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ABSTRACT

N6-Methyladenosine (m6A) refers to methylation modification of the adenosine nucleotide acid at the nitrogen-6 position.
Many conventional computational methods for identifying N6-methyladenosine sites are limited by the small amount of
data available. Taking advantage of the thousands ofm6A sites detected by high-throughput sequencing, it is nowpossible
to discover the characteristics ofm6A sequences using deep learning techniques. To the best of our knowledge, ourwork is
the first attempt to use word embedding and deep neural networks for m6A prediction frommRNA sequences. Using four
deep neural networks, we developed a model inferred from a larger sequence shifting window that can predict m6A ac-
curately and robustly. Four prediction schemes were built with various RNA sequence representations and optimized con-
volutional neural networks. The soft voting results from the four deep networks were shown to outperform all of the state-
of-the-art methods. We evaluated these predictors mentioned above on a rigorous independent test data set and proved
that our proposed method outperforms the state-of-the-art predictors. The training, independent, and cross-species test-
ing data sets are much larger than in previous studies, which could help to avoid the problem of overfitting. Furthermore,
an online prediction web server implementing the four proposed predictors has been built and is available at http://server.
malab.cn/Gene2vec/.
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INTRODUCTION

N6-Methyladenosine (m6A) is an RNA methylation modifi-
cation at the nitrogen-6 position of the adenosine base. It
has been identified as the most commonly modified base
in the messenger RNA of most eukaryotes. Research has
shown that m6A modification is involved in numerous bio-
logical activities, including the differentiation and repro-
gramming of stem cells (Yue et al. 2015), translation and
alternative splicing (Geula et al. 2015; Xu et al. 2018), circa-
dian clock (Fustin et al. 2013), and cerebellar development
(Wang et al. 2018). Research in cancer biology has also
shown that m6A mRNA modification plays a critical role
in glioblastoma stem cell self-renewal and tumorigene-
sis (Cui et al. 2017; Zhanget al. 2017), andm6Amodification
was also shown to exert anti-leukemic activity in recent
studies (Li et al. 2017b; Su et al. 2018). Moreover,
Lichinchi et al. showed that viral infection triggers amassive
increase in m6A in both host and viral mRNAs (Lichinchi
et al. 2016a), and similar regulatory mechanisms of several
other viruses have also been confirmed (Gokhale et al.

2016; Lichinchi et al. 2016b; Hesser et al. 2018). Further-
more, high-throughput analysis of m6A, for instance, using
the RNA immunoprecipitation biotechnologiesMeRIP-seq
and m6A-seq (Dominissini et al. 2012; Meyer et al. 2012),
has provided insights into the functions and topological
patterns of m6AmRNAmodification. Based on information
fromMeRIP-seqexperiments, comprehensivedatabasesof
m6A modification have been built to help researchers
determine the locations and effects of these modifications
(Liu et al. 2017a; Xuan et al. 2017). The work of Wan et al.
(2015) showed thatm6Apatterns are similar betweenplants
andmammals, with both being abundant near stop codons
and 3′ untranslated regions (UTRs) and having similar con-
sensus m6A methylation motifs and similar frequencies of
m6A sites per transcript in the transcriptome. Following
the profiling of m6A distributions in mammalian transcrip-
tomes (Dominissini et al. 2012; Meyer et al. 2012) and the
mapping of the yeast m6A methylome (Schwartz et al.
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2013), transcriptome-wide profiling of m6A in two acces-
sions of Arabidopsis thaliana (Luo et al. 2014) was per-
formed, which indicated that m6A is a highly conserved
mRNAmodification inplants and that there is apositive cor-
relation between m6A deposition and mRNA abundance.
In a recent study, it was also shown that m6A is regulated
by microRNA via complementary sequence motifs (Chen
et al. 2015a), which suggested that sequence signaling is
very important for m6A sites. Recently, a novel, single-
base-resolution technique, miCLIP-seq (Ke et al. 2015; Lin-
der et al. 2015), was also established, which prompted a
new wave of research on computational methods of m6A
identification (Xiang et al. 2016; Zhou et al. 2016).

