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Summary

Background—Incomplete surgical resection of medulloblastoma is controversially considered a 

marker of high-risk disease; driving aggressive surgical resections, “second-look” surgeries, and/or 

intensified chemoradiotherapy. All prior publications evaluating the clinical importance of extent 

of resection (EOR) failed to account for molecular subgroup. We analysed the prognostic value of 

EOR across 787 medulloblastoma samples in a subgroup-specific manner.

Methods—We retrospectively identified patients from Medulloblastoma Advanced Genomics 

International Consortium (MAGIC) centres with a histological diagnosis of medulloblastoma and 

complete extent of resection and survival data. Specimens were collected from 35 international 

institutions. Medulloblastoma subgroup affiliation was determined using nanoString gene 

expression profiling on frozen or formalin-fixed paraffin-embedded tissues. Extent of resection 

(EOR) based on post-operative imaging was classified as gross total (GTR), near total (NTR, 

<1·5cm2), or subtotal (STR, ≥ 1·5cm2). Overall survival (OS) and progression-free survival (PFS) 

multivariable analyses including subgroup, age, metastatic status, geographical location of therapy 
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(North America/Australia vs world), and adjuvant therapy regimen were performed. The primary 

endpoint was the impact of surgical EOR by molecular subgroup and other clinical variables on 

OS and PFS.

Findings—787 medulloblastoma patients (86 WNT, 242 SHH, 163 Group 3, and 296 Group 4) 

were included in a multivariable Cox model of PFS and OS. The marked benefit of EOR in the 

overall cohort was greatly attenuated after including molecular subgroup in the multivariable 

analysis. There was an observed PFS benefit of GTR over STR (hazard ration [HR] 1·45, 95% CI; 

1·07–1·96, p=0·02) but there was no observed PFS or OS benefit of GTR over NTR (HR 1·05, 

0·71–1·53, p=0·82 and HR 1·14, 0·75–1·72, p=0.55). There was no statistically significant survival 

benefit to greater EOR for patients with WNT, SHH, or Group 3 patients (HR 1·03, 0·67–1·58, 

p=0·9 for STR vs. GTR). There was a PFS benefit for GTR over STR in patients with Group 4 

medulloblastoma (HR1·97, 1·22–3·17, p=0·01), particularly those with metastatic disease (HR 

2·22, 1–4·93, p=0·05). A nomogram based on this multivariable cox proportional hazards model 

shows the comparably smaller impact of EOR on relative risk for PFS and OS than subgroup 

affiliation, metastatic status, radiation dose, and adjuvant chemotherapy.

Interpretation—The prognostic benefit of EOR for patients with medulloblastoma is attenuated 

after accounting for molecular subgroup affiliation. Although maximal safe surgical resection 

should remain the standard of care, surgical removal of small residual portions of 

medulloblastoma is not recommended when the likelihood of neurological morbidity is high as 

there is no definitive benefit to GTR over NTR. Our results suggest a re-evaluation of the long-

term implications of intensified craniospinal irradiation (36 Gy) in children with small residual 

portions of medulloblastoma.

Funding—Funding Canadian Cancer Society Research Institute, Terry Fox Research Institute, 

Canadian Institutes of Health Research, National Institutes of Health, Pediatric Brain Tumor 

Foundation, Garron Family Chair in Childhood Cancer Research.

Introduction

Current clinical risk stratification of medulloblastoma patients separates children into 

average risk and high-risk strata. High-risk disease is defined by the presence of metastases 

at diagnosis, age < 3 years, and/or residual disease ≥ 1·5 cm2.1–5 The published literature is 

controversial on the prognostic benefit of gross total resection (GTR) versus subtotal 

resection (STR) or biopsy (see appendix p. 44).1,2,6–14 Currently, many patients with ≥ 1·5 

cm2 of residual disease are either subjected to second look surgery to achieve a GTR, or 

treated with high-risk protocols including higher doses of craniospinal irradiation and more 

intensive chemotherapy.2,15

Aggressive resection of medulloblastoma may be associated with increased surgical 

complications. Post-surgical neurologic morbidity for children with medulloblastoma 

regardless of extent of residual tumour is 24% and increases as high as 44% after GTR.16,17 

The incidence of posterior fossa syndrome/cerebellar mutism may be increased after GTR as 

compared to less complete resections.18 The majority of patients with postoperative 

cerebellar mutism syndrome have mild to severe persistent cognitive deficits, speech deficits, 

and ataxia.19,20 Many medulloblastomas have an attachment to the floor of the fourth 
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ventricle; removal of small medulloblastoma residua adherent to critical structures (i.e., 

brainstem) can greatly increase morbidity.21,22 Determining the appropriate balance between 

extent of resection and respect for critical structures while optimizing prognosis is an 

unresolved question in neurosurgery and neuro-oncology.

