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Dispersal and gene flow in free-living marine
nematodes
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Abstract

Dispersal and gene flow determine connectivity among populations, and can be studied through population
genetics and phylogeography. We here review the results of such a framework for free-living marine nematodes.
Although field experiments have illustrated substantial dispersal in nematodes at ecological time scales, analysis of
the genetic diversity illustrated the importance of priority effects, founder effects and genetic bottlenecks for
population structuring between patches <1 km apart. In contrast, only little genetic structuring was observed within
an estuary (<50 km), indicating that these small scale fluctuations in genetic differentiation are stabilized over
deeper time scales through extensive gene flow. Interestingly, nematode species with contrasting life histories
(extreme colonizers vs persisters) or with different habitat preferences (algae vs sediment) show similar, low genetic
structuring. Finally, historical events have shaped the genetic pattern of marine nematodes and show that gene
flow is restricted at large geographical scales. We also discuss the presence of substantial cryptic diversity in marine
nematodes, and end with highlighting future important steps to further unravel nematode evolution and diversity.
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Review
Marine nematodes are amongst the most abundant and
diverse Metazoa in marine sediments [1,2]. Estimates of
species diversity, including terrestrial and parasitic spe-
cies, vary widely and range from 105 [3] to 108 [4]. This
huge taxonomic diversity encompasses a wide variety of
feeding strategies and life history characteristics, but has
at the same time hampered ecological studies because
species identification is difficult. Consequently, ecological
studies on free-living nematodes typically pool species into
functional groups based on different feeding strategies [5],
tail shape [6], body size [7], life history [8], or a combin-
ation of several of these parameters [9]. Next to these eco-
logical studies, considerable work has been done over the
last decades to provide an evolutionary framework for the
phylum Nematoda [10,11], with a special focus on terres-
trial [12], marine [13,14] or parasitic nematodes [15].
These studies show that convergent evolution is a fre-
quent phenomenon for nematode morphology, feeding
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strategy and habitat. In contrast, there are only few studies
on the importance of micro-evolutionary processes (gene
flow, genetic drift and selection) for nematode evolution,
even for parasitic nematodes [16]. Defining the scales of
connectivity among marine populations and identifying
the barriers to dispersal and gene flow are however crucial
to understand the ecological and evolutionary properties
of populations and the dynamics and persistence of popu-
lations under environmental changes.
Gene flow describes the exchange of genetic informa-

tion between populations through migration, whereas
dispersal is defined as the movement of individuals from
one genetic population to another [17]. Consequently,
from a population genetics perspective and for species
where individuals rather than eggs or propagules are the
mechanism for dispersal, dispersal and gene flow are
synonyms [18]. Both terms are used throughout this re-
view. For the marine environment, barriers to gene flow
are not always obvious, and factors influencing connect-
ivity among marine populations are roughly divided into
physical (e.g. ocean currents, habitat characteristics) and
biological (e.g. predation, behaviour) [19]. Retention of
organisms in their native area [20] or water currents
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[21] can strongly limit marine dispersal, which may lead
to structured populations [22].
In what follows, we aim to provide a state of the art

on dispersal and gene flow at ecological (i.e. one to a few
generations) and evolutionary time scales (i.e. hundreds
of thousands of generations), and the factors that may
influence them (such as life history, habitat and histor-
ical events), for marine nematode populations. We also
discuss the current knowledge on cryptic marine nema-
tode diversity and end by identifying key questions for
future population genetic studies of marine nematodes.

