monocular representations (eye

rivalry) or between binocular and higher level representations

(image rivalry) [3]. Psychophysical evidence for eye rivalry

includes the observations that swapping the images between eyes

at the peak of a dominance phase causes an immediate change in

perception [28,45], and that target probes presented to the

suppressed eye are difficult to detect [46,47]. On the other hand,

there are two main lines of psychophysical evidence that image

rivalry may contribute as well. First, research on interocular

grouping has shown that when component patches of two different

images are distributed between the eyes, observers often see

coherent images [48]. Second, when orthogonal gratings are

rapidly swapped between the eyes and accompanied by an even

faster flicker, observers report rivalry at a frequency much slower

than the swap rate [49]. There is also conflicting physiological

evidence over whether rivalry occurs primarily at the monocular

level or at later stages [50–53].

Our model is hierarchical by design, and thus includes both

monocular competition (contributing to eye rivalry) and binocular

competition (contributing to image rivalry). Our model is agnostic

about whether the binocular neurons underlying perceptual

judgments reside in V1 or higher cortical areas. To account for

the interocular grouping effects [48], an extension to our model

could include top-down modulation of local competition, analo-

gous to computational theories of attention [54], such that portions

of one eye’s view and complementary portions of the other eye’s

view are simultaneously dominant [55].

Our current model can only partially account for the

observations from rapid swap experiments [49,56]. The binocular

summation neurons in the model exhibit slow alternations during

high-frequency alternations between stimuli, but the responses of

these neurons are weak under these conditions, and do not show

all the known frequency-dependent effects of eye swapping [56]. A

previously published hierarchical model used relatively strong

inhibition at the binocular layer to produce slow and robust

alternations during rapid swap stimulation but, like our model, did

not attempt to account for the frequency-dependence [11]. In both

models, increasing the inhibition in the binocular layer could shift

the behavior more to image rivalry during rapid swap stimulation,

but would also increase the rivalry between plaid components.

Finally, our model makes no attempt to explain ‘rivalry

memory’, although the extensions to our model would be

straightforward. In rivalry memory experiments, the rival stimuli

are turned off for several seconds immediately after one of them

has become dominant. When the stimuli are turned back on, the

previously dominant stimulus is typically perceived [57–59]. This

effect could be explained by including brief, recurrent synaptic

facilitation in our model [60].

Methods

Conventional model: Mathematical details
Within each subpopulation of neurons (monocular, binocular

summation), mutual inhibition was implemented by a dynamical

variant of the normalization equation:

t
d

dt
Fj~{Fjz

½Dj �2

s2
j z

P
k

½wkDk�2
ð1Þ

where the brackets indicate halfwave-rectification. At steady state,

the instantaneous firing rate F of neuron j was the half-squared

drive of the neuron ½Dj �2 divided by a weighted sum of the half-

squared drives of all the other neurons in the normalization pool,

plus an additional semi-saturation constant s in the denominator.

All four monocular neurons were part of a single normalization

pool (Figure 2A). Thus, every monocular neuron contributed to

the normalization of every other monocular neuron, including

itself. For the binocular summation neurons, the pool consisted of

both summation neurons.

The unnormalized drive Dj for each monocular neuron was

determined as follows:

t
d

dt
Dj~{DjzIjzNj ð2Þ

where Ij was the stimulus contrast corresponding to the particular

eye and orientation represented by neuron j. Lowpass filtered

noise Nj was added to each neuron’s input, computed by starting

with Gaussian white noise and convolving in time with a Gaussian

kernel (s = 800 ms). The noise was statistically independent for

each neuron.

The unnormalized drive for each binocular summation neuron

depended on excitatory inputs from iso-oriented monocular

neurons:

t
d

dt
Dj~{DjzwFRzwFLzNj ð3Þ

where w was the feedforward weight, and FR and FL were the

activities of the right and left monocular neurons with the

appropriate orientation preference.