Medulloblastoma is no longer considered a single entity, but rather comprises four distinct 

molecular subgroups (WNT, SHH, Group 3, Group 4) with distinct demographics, clinical 

features including prognosis, transcriptomes and genetics.4,23–31 Critically, all prior 

publications on the prognostic importance of EOR for medulloblastoma were done without 

knowledge of subgroup affiliation (see appendix p. 44).

Methods

Specimen Processing and Subgroup Determination

Surgical resections took place from April 1997 to February 2013 and specimens were 

sterilely stored at each institution. Samples were collected and processed in accordance with 

the Ethics Review Board of the Hospital for Sick Children and our 35 collaborating 

institutions. Each centre provided information and specimens for one to 139 patients. The 

largest 10 centres provided 505/787 (64%) of the data. Between one and six different 

surgeons from each institution performed tumour resections. Extrapolating from the 

experience at the Hospital for Sick Children which has one of the highest surgical volumes 

in North America, each individual surgeon would have operated on less than 20 patients 

each. Therefore, adjusting for “surgeon” in the multivariable analysis was not feasible, 

particularly for institutions contributing small numbers. Although there is a small overlap 

with a previously published report from our group with respect to overall survival and 

cytogenetics, there is no known overlap of cases ascertained in this series with any 

previously published cohorts from our group or any cooperative cohort with respect to 

surgical and oncological treatment, with the exception of a recently published institutional 

cohort from the Hospital for Sick Children.32 Subgroup affiliation was determined using 

nanoString limited gene expression profiling on specimens weeks to years after surgical 

resection.33,34

Determination of Extent of Resection

Extent of resection was based on surgeons reports and confirmed on post-operative 

gadolinium-enhanced T1-weighted magnetic resonance imaging (MRI), or less commonly 

contrast-enhanced computed tomography (CT) by each contributing institution. The non-

centralized radiographic review was blinded to molecular subgroup. Based on post-operative 

imaging, no residual tumour was defined as GTR, < 1·5 cm2 residual tumour was defined as 

near total resection (NTR), and ≥ 1·5 cm2 residual tumour was defined as STR.1,2

Statistical Analysis

Association between EOR and clinico-pathological variables was tested with Fisher s exact 

test. Log-rank test was used to compare groups in terms of survival. Univariate and 

multivariable Cox proportional hazard regression was used to estimate hazard ratios 

including 95% confidence intervals. Six hundred twenty-eight of 778 (81%) of the patients 
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had complete data for all covariables used in multivariable Cox regression. For all 

multivariable Cox regression models, missing data in covariables were accounted for using 

multiple imputations. Predictive mean matching based on 50 bootstrap samples with 5 burn-

in iterations was used to perform imputations. This approach works for continuous, binary, 

and categorical predictors. Briefly, in each bootstrap sample, missing data for each variable 

is predicted conditioned on all other variables. For each imputed data set, a multivariable 

Cox regression model is fitted. Estimates from all imputed data sets are then combined in a 

weighted approach to get final Cox regression model estimates. Imputations were carried out 

with R package Hmisc function aregImpute.35 Nomograms of multivariable models were 

generated with R package rms. Forest plots were used to display hazard ratios of EOR in 

subgroups. To account for adjuvant chemotherapy and radiation differences, tests on 

difference in survival were stratified or adjusted for location, North America/Australia 

(Children s Oncology Group members) versus others primarily due to the uniformity of risk-

adapted therapy from COG affiliated centres compared to more heterogeneous treatment 

across the remaining worldwide centres. Chemotherapy and radiation at diagnosis were 

analysed, however, treatment regimen at recurrence was not analysed given the low 

percentage of patients that progressed and the heterogeneity of salvage therapy amongst the 

35 collaborating institutions. Metastatic status was analyzed as the presence (M+) or the 

absence (M0) of metastases at diagnosis to simplify the multivariable analysis, particularly 

given that patients were divided into 4 different molecular subgroups. This is consistent with 

another recent publication accounting for medulloblastoma subgroup.36 We used interaction 

tests in Cox regression to formally assess heterogeneity of EOR effect between subgroups. 