Dispersal in free-living marine nematodes at ecological
time scales
Dispersal is one of the most important life history traits
for species evolution and persistence. Dispersal allows
organisms to escape unsuitable environmental condi-
tions, avoid competition and increase their distribution
range. Dispersal distance is generally correlated with the
presence and duration of pelagic larval stages in the
water column [23], but there are many exceptions [24],
with dispersal being species, season and location specific.
Free-living marine nematodes do not have planktonic or
pelagic larvae, eggs are generally deposited in situ, and
their body size is so small that active dispersal over large
distances is likely to be limited. Nevertheless, nematodes
are able to actively move in the sediment [25,26], while
others can actively emerge into and swim in the water
column [27]. Large-bodied nematodes of the family
Oncholaimidae rapidly colonize carcasses of fish and
macrofauna, probably at least in part by active swim-
ming [28]. They, and other nematodes, may use a variety
of chemical cues in their environment to direct their
movement towards particular patches [29,30], although
it is unclear over what distances such chemotaxis can
occur. Some nematode species form non-feeding dauer
larvae which are resistant to many environmental stres-
ses [31,32] and which in some species are often found
attached to other invertebrates [33]. Such vector associa-
tions are known for terrestrial species and may account
for dispersal over considerable distances [34], but their
role for dispersal of marine nematodes is less documen-
ted (a list of commensal marine nematodes in Crustacea
is provided by Sudhaus [35]). Passive dispersal of marine
nematodes can occur through the ballast water of ships
[36], but probably more importantly, through hydro-
dynamic forces [37]. The presence of nematodes in the
water column is largely determined by their vertical dis-
tribution and abundance in the sediment [38]. Different
nematode genera can also show different vertical distri-
butions in the water column [39] as well as differential
abilities to settle back to the sediment [40]. Next to
hydrodynamic forces, species-specific traits such as feed-
ing ecology [41,42], behaviour [40], or body morphology
[42] influence dispersal ability of marine nematodes.
Similar active dispersal abilities have been observed in
the deep sea [43-45], but here nematodes are far less
abundant in the water column than in shallow-water
habitats. The complex interactions between habitat,
hydrodynamics and species-specific traits lead to high
variation in dispersal patterns through space and time
[41,46], which in turn may lead to a high degree of
patchiness in nematode community composition [45,47].
Only limited information is available on the effects of

dispersal at ecological time scales on population genetic
structure in free-living marine nematodes. Litoditis mar-
ina typically frequents decaying and standing macroalgae
in the intertidal, which form a rather transient habitat with
frequent local extinctions when algae are decomposed. In
such temporal habitats, the ability to disperse enables
them to survive the strong fluctuations in habitat availabil-
ity. L. marina produces dauer larvae, and due to its high
reproductive capacity and short generation time it is an ef-
ficient colonizer that can establish populations from one
or a few gravid females. To investigate the effect of
colonization dynamics of L. marina on neutral genetic
variation within and among patches in close proximity
(≤ 1 km) to each other, Derycke et al. [48] performed a
field experiment in which the genetic diversity of L. marina
on newly colonized algae was surveyed during one month
at two contrasting sites in an intertidal salt marsh: in one
site, defaunated algae were incubated amongst permanent
algal stands that can act as a source population, while no
algal stands were present in the second site [48]. Algal
deposits near the permanent algal stands were more rap-
idly colonized, reached a fivefold higher density of nema-
todes and had a higher genetic diversity than algal
deposits ca 1 km away from the source population
(Figure 1). Nevertheless, L. marina colonized these dis-
tant patches within 10 days, showing that dispersal of
this nematode at this scale is substantial. In these dis-
tant patches, mtDNA haplotypes that were rare in the
source population of the permanent algal stands were
abundant suggesting that founder effects and genetic bot-
tlenecks structured these populations (Figure 1). Hence,
dispersal at ecological time scales clearly influences the
genetic variation within and between patches. Since these
colonization dynamics are likely to be related to the
ephemeral nature of the habitat and the high reproductive
output of L. marina, knowledge on the biology and ecol-
ogy of nematode species is crucial to correctly interpret
population genetic data and make conclusions on gene
flow and population connectivity.

Dispersal in free-living marine nematodes at evolutionary
time scales
Dispersal in the marine environment can be studied by
capture-recapture studies [20] or by determining geochemical
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Figure 1 Genetics of colonizing Litoditis marina. MtDNA haplotype composition of the developing L. marina populations during the course of
the experiment for each patch separately. A1-A3 refer to the three patches in site A that were incubated amidst permanent Fucus stands, while
B1-B4 refer to the four patches in site B that were incubated in the absence of permanent algal stands. Distance between algal deposits within a
site averaged 2 m, while site A and B were approximately 2 km apart. A-W represent different haplotypes. Note the late colonization and the low
number of haplotypes of patches B2-B4, and the dominance of different haplotypes among B1-B4 (Figure from [48]).
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signatures in calcified structures (otoliths, shells), but
these techniques cannot be applied to minute inverte-
brates lacking calcified structures. Therefore, dispersal has
frequently been estimated indirectly from mathematical
modeling or genetic data. The genetic structure is the re-
sult of the simultaneous action of evolutionary processes
(gene flow, genetic drift and selection, Table 1) across
thousands of generations, whereas field studies are restricted
to ecological time scales spanning a limited number of
generations.
Population genetic studies typically look at allele fre-

quencies which are used to calculate Fst values [49,50]
Table 1 Evolutionary processes leading to an increased or
decreased genetic differentiation between natural
populations of species