Notably, m6A sites have methylation-specific surround-
ings, with the topology of a DRACH (where D=A, G, or
U; R=A or G; and H=A, C, or U) consensus motif and a
GAC consensus motif localized near stop codons, in 3′-
UTRs, within long internal exons, and at 5′-UTRs (Meyer
et al. 2012; Schwartz et al. 2013; Li et al. 2014; Luo et al.
2014; Zhou et al. 2016). Furthermore, the conserved Pu
[G>A]m6AC[A/C/U] consensus motif dominates mamma-
lian m6A sites (Dominissini et al. 2012). However, only
∼15%of all methylation Pu[G>A]m6AC[A/C/U] consensus
motifs are m6A sites (Yue et al. 2015). Identification of the
actual methylated m6A sites among these consensus mo-
tifs remains a problem. High-throughput sequencing and
wet experiments could not solve this problem due to the
cost and time-consuming nature of the research, as well
as inaccuracy regarding the identified sites. Therefore,
computational tools were required to guide the accurate
prediction of modification sites and to help reduce the
costs associated with high-throughput sequencing.

In the above context, computational tools were devel-
oped for detecting different modification sites, including
protein methylation (Wei et al. 2018d), protein phosphor-
ylation (Wei et al. 2017) and dephosphorylation (Jia et al.
2017), protein O-GlcNAcylation (Jia et al. 2018), histone
crotonylation (Qiu et al. 2017), DNA N4-methylcytosine
(Chen et al. 2017c; Wei et al. 2018b), RNA pseudouridine
(Chen et al. 2016b), and various RNA adenosine modifica-
tions (Chen et al. 2018). However, it has been proven that
sequence alignment (e.g., PSI-BLAST) cannot accurately
identify the modification sites. Instead, machine learning
techniques are used in approaches that are currently pop-
ular. For these, a sliding window is selected around the
candidate modification sites. Then, sequences in the slid-
ing window are collected for standard machine learning
training and testing processes. Related features are then
proposed for representing the sliding window sequences
with equal length (Liu et al. 2015, 2018; He et al. 2018).
However, in this context, there is a major problem re-
garding construction of the training data set. Specifically,
low-quality negative samples cause low generalizability
of the model, resulting in poor performance when applied
to novel data. In addition, the compatibility of prediction

methods in different species also remains a problem, so re-
searchers cannot currently be certain that cross-species
predictions are accurate.

The yeast data set (Schwartz et al. 2013) andArabidopsis
data set (Luo et al. 2014) are two benchmark data sets for
the computational prediction of m6A. Focusing on the
Arabidopsis data set, Chen and coworkers first proposed
a support vector machine-based method to identify m6A
sites. Soon afterwards, they proposed a predictor called
“iRNA-Methyl” (Chen et al. 2015b) on a near single-
nucleotide resolution yeast data set. Chen and coworkers
represented RNA sequences using “pseudo-dinucleotide
composition,” which focuses on the physiochemical prop-
erties of RNA. Other improvedworks in terms of prediction
accuracy on the two data sets were also presented (Chen
et al. 2017b; Xing et al. 2017). Recently, Zhou et al. estab-
lished an m6A data set from published single-nucleotide-
resolution maps of human and mouse m6A sites (Ke et al.
2015; Linder et al. 2015). They then developed anm6Apre-
dictor named SRAMP (Zhou et al. 2016), which simply uses
three sequence-derived features with Random Forest clas-
sifiers. Following this work, Xiang et al. (2016) improved the
predictive performance by integrating multiple sequence
features, including positional binary nucleotide sequence
encoding, nucleotide pair spectrum encoding, position-
specific encoding, and k-mer nucleotide frequency encod-
ing. These methods were used with conventional features
in position and frequency statistics, with the slidingwindow
being limited to a narrow region and focusing on only a sin-
gle species. Additionally, there was a lack of independent
testing, which resulted in overfitting.