The quantitative covariate, age, was assessed for non-linear functional relationship using 

martingale residuals without indication of a violation. We then determined that multivariable 

fractional polynomials or restricted cubic splines would not improve the fit of age in the 

model. All tests were two-sided. P-values below 0·05 were considered statistically 

significant. Survival analysis was performed using the R-package survival (v2.37) and 

ggplot2 (v0.9.3.1). All analyses were performed in the R statistical environment (v3.1.3).

Role of Funding Sources

No funding source had a role in the study design; data collection, analysis, or interpretation; 

or writing of the manuscript. The corresponding author had full access to all of the data and 

the final responsibility to submit for publication

Results

Patients

A cohort of 787 patients was analysed (Table 1, see appendix p. 21). Complete EOR data 

was available and analysed in 787 patients, gender in 765 patients, age in 771 patients, 

radiation in 718 patients, craniospinal radiation dose in 690 patients, chemotherapy in 738, 

metastatic status in 735, and geographic region/COG status in all patients (Table 1). Patients 

were deemed ineligible for study inclusion if they had incomplete molecular subgroup, 

extent of resection, or survival data. There were 86 WNT, 242 SHH, 163 Group 3, and 296 

Group 4 patients. There were 159 STR, 109 NTR, and 519 GTRs. No statistically significant 

difference in distribution of GTR, NTR, and STR were observed between the four subgroups 
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(p=0·08). For PFS analysis, there were 251 events in 738 patients. For OS analysis, there 

were 201 events in 778 patients. Patients with incomplete survival data originated from 14 

different centres and there was no pattern of missingness. Three hundred and eleven of 577 

patients (54%) without an event (death) had 5 year follow-up while 413/577 (72%) had 3 

year follow-up (interquartile range 31.9–60 months). Two hundred sixty-three of 487 

patients (54%) without an event (progression) had 5 year follow-up while 347/487 (71%) 

had 3 year follow-up (interquartile range 32–60 months). The mean follow up for event-free 

patients was 71.9 months (95% CI 67·3–76·5). To compare our cohort to the published 

literature, we evaluated the prognostic value of EOR without accounting for subgroup, 

replicating prior results showing a benefit for increased EOR (STR vs. GTR): PFS (HR 1.8, 

1·3–2·4, p<0·0001) and OS (HR 1.6, 1·2–2·2, p=0·01) (Fig. 1).1,2,8 We conclude that our 

cohort is similar to previously published cohorts. Similar to prior publications detailing 

subgroups, WNT patients had the best PFS and OS (Fig. 1), followed by Group 4 and SHH, 

then Group 3.23,30,37

Subgroup-Specific Analysis of Survival

A univariate analysis of PFS and OS by EOR was then performed in a subgroup-specific 

manner (Fig. 2). Notably, no significant interaction between subgroup and EOR was 

observed, indicating that the EOR effect is not significantly different between the subgroups 

(see appendix p. 1).

We subsequently performed a multivariable analysis of PFS and OS in a subgroup-specific 

manner. In patients with WNT tumours, the increase in risk of progression associated with 

STR (HR 3·04, 0·4–23·3, p=0·28) and NTR (HR 1·91, 0·39–9·35, p=0·43) did not reach 

statistical significance (see appendix p. 1). Overall survival risk with STR (HR 2·4, 0·26–

22·09, p=0·44) but not NTR (HR 0·9, 0·12–6·88, p=0·92), also did not reach statistical 

significance (see appendix p. 2). The implications of EOR for WNT patients are somewhat 

limited by the small cohort with only 14 STRs and 21 NTRs (Fig. 2).