Evolutionary process Genetic differentiation
between populations

Genome
wide effects

Mutation Increases No

Gene flow Decreases Yes

Genetic drift Increases Yes

Divergent selection Increases No

Balancing selection Decreases No

Gene flow and genetic drift act on the whole genome, while mutation and
selection are acting on specific genomic regions.
and related statistics, to infer to what degree genetic
drift has driven groups of individuals towards fixation of
alternative alleles. Therefore, these statistics are suitable
to infer genetic structure caused by genetic drift, which
is very often correlated with dispersal estimates [51], but
processes other than gene flow may also be responsible
for this structuring [52]. It is, for example, possible to
have perfectly isolated populations between which Fst
can be comparatively low, simply because both popula-
tions are not fixed for alternative alleles [53-55]. Especially
when highly variable markers such as microsatellite loci
are used, additional statistics such as D or F'st can more
adequately reveal genetic differentiation between popula-
tions [56,57]. Obviously, one should not blindly look at Fst
values to infer gene flow, but also explore the raw data
(e.g. whether alleles are shared or not between popula-
tions). Next to these theoretical aspects, the genetic
structure of marine species can be influenced by a var-
iety of biological (e.g. life-history [58-60]) and physical
(e.g. water currents [61]), as well as by the interplay be-
tween biological and physical factors [62]. In what follows,
we review the effects of life history, habitat characteristics
and long-term history on the population genetic structure
of marine nematodes measured by Φst (which is similar to
Fst, but also takes sequence divergence into account,
whereas Fst is based on allele frequencies only [63]).
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The importance of life history for population genetic
structure in marine nematodes
Life histories are known for only a limited number of
marine nematode species [e.g. 1,64-66]. Bongers et al.
[31] categorized the expected colonizer characteristics of
marine nematode genera based on ecological and bio-
logical information. This colonizer-persister (cp) scale
varies between 1 (extreme colonizers with short gener-
ation times and high reproductive output) and 5 (ex-
treme persisters with long generation times and few
offspring). Nematode species with cp = 1 are expected to
show little genetic structuring because of their ability to
rapidly colonize new habitats, while species with cp = 5
are expected to show more pronounced genetic structur-
ing. On the other hand, genetic structuring of marine
species with substantial differences in life history and
taxonomy can be very similar [67].
Litoditis marina and Halomonhystera disjuncta have

very short generation times and a high reproductive out-
put [25,68], enabling them to rapidly colonize new habi-
tats [48]. Both species are abundant on decomposing
and standing macroalgae in the intertidal, and have a cp
value of 1 [31] or 2 for H. disjuncta if the presence of a
dauer stage is taken as a prerequisite for a cp-score of 1
[69]. Both morphospecies are actually complexes of
cryptic species [70,71] and population genetic structure
in the most abundant species of the L. marina species
complex (PmI) within the Westerschelde estuary was
low but significant (Φst = 0.075, p < 0.0001, data recalcu-
lated from [70], Figure 2). In view of the ephemeral habi-
tat and strong colonization dynamics of L. marina [48],
changes in the genetic diversity are likely to occur over
time. When sampled in four consecutive seasons, 11% of
Coast