To solve the above problems, we used convolutional
neural network (CNN) for m6A prediction. CNNs have
been applied in various fields of bioinformatics (Zhang
et al. 2018), including regulatory genomics (Angermueller
et al. 2016; Xu et al. 2017), drug discovery (Stephenson et
al. 2018), protein subcellular localization (Almagro Armen-
teros et al. 2017;Wei et al. 2018a), protein function predic-
tion (Cao et al. 2017), and single-cell DNA methylation
states (Angermueller et al. 2017; Xu and Zhou 2018). These
networks directly trained predictor models without prede-
fined features and outperformed conventional predictors
with larger sequence sliding windows. The combination
of big data and larger sliding windows together with
deep learning techniques appeared to solve them6A over-
fitting problem. It has also become common to represent
sequences with word embedding algorithms, instead of
the sparse one-hot encoding (Dai et al. 2017; Min et al.
2017; Wei et al. 2018c).

In this paper, we report a neural embedding predictor
named Gene2vec (gene subsequence to embedding vec-
tor). We extended the sliding window length to the thou-
sand level, used word embedding to represent mRNA
subsequences, which were parts of long sliding window
sequences, and performed classification with CNNs. We

Zou et al.

206 RNA, Vol. 25, No. 2



progressively experienced various gene sequence repre-
sentation schemes with their most effective CNN struc-
tures with library Keras (https://keras.io/) and proved that
the gene-subsequence-based neural embedding method
is the best option for various large-scale sequence data. It
appeared that CNN together with Gene2vec can address
the problem of overfitting inm6A prediction. To our knowl-
edge, this is the first time to test ∼1000 nt length sliding
frame, and we used much more training and testing se-
quences than before, which could help to avoid overfitting
of deep learning techniques.

RESULTS AND DISCUSSION

Optimization of parameters

Large sequence windows confer more contextual se-
quence information and greater GAC/AAC site coverage.
It is an important ingredient of the contributions to effec-
tive performance. We evaluated the effect of different
sequence windows on the prediction results with simple
one-hot encoding using the two convolutional cell struc-
turesmentioned above (Fig. 1). The results in Figure 1dem-
onstrated that the AUROC and MCC have growth trend
integrally with the increase of the sequencewindow length
and no longer change drastically when it is up to 1001 nt.
The selection of RNA word split length is very important

for embedding and Gene2vec prediction mode. Too short

a length will lead to a small number of nucleotide letter
combinations, which in extreme conditions will degener-
ate into one-hot encoding with assigning four types of a
unique integral index to each individual nucleotide, while
an excessive length will result in too many combinations,
leading to complex vector representation and high com-
puting costs. To determine the optimal RNA word split
length, we compared the performance on a validated set
with different slice lengths of RNA word from two to five
nucleotides (Fig. 2). As shown in Figure 2, three nucleo-
tides is an appropriate length in this range with metrics
of both AUROC and MCC. We also compared the results
of different embedding output dimensions of word em-
bedding methods with two convolutional cell structures
on a validation set (Fig. 3). We used AUROC and MCC
metrics to compare performances of different embedding
output dimensions of word embedding. As shown in
Figure 3, the performances of 128 output dimensions
reach a peak with both AUROC and MCCmetrics in an ap-
propriate range of [64,256], though the performance of
256 output dimensions with MCCmetrics is slightly higher
than the 128 output dimensions. As a result, we chose
128 as an appropriate word embedding output dimension
parameter.
The main network hyperparameters of the four predic-

tion modes are the convolution number of filters and size
of the convolution kernel. For the convolution number of
filters, we first empirically set this as decreasing power

FIGURE 1. Performance of different length windows with one-hot encoding on the validation set.

Gene2vec: prediction of m6A sites

www.rnajournal.org 207

https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/


FIGURE 2. Performance of different lengths of RNA words with word embedding on the validation set.

FIGURE 3. Performance of different embedding dimensions with word embedding on the validation set.

Zou et al.

208 RNA, Vol. 25, No. 2



values of 2, and for the size of the convolution kernel,we set
it as somedecreasing odd values. The convolution network
structures of all four prediction schemes are similarly consti-
tuted in terms of cell structures, the detailed hyperpara-
meters of which are supplied in the SupplementalMaterial.