In a multivariable analysis of SHH patients, only M status and craniospinal radiation were 

significantly associated with progression. Neither STR (HR 1·04, 0.6–1.81, p=0·88) nor 

NTR (HR 0·82, 0·35–1·92, p=0·65) were associated with an increased risk of progression in 

SHH patients (see appendix p. 3). Similarly, for OS, only M status was significant, as neither 

STR (HR 1·06, 0·57–1·96, p=0·85) nor NTR (HR 0·78, 0·31–1·95, p=0·56) were associated 

with a shortened survival (see appendix p. 4). In a univariate analysis, when SHH patients 

were stratified into M0 and M+, we observed no statistically significant difference in 

survival with an STR (see appendix p. 48).

For patients with Group 3 tumours, variables associated with progression risk included M 

status and craniospinal radiation. Neither STR (HR 1·20, 0·64–2·27, p=0·57) nor NTR (0·61, 

0·27–1·4, p=0·25) were significantly associated with progression for Group 3 patients (see 

appendix p. 5). Variables associated with risk of death included M status, age, and 

chemotherapy. No increased risk of death due to STR (HR 0·84, 0·44–1·61, p=0·60) or NTR 

(HR 0·81, 0·38–1·73, p=0·59) was observed (see appendix p. 6).
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For patients with Group 4 tumours, variables associated with progression risk included STR 

(HR 1·97, 1·22–3·17, p=0·01), craniospinal radiation, and geographic treatment location, 

while NTR was not significant (HR 1·24, 0·7–2·2, p=0·45) (see appendix p. 7). Only lack of 

craniospinal radiation and geographic location of treatment (North America/Australia vs 

Europe/Asia) were associated with increased risk of progression. Similar but not statistically 

significant OS results were observed for STR (HR 1·67, 0·93–2·99, p=0·08) and NTR (HR 

1·38, 0·71–2·71, p=0·34) (see appendix p. 8). However, the adverse effect on survival of an 

STR in Group 4 was largely restricted to patients with metastatic disease (see appendix p. 8–

10, 49). Specifically, in a multivariable model using age, craniospinal radiation and site of 

treatment, the observed non-statistically-significant beneficial effects of increased EOR on 

PFS and OS are largely limited to M+ patients: PFS M0 patients (HR 1·36, 0·67–2·75, 

p=0·39), PFS M+ patients (HR 2·22, 1–4·93, p=0·05); OS M0 patients (HR 1·29, 0·52–3·17, 

p=0·59), OS M+ patients (HR 2·09, 0·79–5·59, p=0·14).

Analysis of Survival Based on Metastatic Status and Age

Multivariable analyses were then performed in a metastatic and age-specific manner. In M0 

patients, variables associated with progression risk included geographic location of 

treatment, subgroup, and craniospinal radiation. Neither NTR (HR 0·94, 0·55–1·64, p=0·82) 

nor STR (HR 1·15, 0·72–1·82, p=0·56) (see appendix p. 13) were associated with a higher 

progression risk. Variables associated with risk of death included geographic treatment 

location, subgroup, and craniospinal radiation. Neither NTR (HR 0·84, 0·41–1·7, p=0·62) 

nor STR (HR 1·03, 0·59–1·77, p=0·93) were associated with an OS risk (see appendix p. 14). 

In summary, no increase in risk with NTR was observed (HR < 1) and the observed increase 

in risk with STR was minimal.

In M+ patients, variables associated with progression risk included subgroup, craniospinal 

radiation, and geographic treatment location. Neither NTR (HR 1·09, 0·6–1·97, p=0·78) nor 

STR were associated with increased PFS (HR 1·53, 0·98–2·41, p=0·06) (see appendix p. 15). 

Variables associated with risk of death included subgroup, chemotherapy, and geographic 

treatment location. Neither NTR (HR 1·13, 0·63–2·04, p=0·68) nor STR (HR 1·33, 0·82–

2·16, p=0·25) were associated with an increase of death (see appendix p. 16).