Coast

Ooste

Figure 2 Genetic structuring in marine nematodes at small geograph
Westerschelde estuary and the Oosterschelde in The Netherlands, and two
[53]. Black arrows: Litoditis marina; Green arrows: Halomonhystera disjuncta;
the genetic variation within each of the five locations in
the Westerschelde could be attributed to differences
among seasons (Φsc = 0.11, p < 0.0001, [72]). This con-
firms that genetic composition of populations changes
over time in L. marina [72]. Although a significant gen-
etic differentiation was observed among populations
within seasons (Φsc = 0.14, p < 0.0001), there was no sig-
nificant differentiation among populations when the four
seasons were pooled by locations (Φct = 0.01, p = 0.262).
Since L. marina populations are highly unstable over
time, this result suggests that the genetic differences
caused by extinction-colonization dynamics become un-
important or balance each other when several time
points are taken into account. Similar patterns of genetic
structure have been observed in the dominant species
(GD3) of the Halomonhystera disjuncta species complex
in the Westerschelde ([71], Figure 2). Four locations
were sampled in two different seasons, and a low but
significant genetic structuring was observed among loca-
tions within seasons (Φsc = 0.086, p < 0.001, recalculated
data from [71]), and temporal differences in genetic dif-
ferentiation were observed within locations (Φsc = 0.086,
p < 0.001). Again, when the genetic data from the two
seasons were pooled within locations, no significant
spatial differentiation was observed within the Wester-
schelde estuary (Φct = −0.0042, p = 0.48). Although
colonization-extinction dynamics can lead to genetic
structuring at small geographical scales, such effects are
no longer observed at time scales covering several
generations.
If life-history characteristics are important in deter-

mining the genetic structure of nematode populations,
pronounced differences in genetic structure would be
5 km

Little differentiation (Φst < 0.05)

Large differentiation (0.15 < Φst < 0.25) 

Very large differentiation (Φst > 0.25)

Moderate differentiation (0.05 < Φst < 0.15) 

Westerschelde estuary

rschelde

Dutch-Belgian border

ic scale (<100 km). The sampling area encompasses the
Belgian coastal locations. The strength of differentiation is based on
Red arrow: Bathylaimus assimilis.
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expected in nematode species with a very long gener-
ation time and low number of offspring, because they
have much smaller chance of colonizing new habitats
than species with short generation times and high repro-
ductive output. The nematode Thoracostoma trachyga-
ster lives in holdfasts of kelp along the Californian coast
[73], and the genus Thoracostoma has a cp value of 5
[31]. Although passive dispersal can still be significant in
T. trachygaster because of its association with algal hold-
fasts, intuitively its very long generation time (probably
only one or two generations per year) and few offspring
would render successful establishment in new habitats
less likely compared to L. marina and H. disjuncta. To
exclude effects of well known biogeographic barriers,
such as Point Conception and the Los Angeles Region,
we investigated the genetic structure of T. trachygaster
using populations that were continuously distributed
along the coast with exclusion of these two barriers, and
at a geographical scale of less than 100 km, to be com-
parable with the geographic scale of the sampling in the
Westerschelde (data recalculated from [74]). When taking
into account mtDNA allele frequencies and mutations, no
genetic structuring was observed within the southern
Californian Bight (Φst = 0.035, p = 0.16; Figure 3). This
may suggest that K-strategists do not necessarily have a
strong genetic structure. Similar results have been
observed for K-strategists in other phyla [75]. At fine
geographical scales (< 300 km), shared environmental
drivers such as water currents or habitat characteristics
may cause similar genetic patterns in species with
quite different life histories [67].

The importance of habitat characteristics for population
genetic structure in marine nematodes
Bathylaimus assimilis is an endobenthic nematode
species that in contrast to L. marina, H. disjuncta and
Southern California

Mexico

PC

LAR

Figure 3 Genetic structuring in Thoracostoma trachygaster at large ge
Californian coast, and includes two biogeographic barriers: Point Conceptio
those reported in [74].
T. trachygaster, is not associated with macroalgae. Dis-
persal through rafting is therefore unlikely for B.
assimilis. Moreover, several endobenthic nematode
species show vertical migration in the sediment [76],
and possibly avoid in this way erosion and resuspen-
sion in the water column. Therefore the passive disper-
sal potential of B. assimilis is expected to be lower
than that of L. marina and H. disjuncta. Because B.
assimilis is a less efficient colonizer than L. marina
and H. disjuncta, and because it has an endobenthic
life style, its population genetic subdivision in the
Westerschelde is expected to be more pronounced
than that of L. marina and H. disjuncta. Yet, a COI se-
quence analysis of 173 specimens from four locations
in the Westerschelde suggested only a weak, but still sig-
nificant structuring (Φst = 0.044, p < 0.0001; Figure 2).
Although B. assimilis lives in the sediment, it can occa-
sionally be observed in the water column [42], increasing
its potential for passive dispersal. In conclusion, at small
geographical scales of 50 km, population genetic structur-
ing does not seem to depend on whether a nematode is an
epiphytic or endobenthic species (but see section on sug-
gestions for future research).
Although gene flow in marine nematodes seems to be