Learned and analyzed motifs from CNN kernel

Deep learning is to a certain extent a black boxwith the dif-
ficulty in tracing a prediction back to which features are im-
portant. And it is very meaningful to explain biological
meaning in the process of training of CNN with visualiza-
tion. Recently, many studies on biological computing pre-
diction classifications (Liu and Li 2018; Li et al. 2017a; Liu
et al. 2017c; Zeng et al. 2018) involving CNNs have used
convolution kernels of the first layer to extract informative
motifs from massive sequence data sets. These followed
on from the heuristic work from Deepbind (Alipanahi
et al. 2015) that generated a position weight matrix
(PWM) by aligning all matched sequence segments and
calculating the frequency for each kernel. We here apply
this new method to achieve conversion from convolution
kernels to PWMs on single training sets from humans and
mice. For compatibility regarding representation of the

four nucleotides in PWMs, we retrained a CNN model
with 4-nt binary representation by randomly transforming
the padding character into one of the four nucleotides.
We used 64 convolution kernels with a length of 11 bi-

nary representations for each kernel on the first CNN layer
and generated 64 motifs after transforming kernels to
PWMs. For further analysis of these motifs, we used the
TOMTOM (Gupta et al. 2007) motif comparison tool to
compare one or more motifs against a database of known
RNA motifs. We picked out several representative exam-
ples of similar known motifs found in previous research
(Ray et al. 2013) on humans and mice, as shown in Figure
4. The matching metrics shown are E-value and the num-
ber of overlaps, with E-value being the expected number
of false positives in the matches up to this point. The
comparative results in Figure 4 show that the CNN kernel
or filter weight learning from an abstract representation
of a deep neural network by scanning convolution opera-
tion corresponds to response function of consensus motifs
in biological sequences. For instance, the 54th kernel in 64
convolution kernels is very similar to the RNCMPT00041
motif, which we analyzed from RNA-binding protein
Musashi homolog 1 (MSI1), encoded by the MSI1 gene.
On the one hand, the known consensus motifs matched

A

B

FIGURE 4. Comparison of motifs from CNN kernel and known motifs for (A) humans and (B) mice.
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with convolution kernels help researchers to study the rela-
tionship between them in biological experiments. On the
other hand, the unmatched kernels may help to uncover
newmotifs. All 64motifs of PWM logos andadetailedmotif
comparison report can be accessed in the Supplemental
Material or on our web server.

Performance of the predictors

We compared four prediction modes with four different
data preprocessing and encoding schemes on 1001-nt se-
quence data extracted from the unbalanced independent
test set transcript ID of Zhou et al. (2016) (Fig. 5). For build-
ing a prediction model with an unbalanced training set
with a positive-to-negative ratio of 1:10, the same numbers
of negative samples and positive samples were randomly
selected as training data sets. We used 80% of the training
set for building a model and used the other 20% of the
training set to verify the model and optimize the neural
network parameters, so we evaluated the performance of
our predictor on an unbalanced independent test set.
With the same unbalanced independent test set, neural
networks based on all four predictors achieved better pre-
diction than SRAMP, with the Gene2vecmethod achieving
the best results (Table 1).

To use these four learning algorithms to obtain better
predictive performance, we also established a soft vote
with average predicted probabilities. We compared the
ensemble result using the metrics of accuracy (Acc), Sn,
Sp, and MCC in the unbalanced independent test set. As
shown in Figure 6, all four metrics of the soft vote showed

better results than for any of the single prediction meth-
ods. Note that AUROC and AUPRmetrics were not consid-
ered here due to their step-wise character.

Cross-validation (10-fold) was performed with mature
mRNA data from two different species and the corre-
sponding trained Gene2vec model. The different pre-
dictive AUROC values are shown in Figure 7. We also
added a mixed model built using the above-mentioned
human and mouse data to predict independent species
test data. As the figure shows, themodel built usingmouse
data was less effective at prediction than the model built
using human data due to the smaller amount of mouse
training data available. We also found in the cross-species
validation that the prediction results were poorer than
when using the species-consistent data and model, which
indicates the specificity of our method for a particular spe-
cies. Furthermore, we obtained almost the same AUROC
values of 0.8415 and 0.8414 for human and mouse data
predicted using the mixed model, which are consistent
with the mixed test data prediction result obtained with
Gene2vec as shown in Table 1.