There was a significant interaction between age and EOR (p=0·03 for PFS, p=0·01 for OS), 

indicating a different prognostic impact of STR in both age groups. In patients < age 3, 

variables associated with progression risk included subgroup, while NTR (HR 0·47, 0·19–

1·17, p=0·11) and STR (HR 0·73, 0·35–1·51, p=0·39) did not have an association with 

increased risk (see appendix p. 17). Similar to PFS risk models, neither NTR (HR 0·56, 

0·22–1·4, p=0·21) nor STR (HR 0·44, 0·18–1·06, p=0·07) were associated with increased 

risk of death (see appendix p. 18). Rather, we observed a decreased risk of death with STR. 

In summary, GTR did not confer a PFS or OS benefit.

Multivariable Analysis of Survival and Direct Comparison by Extent of Resection

Multivariable analysis demonstrated STR, subgroup, M+ status, craniospinal radiation, and 

geographic location as significant predictors of PFS (Table 2). Near total resection had no 

increased risk of progression (HR 1·05, 0·71–1·53, p=0·82). Multivariable analysis of OS 
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identified significant associations with subgroup, M+ status, craniospinal radiation, and 

geographic location (Table 3). Nomograms of the multivariable model were prepared to 

graphically illustrate the relative clinical impact of each variable to predict 3 and 5 year PFS 

and OS (Fig. 3).

Multivariable direct comparisons of GTR, NTR, and STR were performed for both PFS and 

OS for the entire cohort, and within each subgroup (Fig. 4). No subgroups were identified 

with a significantly increased the risk of progression when comparing NTR vs. GTR. STR 

showed a consistent trend towards a worse outcome than NTR across all subgroups. For 

STR vs. GTR, we found that STR portends a modest progression risk compared to GTR for 

the entire cohort, Group 4 patients, and patients ≥ age 3 (Fig. 4). The metastatic Group 4 

patients likely drive age related effects, as there is no observable effect for WNT, SHH, or 

Group 3 patients. The same analysis for overall survival does not show a difference between 

STR and GTR for Group 4 patients (Fig. 4). Unexpectedly, for patients < age 3, GTR and 

NTR do not improve survival (Figure 4). Univariate analysis and multivariable analysis 

adjusted only for chemotherapy and radiotherapy regimens, yielded similar results (see 

appendix p. 51). A sensitivity analysis of random effects and institution demonstrated 

similar results with and without accounting for institution (see appendix p. 43).

Discussion

Our main findings are that the value of increased extent of resection is largely attenuated 

after accounting for molecular subgroup, that NTR appears to be prognostically equivalent 

to GTR, and that the magnitude of the beneficial clinical effect on prognosis of a GTR is 

smaller than other known medulloblastoma risk factors. To our knowledge, this study 

evaluates the largest cohort of patients to date on the role of extent of resection in the 

treatment of medulloblastoma.

Clinical Importance of Extent of Resection

Currently, the goal of surgical resection upfront for medulloblastoma patients is a safe GTR 

without significant neurological sequelae. If there is tumour adherent to critical structures, 

the goal is to leave a residual < 1·5 cm2, a NTR.21 There is a controversial perception in the 

neurosurgical community that a GTR is prognostically superior to an NTR. Findings in the 

current manuscript highlight the lack of prognostic difference between GTR and NTR and 

should convince surgeons to minimize morbidity when removing small residual portions of 

tumours adherent to critical structures. STR can range from just larger than 1·5 cm2 up to 

small limited biopsies. This value of < 1·5 cm2 was based largely on postoperative CT 

scans1,2 with limited resolution compared to modern MR imaging. This was established as 

part of CCG921, which ran in the late 1980 s where treatment and outcomes were 

significantly different when compared to current cisplatin-based therapy, and during which 

the histological classification likely included other entities such as atypical teratoid rhabdoid 

tumors. Furthermore, approximately 50% of medulloblastomas (mostly Group 4) do not 

enhance or have heterogeneous enhancement.38 Nonenhancing residual tumor can easily be 

missed even on modern postoperative MRI, particularly when located between the 

cerebellum and brainstem. A large prospective radiographic study using modern 3D MRI 
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volumetrics with a receiver operating curve is needed to determine exactly how much 

residual tumour is truly predictive of a poor prognosis.