quite substantial at scales of 50 km, adding two nearby
coastal locations to the Westerschelde data generated
Φst values that were an order of magnitude larger than
the values obtained for the Westerschelde populations
alone (Litoditis marina PmI: Φst = 0.12 – 0.28, p < 0.0001,
data recalculated from [72]; Halomonhystera disjuncta
GD3: Φst = 0.11 – 0.13, p < 0.0001 [71]; Figure 2). The
stepping stone model assumes that dispersal declines
with geographic distance, resulting in an increase in
genetic dissimilarity between populations that are more
distant from each other [77]. Such isolation by distance
(IBD) is supported when there is a positive correlation
Very large differentiation (Fst > 0.25)

No differentiation (Fst < 0.05)

ographic scale (>500 km). The study area is situated along the
n (PC) and the Los Angeles Region (LAR). Fst values are based on
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between genetic and geographic distance [78]. Since
there are no obvious barriers to gene flow between the
Westerschelde and coastal locations, the more pro-
nounced genetic structuring observed may be caused by
geographic distance. However, no significant correlation
was observed between genetic and geographic distances
for the most widespread species of the H. disjuncta com-
plex [71]. For L. marina, IBD was found in only one sea-
son [72]. In several cases, significant pairwise genetic
differentiation was observed between close populations,
while no significant differentiation was observed between
distant populations. This ‘chaotic genetic patchiness’ pat-
tern is quite common for the marine environment [67],
and can be explained by the nonlinear movement of
organisms due to turbulent and nonlinear water currents.
Taking into account water currents [61] and other envir-
onmental data [67] is therefore essential to interpret
population genetic data and connectivity in the marine en-
vironment. Next to the estuarine and coastal locations,
L. marina was also sampled in the Oosterschelde, a
semi-estuarine environment that is partly closed from
the sea by a storm surge barrier, which may provide a
higher level of isolation. The habitat type (coastal, es-
tuarine or semi-estuarine) had an impact on the genetic
patterns observed within L. marina (PmI): 11.15% of the
variation could be explained by habitat type (Φct = 0.11,
p < 0.0001), but a comparable amount of variation
(13.09%) was observed by differences between popula-
tions within each habitat type (Φsc = 0.14, p < 0.0001,
data recalculated from [72]. As shown for marine
invertebrates with larval dispersal stages [61,67,79,80],
these results indicate that water currents and eco-
logical characteristics of the habitat may be equally im-
portant drivers for the genetic structure of marine
nematodes than geographic distance or life history
characteristics alone.

The importance of geological history for population genetic
structure in marine nematodes
Quite a number of marine nematode species show a
widespread geographic distribution [81-83], indicating
that long distance dispersal can also occur. Next to life
history and habitat, historical events such as land mass
drift, sea level rises and glacial cycles have influenced
the current distribution and population genetic structur-
ing of many marine invertebrates [84]. For the North
Atlantic, the quaternary glacial cycles have had dramatic
impacts on species distributions, with many species
being forced to migrate to the south during glacial peri-
ods, followed by recolonization of the northern areas
during interglacial periods. These distributional changes
have left a genetic imprint, with northern populations
being genetically less diverse, and southern populations
being genetically richer [85]. Phylogeographical studies
in the marine environment have also pinpointed refugial
areas e.g. [84], recolonization routes and genetic breaks
in a variety of marine organisms. Such genetic breaks
can ultimately lead to speciation.
All species of the L. marina species complex sampled

on a pan European scale showed strong genetic structur-
ing (Table three in [81]), demonstrating that gene flow
at larger geographical scales is restricted. When integrat-
ing historical processes that have shaped the distribution
of temperate species in the North Atlantic with the
observed genetic patterns in the L. marina complex, the
evolutionary history of the species complex becomes vis-
ible. For the two most widespread species of the complex
(PmI, PmII), a genetic break along the British Isles was
observed, and two possible postglacial recolonization
routes of northern areas were suggested, one around the
British Isles, and one through the English Channel [81]
(Figure 4). The Southern Bight of the North Sea acted as a
secondary contact zone between these routes. These
results illustrate that the quaternary ice ages have influ-
enced the genetic pattern of marine nematodes. Moreover,
several population pairwise Φst values were non-signifi-
cant, despite populations being separated by obvious geo-
graphical barriers (e.g. Baltic and Mediterranean). This
illustrates again the chaotic genetic patchiness and sug-
gests that additional ecological factors are influencing the
genetic structure of marine nematodes.
Next to glacial cycles, well known biogeographical bar-