Further assessment of robustness of prediction mod-
el was performed in the YTHDF binding site data set.
YTHDF proteins are m6A readers. The above predictor
could not only identify N6-methyladenosine sites, but
should alsopredict YTHDFproteinbinding sites that recog-
nize m6A-modified mRNAs by selection. Our method per-
formed better with AUROC=0.737 and AUPRC=0.963
(Fig. 8) than SRAMP with AUROC=0.720 and AUPRC=
0.251 as reported previously for the YTHDF binding site
data set.

FIGURE 5. Performance of our four different predictors on an unbalanced independent test set.
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We also compared our method with the newest predic-
tor of mammalian N6-methyladenosine sites of which we
are aware, RNAMethPre, for a remapped unbalanced in-
dependent test set. We used the balanced training set
from RNAMethPre with Gene2vec encoding and the
same CNN structure to build a prediction model for the
purpose of establishing consistent comparison conditions.
As Table 2 shows, RNAMethPre was better than SRAMP in
terms of predictive performance with three stringency
thresholds corresponding to 90%, 85%, and 80% specific-
ity in the independent data set tests. Ourmethod achieved
more effective prediction than the RNAMethPre predictor
with these four thresholds.

Conclusions

In this study, we built four prediction modes for predicting
mammalian N6-methyladenosine sites with various RNA
sequence representations and optimized CNN structure.
We achievedmore effective prediction than in convention-
al methods with information on the context regarding

flanking sequences for 1000 nucleotides. Specifically, we
combined deep learning and word embedding technolo-
gy to present an RNAN6-adenosine methylation predictor
based on gene-subsequence-based neural embedding
algorithms by splitting the sequence into pseudo-RNA
words. We also used these pseudo-RNA words to train a
corpus model. Using this model, we analyzed and ex-
plained semantic equivalence and semantic symmetry
phenomena of RNA sequences with vector space pre-
sentation. We also trained an embedding model and a
network model, and optimized encoding parameters
and network parameters on a validation set. We evaluated
our method on a rigorous unbalanced independent mam-
malian m6A site test set and YTHDF binding site test set
and achieved better results than with the conventional
method. We also established a user-friendly web server
at http://server.malab.cn/Gene2vec/, where users can sub-
mit uncharacterizedmRNA sequences for the prediction of
potential m6A sites. In the future, we will pay more atten-
tion to the genomics data (e.g., tRNA, rRNA) besides
mRNA sequences if related training dates are released.
SupplementalMaterial can be accessed on our web server.

MATERIALS AND METHODS

Data sets

Data sets were retrieved from Homo sapiens and Mus musculus
complementary DNA (cDNA) FASTA data in Ensembl (Zerbino
et al. 2017). The mature mRNA transcript IDs were derived from
the work of Zhou et al. (2016), which involved annotation of the
mammalian m6A sites. In our work, RNA sequences were derived
from and were equal to cDNA. Besides the data sets of Zhou and

FIGURE 6. Comparisons of soft vote and single methods on an unbalanced independent test set.

TABLE 1. Comparison of different methods on an unbalanced
independent test set

Predictors AUROC AUPR

OneHot 0.816 0.976

NeighboringSite 0.819 0.975

Embedding 0.834 0.979
Gene2vec 0.841 0.980

SRAMP 0.794 0.321
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A B

C D

FIGURE 8. Performance of our method on an unbalanced independent test set and YTHDF binding site test set. (A) ROC curve illustrating the
performance of the Gene2vec predictor on the independent test data set. (B) Precision–recall curve illustrating the performance of the Gene2vec
predictor on the independent test data set. (C ) ROC curve illustrating the performance of the Gene2vec predictor on the YTHDF binding site test
set. (D) Precision–recall curve illustrating the performance of the Gene2vec predictor on the YTHDF binding site test set.