Opponency model: Mathematical details
The drive of a right-minus-left (RL) opponency neuron was

computed as

t
d

dt
Dj~{DjzFR{FLzNj ð4Þ

where FR and FL are the activities of the right and left monocular

neurons with the appropriate orientation preference. The weights

on the feedforward connections were not included in this equation

because they were set to 1. In fact, the opponency model was

robust enough that we could discard the weight parameters (the

w’s in equations 1 and 3) setting them all to 1 (Table 1). The RL

opponency neurons subtracted left monocular activity from right

monocular activity for a particular orientation (Figure 5A,

Equation 4). There are a total of 4 opponency neurons, for two

orientations and two differences (RL and LR).

The two RL opponency neurons formed a normalization pool

separate from the normalization pool for the two LR opponency

neurons. Because only a single RL opponency neuron is shown in

Figure 5A, the pools are not shown either.

Through feedback, the opponency neurons linearly inhibited

both monocular neurons in the opposite eye. Thus, the drive for a

left eye monocular neuron tuned to orientation ‘A’ was:
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t
d

dt
DL,A~{DL,AzIL,A{FRL,A{FRL,BzNL,A ð5Þ

where FRL,A and FRL,B were the firing rates of the two opponency

neurons driven by the right eye.

Numerical simulations
The models were numerically approximated with Euler’s

Method, using a 2 ms time step. During the grid search and the

adaptation simulations, we used a 10 ms time step because of the

extreme computational time demands. We tested the conventional

model and the opponency model on five conditions: dichoptic

gratings, monocular plaids, binocular plaids, monocular gratings,

and binocular gratings. Grating contrasts were set to 0.5. Matlab

code for the conventional model and the opponency model will be

available on our website (http://www.cns.nyu.edu/heegerlab/).

Winner-take-all index
To determine the extent of rivalry between components, we

defined a winner-take-all (WTA) index on the responses of the

binocular summation neurons:

WTA~
Dt

T

XT

t~0

FA{FBj j
FAzFB

ð6Þ

where A and B refer to the two orientations, Dt is the time step,

and T is the simulation duration. The index was bounded by 0

and 1, where 0 indicated that the two binocular summation

neurons always had identical responses, and 1 indicated complete

rivalry (with only one or the other neuron exhibiting a non-zero

response at each time). Reliable estimates of the WTA index were

obtained by averaging over 160 seconds of model time (Figures 2

and 5).

Conventional model grid search
To test whether the conventional model could effectively solve

the plaid problem, we performed an exhaustive grid search

through plausible parameter values (Table 2). In total, 390,625

parameter combinations were simulated.

For each parameter combination, we simulated the model for

40 seconds in model time and considered the model to be a

possible candidate for acceptance if it met two initial criteria

described below. Because each simulation of each stimulus

condition was accompanied by randomly and independently

generated noise, a small number of the 390,625 parameter

combinations met our criteria for model success simply by chance.

Therefore, using a longer 400 second simulation duration, we

repeated the simulations for the models that passed the criterion

the first time. The two initial criteria were:

(1) A WTA index during dichoptic grating presentation of greater

than 0.4.

(2) A dichoptic grating WTA index that was at least 60% higher

than the WTA index for monocular plaids and binocular

plaids.

Of the 390,625 parameter combinations, only 6 met the initial

two criteria both times. However, all 6 of these combinations

produced implausible behavior during the presentation of

monocular gratings: the responses were so volatile that the model

would sometimes show stronger responses in the neurons tuned to

the orthogonal orientation that was not presented (Figure 3). If

these models were correct, human observers presented with a

single grating monocularly would occasionally perceive an

orthogonal grating instead. We rejected all 6 parameter combi-

nations that passed the first 2 criteria because they all produced

multiple percepts switches in the second round of simulations.

Our grid search sampled weight parameters at intervals of 0.4

units and noise amplitudes at intervals of .02 and 0.04 units

(Table 2). We cannot rule out the possibility that a parameter

combination overlooked by our sampling rule could produce good

behavior in the conventional model. Such a parameter combina-

tion, if it were to exist, would have to be very finely tuned.

Psychophysics
Thirty observers (19 females) participated in the psychophysics

experiment. All observers had normal or corrected-to-normal

vision. All observers were over the age of 18 and provided written

informed consent. The experimental protocol was approved by the

University Committee on Activities involving Human Subjects at

New York University. Two adaptation conditions were conducted

in separate sessions on separate days, and the order of sessions was

counterbalanced across observers. To control for potential time-of-

day effects, each observer participated in each session at roughly

the same time of day.