riers often coincide with genetic breaks between popula-
tions on either side of the barrier [86,87]. Thoracostoma
trachygaster was sampled along the Californian coast
[74], where Point Conception (PC) [88] and Los Angeles
Region (LAR) [59] are well-known biogeographic bar-
riers. PC is associated with genetic breaks in high disper-
sal species, while LAR coincides with genetic breaks in
low dispersal species [59,89]. T. trachygaster showed a
strong genetic structuring along the Californian coastline
(Φst = 0.28, p < 0.001), with a significant amount of this
variation being explained by differences between popula-
tions north and south of PC and, within the Southern
Californian Bight, between populations north and south
of LAR (Figure 3, [74]).
Clearly, these studies illustrate that historical processes

and biogeographic barriers have strongly affected the
genetic variation of marine nematode populations. Fur-
thermore, since these historical events are still detected
in the present day genetic composition of marine nema-
todes, gene flow in marine nematodes must be restricted
at such large geographical scales.

‘Collateral’ outcomes of population genetic studies:
cryptic species
Population genetic and phylogeographic studies typically
investigate a large number of specimens from several
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populations across a species’ geographic range. The ma-
jority of known species are however based on descrip-
tions of small numbers of specimens from single or just
few localities [90], thereby ignoring the extent of natural
variation. Furthermore, the widespread distribution of
nematodes is in contrast with their limited dispersal abil-
ities at large geographic scales. This so-called “meio-
fauna-paradox” [91] may be explained by the presence of
cryptic species within what were previously thought to
be generalist species [92]. The term “cryptic species”
refers to taxa that are morphologically similar, but that
belong to different gene pools. Such cryptic diversity
occurs in a variety of metazoan taxa and biogeographical
regions [93], and may be particularly abundant in the
marine environment [94]. This may be because many
marine species rely on chemical cues for mate choice
and gamete recognition [22,95,96], as well as for eco-
logical interactions [97]. Chemotaxis is used by free-
living nematodes to detect food sources [98,99] and
parasitic nematodes are able to detect conspecifics in
hosts [100]. It is therefore likely that taste and smell
are also important for mate recognition in marine
nematodes, but no data are currently available to con-
firm this.
Morphological similarity can be the result of strong diver-

gent selection on non-visual mating signals [101], or, alter-
natively, morphological stasis may be the result of ecological
constraints, where adaptive evolution favors similar
phenotypes over and over again [102]. Whatever the
speciation process, leaving cryptic diversity unrecognized
will bias the interpretation of biogeographical and eco-
logical patterns [101].
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Nematode morphology is generally thought to be con-
served, leading to speculations on the presence of sub-
stantial cryptic diversity in this taxon [101]. However, in
a meta-analysis of animal cryptic diversity, cryptic spe-
cies were not more common in nematodes than in other
metazoan taxa [93]. Our population and phylogeo-
graphic studies of marine nematodes have revealed the
presence of cryptic diversity in various degrees: 10 cryp-
tic species were found in Litoditis marina [103], five in
Halomonhystera disjuncta [71] and three in Thoracos-
toma trachygaster [74,104]. These different numbers of
cryptic species may be explained by different sampling
efforts, with L. marina having been sampled most inten-
sively during four seasons [72] and at a paneuropean scale
[81]. When looking at just one season and at the scale of a
single estuary (the Westerschelde), two to three cryptic
species were found in L. marina and H. disjuncta. These
numbers are quite high considering a geographical scale
of less than 50 km, and one might wonder whether this is
typical for fast-growing, opportunistic species with rapid
reproduction and high numbers of offspring. Preliminary
results for the endobenthic monhysterid Theristus acer in
the Westerschelde show three deeply divergent clades in
the COI gene (Derycke, unpublished data). Assuming that
these lineages represent cryptic species, the presence of
cryptic species seems therefore not to be correlated with
life history traits. Instead, the prevalence of cryptic diver-
sity in species with different life histories and from differ-
ent areas suggests that it is a common phenomenon for
marine nematodes. Nevertheless, we did not find any indi-
cations of cryptic species in the endobenthic enoplid
Bathylaimus assimilis within the Westerschelde (Derycke,
unpublished data), so caution is needed when making
such generalizations based on the limited data available.
Species in species complexes were delimited using the