FIGURE 7. Heat map of different AUROC values in cross-species validation.
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coworkers, we built other data sets in accordance with the work of
Xiang et al. (2016) for comparative experiments. For further con-
firming the validity of the prediction model, Zhou and coworkers
also used YT521-B homology domain family (YTHDF) proteins
which are m6A readers. RNA sequences with m6A sites would
be bound by YTHDF. Therefore, YTHDF-binding RNAs could
be selected as those with m6A sites.

For all RNA nucleotide sequence data, we cut out a 1001-nt lo-
cal sequencewindowcentered at anm6A/non-m6A site, removing
the sequences whose centers were not GAC or AAC consensus
motifs, and filled in the rest with the character “X” when the se-
quencewas shorter than 1001 nt. Finally, we obtained 495,572 se-
quences in the training set and 128,561 in the testing set. For both
of these, the positive-to-negative ratio was approximately 1:10.

The YTHDF-binding data set contained 57,516 testing
sequences. There were 88,579 training sequences (positive-to-
negative ratio of 1:1) and 88,227 testing sequences (positive-to-
negative ratio 1:10) in the work of Xiang et al. (2016). The sizes
of the different data sets are shown in Table 3. All of these se-
quences can be accessed in the Supplemental Material.

Data preprocessing and encoding

In this section, we introduce four sequence-encoding schemes,
namely, one-hot encoding, neighboringmethylation state encod-

ing, RNA word embedding, and Gene2vec. The DNA sequences
were represented by the four encoding schemes.

One-hot encoding

In one-hot encoding, there are five characters, standing for the
four types of nucleotide along with the padding character “X.”
One-hot encoding uses five-dimensional binary vectors, where
A= [1, 0, 0, 0, 0], T= [0, 1, 0, 0, 0], G= [0, 0, 1, 0, 0], C= [0, 0, 0,
1, 0], and X= [0, 0, 0, 0, 1] and transforms the 1001 nt windows se-
quences centered at the prediction site into 5005-binary-long
vector.

Neighboring methylation state encoding

m6A sites appear to cluster in the chromosomes. Therefore, the
positive sites may be close to other positive sites, instead of neg-
ative ones. For neighboring methylation state encoding, we
counted the neighboring positive/negative site numbers as a
kind of feature. We scanned GAC and AAC sites throughout the
entire transcript sequences, and gave a label of 1 to knownmeth-
ylation (m6A) sites and 0 to unknown GAC/AAC sites. For every
positive (label 1) or negative (label 0) site, we listed the 250 up-
stream GAC/AAC sites and 250 downstream GAC/AAC sites.
Therefore, we extracted 501 0/1 codes for every site. If the end

TABLE 3. The sizes of different data sets used in our work (positive:negative)

Training set Windows

Data sets built and used in our work Zhou et al. (2016)
Homo sapiens and Mus musculus

Training set +Validation set: 495572 (1:10)
Test set 128561 (1:10)

1001 nt

Zhou et al. (2016) YTHDF binding
Homo sapiens

Test set: 57516 (1:10) 1001 nt

Xiang et al. (2016)
Homo sapiens and Mus musculus

Training set +Validation set: 88579 (1:1)
Test set:88227 (1:10)

1001 nt

Other researchers’ data sets iRNA-Methyl (Chen et al. 2015b)
Saccharomyces cerevisiae

Training set +Test set: 2614 (1:1) 51 nt

M6ATH (Chen et al. 2016a)
Arabidopsis thaliana

Training set +Test set: 788 (1:1) 25 nt

MethyRNA (Chen et al. 2017a)
Homo sapiens and Mus musculus

Training set +Test set: 3710 (1:1) 41 nt

M6aPred (Chen et al. 2015c)
Saccharomyces cerevisiae

Training set: 1664 (1:1)
Test set: 5225 (1:10)

21 nt

RFAthM6A (Wang and Yan 2018)
Arabidopsis thaliana

Training set: 4200 (1:1)
Test set: 836 (1:1)

101 nt

TABLE 2. Performance of various stringency thresholds with RNAMethPre and SRAMP

Confidence Specificity

Sensitivity MCC

SRAMP RNAMethPre Gene2vec SRAMP RNAMethPre Gene2vec

High 0.90 0.44 0.47 0.63 0.29 0.31 0.50

Moderate 0.85 0.54 0.56 0.71 0.29 0.31 0.48
Low 0.80 – 0.64 0.77 – 0.30 0.45
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of the transcript was reached, we filled the vacancy with values of
0 in both sides to the 501-code-longvector.