Stimuli were presented on a calibrated CRT display positioned

57 cm from the observer’s head. Observers viewed a split screen,

through base-out prism glasses, with the left half of the CRT being

presented to the left eye and the right half of the screen to the right

eye. A black septum blocked contralateral stimuli from reaching

the eyes (i.e., so that the left half of the screen was not visible to the

right eye and vice versa). Stimuli were composed of grating

patches subtending a diameter of 1.2u of visual angle. The

contrasts of the gratings were tapered with a raised cosine window

(half cycle = 0.3u). To facilitate fusion, stimuli were surrounded by

a square black border (side = 2.2u), and a square patch of 1/f

image noise was placed above and below each stimulus (side = 3u;
position = 4.5u above and below horizontal).

Each session consisted of 6 blocks, each divided into two parts: a

100 sec adaptation period in which observers passively viewed a

sequence of stimuli, followed by an 80 sec rivalry period (Figure 6).

To further drive the adaptation process prior to rivalry, the last 24

observers viewed two additional 100 sec blocks of the adaptor at

the beginning of each session.

In the binocular adaptation session, observers adapted to a

contrast-reversing (15 Hz) binocular grating. The grating reversed

in orientation at .94 Hz, from 45 degrees clockwise (CW) of

vertical to 45 degree counterclockwise (CCW) of vertical (Figure 6).

The spatial frequency was 6.6 cycles/u and the contrast was set to

100%. In the monocular adaptation session, the adaptor gratings

were identical to those of the binocular adaptation session, except

that one eye was stimulated at a time with the CCW grating

presented only to the left eye and the CW grating presented only

to the right eye (Figure 6).

After the adaptation period of each block, observers performed

a traditional binocular rivalry task for 80 sec in which they viewed

static gratings (i.e. not contrast-reversing or orientation-alternat-

ing). A CCW-of-vertical grating was shown to the left eye and a

CW-of-vertical grating was shown to the right eye. To control for

individual differences in contrast sensitivity and eye dominance,

the contrast of the stimuli were adjusted for each observer and

each eye at the beginning of the first session. While the stimuli on

the screen remained fixed throughout each block, observers

perceived one of the following at any given moment: (1) A

dominant CW-of-vertical grating; (2) A dominant CCW-of-vertical

grating; (3) A mixed percept, typically appearing as a plaid.
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Observers reported their percepts by continuously pressing one of

three buttons. To minimize individual differences in response

criteria, observers were instructed to report a stimulus as dominant

only if it comprised 90% or more of their percept. We computed

the prevalence of mixed percepts as the overall percentage of time

observers reported mixed percepts (out of the total time a button

was depressed).

Model predictions
To capture the effects of adaptation, we added a long-term

adaptation variable to each neuron according to

tA
d

dt
Aj~{AjzFj ð7Þ

where the time constant of long-term adaptation, tA, was set to

80 sec. This type of adaptation is slower than the adaptation used

to capture perceptual alternations in some conventional models of

binocular rivalry. The adaptation variable was then multiplied by

a scale factor of 0.5 and subtracted from the unnormalized drive of

each neuron.

We simulated 100 blocks of the adaptation experiment using

both the conventional model and the opponency model. We

presented 100 sec of 100% contrast adaptors that reversed

orientation at 0.94 Hz, followed by 80 sec of rival stimuli at

50% contrast. For simplicity, we defined the neurons as invariant

to spatial phase, so our stimuli did not reverse in contrast, as in the

experiment. Since we could only measure a mixed percept

percentage in human observers (rather than a WTA index), we

computed an analogous measure for the model simulations. For

the 80 sec of rivalry in each block, we first computed a percept

index according to

P(t)~
FA{FBj j
FAzFB

ð8Þ

The index was bounded by [0 1], where low values indicated

mixed perception and high values indicated dominant perception.

Then, to compute the mixed percept fraction, we computed the

fraction of time that P(t) was lower than a cutoff of 0.4, and then

averaged across all 100 simulation blocks for each model. The

pattern of results was robust to variation in the cutoff value.
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