phylogenetic species concept with reciprocal monophyly
of nuclear and mitochondrial gene trees. For nematodes,
this approach is well-suited [105]. Subsequent detailed
morphological studies have shown that the cryptic taxa in
these complexes do differ in morphometric characteristics
[103,104,106]. However, such differences in morphometry
may at least partly be related to environmental conditions
such as food availability and temperature, and are thus less
suited to delineate or describe species. Detailed morpho-
logical studies may however also find diagnostic characters
between cryptic species [104,107]. In this way, genetic
studies can pinpoint groups that deserve closer morpho-
logical study, and can greatly enhance taxonomic studies
in small organisms lacking easily observable morpho-
logical characters.
Despite the substantial increase of the discovery of cryp-

tic species over the last decade [101,108], only little aut-
ecological information is available for cryptic species. For
estuarine invertebrates, cryptic species can, for instance,
show different tolerances to salinity which can explain
their partly overlapping distribution ranges [92,109]. The
field distribution of the cryptic nematode species shows
that several species tend to co-occur [70,71,74,81], and
that temporal fluctuations in species abundances are pro-
nounced [71,72]. Furthermore, at a paneuropean geo-
graphical scale, several cryptic species seem to have
restricted distributions [81], which may point to differen-
tial ecological tolerances/preferences for abiotic factors.
Laboratory experiments have shown that two of the four
cryptic L. marina species (PmI and PmIII) from the
Westerschelde show a faster population development at
a salinity of 15 psu than at a salinity of 25 psu [110].
Furthermore, when the four species of L. marina were
combined in a multi species treatment, interspecific
interactions reduced the population development of
species PmII and even led to the total extinction of spe-
cies PmIV. These interspecific interactions were also
clearly affected by salinity, suggesting that fluctuations
in abiotic factors may at least in part drive the coexist-
ence of cryptic nematode species at local scales [110].

Where to go from here?
Nematode population genetics with multiple markers
The population genetic data of marine nematodes are
exclusively based on COI, the usefulness of which has
been well-documented [87,111]. Although mtDNA is
usually treated as if it evolves in a neutral manner, recent
studies suggest that selection may also be acting on the
mtDNA [112]. Therefore, using independently evolving
loci will enhance the correct interpretation of the pro-
cesses responsible for the observed genetic patterns.
Microsatellite loci (see e.g. [113,114] for a background)
have become tremendously popular for population gen-
etic studies because of their high intraspecific variability,
which allows investigation of contemporary gene flow at
small geographical scales. Yet, although microsatellite
loci have been used in population genetic studies of
parasitic nematodes [115-117] and in the model nema-
tode Caenorhabditis elegans [118,119], no such data are
currently available for marine nematodes.

Understanding the role of ecology in nematode population
genetics
Life history, morphology, behavior and habitat-associated
traits all contribute to dispersal ability, but hitherto their
relative importance for the genetic structure in marine
nematodes remains largely unknown. Comparing the gen-
etic structure between several species differing in one of
these traits can contribute to unravel the relative import-
ance of these traits for micro-evolutionary processes [51].
For instance, by including additional nematode species
isolated from the same geographic area but with life his-
tories that differ from that of efficient colonizers such as
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L. marina and H. disjuncta, the effects of life history on
population structure and nematode evolution can be
explored. Similarly, including species with different habitat
preferences should highlight habitat related effects on gen-
etic structure. Since both L. marina and H. disjuncta
occur on macroalgae, they are likely to have substantial
passive dispersal capacity, and their dispersal ability may
thus be much larger than that of typically endobenthic
nematode species. Although for the time being this is not
confirmed by our data on Bathylaimus assimilis, one
would expect that if an endobenthic life style restricts dis-
persal in marine nematodes, then one should find higher
Φst values in these species.