RNA word embedding

For RNA word embedding, heuristically, we shifted a 3-nt-long
window along 1001-nt sample sequences to generate RNA sub-
sequences that can be analogized into gene words. Embedding
encoding identified possible 3-nt combinations (105 different
combinations in our training data) with a unique integral index,
and transformed sample sequences into integral sequences
with the corresponding integral index. Then, we input them into
the Keras embedding layer to transform each integral sequence
into a data table S∈Rn×e, where n is the length of the integral se-
quence and e is the dimension of the dense embedding.

Gene2vec

Word2vec (Church 2017) is a statistical method for learning word
embedding from a text corpus with neural-network-based train-
ing via Skip-gram and continuous bag-of-words (CBOW) models.
The Skip-gram model predicts the surrounding words from the
current word, while the CBOW model predicts the current word
from its surroundings. Bothmodels are focused on learning about
words given their local usage context, where the context is de-
fined by a window of neighboring words.

For Gene2vec, similar to the processing of embedding encod-
ing, we regarded lengths of three RNA nucleotides as an RNA
word, in an overlappingmanner, analyzed them for sequence con-
tent as the RNA corpus, and used Word2vec in the Gensim tool
package (https://radimrehurek.com/gensim/models/word2vec.
html) with a five-word-long window of neighboring words to learn

the vector relationship of those RNAwords andgenerate a 100-di-
mensional feature vector.

An RNA word co-occurrence network was built, as shown in
Figure 9A, to find similarities between word pairs and the word
patterns of latent structures and representations. This network
was built using a square symmetric matrix, which was the result
of multiplying a rectangular matrix by its transpose. Each row vec-
tor of this rectangular matrix represents a different RNA context
unit (S1, S2, S3…Sn) corresponding to a sentence or paragraph,
and each column-vector represents a different word (W1, W2,
W3…Wn). Therefore, in the RNAword co-occurrence matrix, each
row or column stands for an RNAword. Each cell stands for a con-
text unit size, which is the number of RNA words Wi co-occurring
with the RNAwordWj. Correlation function was computed to find
the correlations, and then a t-test was used on the individual
correlations using the following formulas in the Psych package
(https://cran.r-project.org/web/packages/psych/):

t = r∗ ��������
(n− 2)

√���������
(1− r2)

√ ,

se =
���������
(1− r2)

√
��������
(n− 2)

√ ,

where r is the matrix of correlations and n is the number of
cases per correlation. We built the co-occurrence network by set-
ting a correlation threshold of 0.7 and linked two points together
with an edge when their correlation exceeded this threshold.
For instance, the group [AGA, GAA, AAG] (green group in Fig.
9A) can be selected among 43 types of 3-nt-long RNA sequence
permutations as an independent group, due to their strong
correlation.

A B

C

FIGURE 9. RNA word correlation analysis. (A) RNA words co-occurrence network. If there is an edge in the network, it means that the two RNA
words would co-appear in the m6A sentences. (B) RNA words were transformed into vector space. From this figure, we can conclude that GCG/
CCG always appears as a pair-word. It is also the same as CGC/CGG. (C ) The figure shows examples of semantic equivalence and semantic
symmetry.
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We also removed RNA words containing the character “X”
and transformed this 100-dimensional vector (Gene2vec output)
of 43 types of RNA words to two components utilizing principal
component analysis (PCA) to reveal the two-dimensional spatial
correlation of those RNAwords (Fig. 9B). Spatial distance is repre-
sentative of word similarity. All 2D and 3D graphs with detailed
annotations can be obtained on our web server. As can be seen
in Figure 9B, 64 RNA words cluster into eight groups with axial
symmetry. For instance, Group 1 [CCG, GCG] and Group 3
[CGG, CGC] are symmetrical about the vertical, which first indi-
cates that CCG has a similar “meaning” for sequence composi-
tion to GCG due to their cluster in vector space, and second
reveals that CCG is to CGG as GCG is to CGC (Fig. 9B). This is
just like “king” is to “queen” and “man” is to “woman” in natural
language. We call the two phenomena gene semantic equiva-
lence and gene semantic symmetry (Fig. 9C). Two RNA words
are said to have semantic equivalence when they exist among dif-
ferent sequences that have almost the same gene context, while
two RNAwords are said to have semantic symmetry when they ex-
ist within one sequence that has a unique biochemical property of
not only positional symmetry, but also nucleotide-order symme-
try, just like a pair of hands where each finger represents a nucle-
otide letter.

Network structure

We used CNNs with multiple cell structures that have two one-di-
mensional convolution layers, one pooling layer and one dropout
layer. Convolution layers are designed to extract features with
high-dimensional abstract representation. The pooling layer lim-
its the number of model parameters tractable by pooling opera-
tions. The dropout layer prevents overfitting of the model by
randomly setting some of the input units to a value of 0. Four pre-
diction methods had been established based on four different
network structures composed by the cell structures mentioned
above. One-hot encoding data were fed into the network with
four cell structures and fully connected layers as input, while
neighboring methylation state encoding data, RNAword embed-

ding data, and Gene2vec processing data were fed into networks
with two cell structures (Fig. 10). The final result was obtained by a
voting strategy from the four prediction probabilities.
Taking an example of the one-hot coding sequence, the input

data matrix Xn was first fed into a 1D-convolutional layer, which
used a convolutional filter Wf∈RH, where H is the length of
the filter vector. The output feature Ai at the ith position was com-
puted by

Ai = ReLU
∑H
h=1

WfXn,i+h + bf

( )
,

where ReLU(x) =max(0, x) is the rectified linear unit function and
bf∈R is a bias (Mairal et al. 2014). These convolutional opera-
tions are similar to data block of H length in sequence filtered
by a sliding filter window at each ith position.
Next, a max. pooling layer was used for reduction of the dimen-

sions of output data generated by themultiple convolutional filter
operations. A max. pooling layer is a form of nonlinear downsam-
pling achieved by outputting the maximum of each subregion.
To reduce overfitting, we added a dropout layer in which indi-

vidual nodes were either “dropped out” from the network with
probability 1−P or kept with probability P at each training stage.
This not only prevented overfitting, but also led to integration of
various deformed network structures to generate more robust
features that are more generalizable to new data.
Finally, a flattening layer that “flattened” the input data was

used, which transformed multidimensional data into a single di-
mension. Fully connected layers with an ReLU activation function
and output layer predict the binary classification probability with
activation function as follows (Han and Moraga 1995):

ŷ(x) = sigmoid(x) = 1
1+ e−x

( )
.

Evaluation metrics

To assess the performance of our prediction model on an unbal-
anced independent test set, we used the following metrics (Liu

FIGURE 10. Workflow of multiple predictors. The figures showed the workflow of our method. The mRNA sequences were predicted by four
different deep learning classifiers. Then they vote for the final results.
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et al. 2017b): sensitivity (Sn), specificity (Sp), andMatthew’s corre-
lation coefficient (MCC), which are formulated as follows:

Sn = TP
TP + FN

× 100%,

Sp = TN
TN + FP

× 100%,

MCC = TP × TN − FP × FN��������������������������������������������������������
(TP + FN)+ (TN + FP)+ (TP + FP)+ (TN + FN)

√ ,

where TP, TN, FP, and FN are the numbers of true positives, true
negatives, false positives, and false negatives, respectively.

The area under the ROC curve (AUROC) and the area under the
precision–recall curve (AUPR) were calculated to evaluate the per-
formance of the predictors. Receiver operating characteristic
(ROC) curves can be plotted as sensitivity against 1− specificity
and precision–recall curves as precision (the proportion of true
positives among all predicted positives) against recall (the propor-
tion of relevant instances that have been retrieved among the to-
tal number of relevant instances). A precision–recall plot is more
informative than an ROC plot when applied to unbalanced data
sets (Song et al. 2014).
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