Unravelling the importance of environmental drivers for
nematode dispersal through sea scape genetics
Next to species-specific ecological characteristics, dis-
persal in marine nematodes may be driven by environ-
mental parameters. The genetic structuring in marine
nematodes so far does not seem to correlate with geo-
graphic distance, but instead shows chaotic genetic
patchiness: population pairwise Fst values are often signifi-
cant between populations in close proximity, while they
are not for populations that are further apart. This pattern
may well be caused by the hydrodynamic currents in the
study area, as well as by other ecological factors. Coupling
hydrodynamic [61,120] and other environmental data [67]
with genetic structuring, the so-called sea scape genetics
approach [121], can help to sort out the causes of spatial
patterns in marine population genetics.

Investigating the importance of selection for population
differentiation in nematodes
Next to the analysis of neutral genetic variation, under-
standing the importance of selection on genetic structur-
ing is essential for predicting how populations will
respond to changing environments and to understand
evolutionary diversification. Neutral loci across the gen-
ome will be similarly affected by demography and the
evolutionary history of populations, while loci under se-
lection will often behave differently and therefore reveal
‘outlier’ patterns of variation [122]. Next generation se-
quencing (NGS) makes it more feasible than ever to
identify genes underpinning adaptive evolution in non-
model organisms. Single Nucleotide Polymorphisms
(SNP’s) are very common and distributed across the gen-
ome, and can be screened for many individuals from dif-
ferent populations through Restriction site Associated
DNA sequencing (RADSeq) [123,124]. RADseq tags
digested DNA from a large number of individuals, which
are then pooled and sequenced using Illumina. The
resulting sequence reads can be analysed without a refer-
ence genome by aggregating identical reads into unique
sequences. Subsequently, unique sequences with only a
small number of mismatches are clustered, and SNP’s
can be scored between alleles at the same locus [125]. In
this way, RADSeq generates thousands of genetic mar-
kers in a large number of specimens at a reasonable cost
[125]. By choosing populations living in e.g. different
temperature or salinity conditions, which are amongst
the most important forces for local adaptation in marine
invertebrates [126], and comparing the genetic differen-
tiation between these populations at different genomic
regions, it becomes possible to pinpoint those genomic
regions that are under selection.

Investigating the influence of genome evolution on
population genetic patterns in marine nematodes
The advance in sequencing technology has generated an
unprecedented amount of genome and transcriptome
data from, mainly parasitic, nematode species [127,128].
Horizontal gene transfer is a common phenomenon in
plant parasitic nematodes [129,130], but has not been
reported in free-living nematodes [130]. Comparative
genomics between the free-living Caenorhabditis elegans
and C. briggsae have revealed extensive intrachromoso-
mal rearrangements, but remarkable conservation of
chromosome organization and synteny [131]. Compari-
son of mitochondrial genomes across parasitic nematode
species has revealed a large number of gene rearrange-
ments, large duplications, and the use of both DNA
strands to encode genes [132]. Furthermore, the pres-
ence of minicircular [133] and multipartite mitochon-
drial genomes has been documented [134]. The effect of
these genomic differences on population genetic patterns
and nematode dispersal is unknown. Clearly, genome
sequences of marine nematodes are urgently needed to
investigate the prevalence of these phenomena in marine
nematodes and their effect on interpreting population
genetic patterns.

Conclusion
Experimental field studies have demonstrated that disper-
sal of marine nematodes at ecological time scales (i.e. < 10
generations) is substantial in the estuarine environment.
The use of genetic data revealed that colonization dynam-
ics strongly affect the genetic composition of local
patches, with founder effects and bottlenecks causing
strong differentiation among nearby patches. At deeper
time scales, these genetic differences seem to disappear
and populations become homogeneous. Consequently,
gene flow in the marine nematodes analysed so far is sub-
stantial at geographical scales of 50 km, but is strongly
restricted at larger geographical scales (several 100’s of
kilometers). This scale is tentative, and depends on a var-
iety of environmental factors. Our data suggest that life
history (short generation time and high reproductive out-
put vs. long generation time and low reproductive output)
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and habitat preference (algae vs. sediment) may be less
important drivers for dispersal in marine nematodes, but
additional analyses of the genetic structure in other nema-
tode species are required to confirm these observations.
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