There are a number of reasons why our data showing a lack of definitive association 

between EOR and survival is not surprising. Review of the literature revealed a roughly 

equal number of publications that did, and did not find an association between increased 

EOR and OS (see appendix p. 44). Despite clinical equipoise that is arguably justified by the 

existing literature, most neurosurgeons attempt a maximal safe gross total resection in 

attempt to maximize PFS and OS in the absence of more definitive data.

Prior prospective clinical trials have cast doubt on the role of extent of resection for children 

with medulloblastoma. Packer and colleagues found a 5-year event-free survival of 83% 

± 2·2% in M0 patients with < 1·5cm2 residual tumour (n = 313) compared to 75% ± 13% in 

M0 patients with ≥ 1·5 cm2 (n = 15) despite both groups having received only 23·4 Gy of 

craniospinal irradiation.5 Gajjar and colleagues found zero of six patients with residual 

tumour > 1·5 cm2 treated as “high-risk” in the St. Jude Medulloblastoma-96 protocol had 

evidence of disease with a median follow up of over 8 years.3 The HIT2000 multicentre 

clinical trial cohort did not demonstrate an association of residual tumour > 1·5 cm2 and 

event-free survival.36 The SIOP PNET4 study, which did not include subgroup information, 

enrolled non-metastatic, subtotally resected tumours as average risk disease, and did find 

subtotal resection was the strongest negative prognostic factor, however this was limited by 

only 31 of 340 patients having a residual ≥ 1·5cm2.39 Finally, we recently reported that in 

patients with Group 3 and 4 medulloblastoma, the site of recurrence is almost invariably 

metastatic and not the local tumour bed.34 In Group 4 patients, the benefit of a subtotal 

resection appeared to be largely restricted to metastatic patients, rather than non-metastatic 

patients who currently receive intensified craniospinal irradiation when residual disease 

exceeds 1·5cm2. It is unclear why metastatic Group 4 patients appear to have a poorer 

survival with a STR, but the simplest proximate explanation is the degree of metastatic 

dissemination is higher in this group, hence there is a reduced impetus for the surgeon to 

pursue an aggressive resection. In the STR group, the average residual tumour size may also 

be larger for M+ patients than M0 patients.

We would like to emphasize that all patients benefit from generous tumour debulking, and 

decompression of the brainstem. Resection of the bulky, dorsal portion of the tumour is 

usually very safe and seldom a cause of morbidity. Our findings do not address or endorse a 

strategy in which only a small diagnostic biopsy is done followed by adjuvant therapy, as 

this type of patient is seldom seen, and was not included in the current data set. Clinical 

actionability of the current manuscript can be limited at presentation as the subgroup of the 

patient s tumour is usually not known definitively at the time of surgery. However, our 

findings could certainly inform the value of second look surgery for small residual tumours.

Adjuvant Therapy Implications

At many institutions worldwide, patients are considered “high risk” if there is ≥ 1·5 cm2 

residual tumour on postoperative MRI. This has profound implications regarding the amount 

of adjuvant craniospinal radiation these patients receive (36 Gy compared to 23 Gy for 

“average risk” patients at most COG and International Society of Paediatric Oncology-
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associated centres). Notably, patients from North America/Australia COG centres in this 

study had significantly better PFS and OS than non-COG centres, possibly due to the 

relatively uniform adjuvant CSI protocols and heterogeneous treatment in the global cohort. 

There is clear and well demonstrated decrease in long-term IQ and quality of life in patients 

who receive high dose, as compared to low dose craniospinal irradiation.40 In the current 

study, we could not find a definitive association between increased EOR and PFS or OS in 

patients with WNT, SHH, and Group 3 medulloblastoma. A minor subset of SHH group 

tumours demonstrate extensive nodular histology (MBEN)24 which has been shown to have 

the most favourable prognosis of all histological types7 and is typically found in infants.41 

Garre et al determined that residual tumour ≥ 1·5 cm2 was not significantly associated with 

OS in patients with huge MBEN tumours due to familial tumor predisposition syndromes.41 

In Group 4 medulloblastoma patients, and patients ≥ age 3, there may be a role for more 

aggressive resections to achieve residual disease of under 1·5cm2, although the relative 

benefit on overall survival is indeterminate and has to be weighed against the risks of 

aggressive surgical resections. Clinicians may need to weigh the modest risk of residual 

disease on survival as compared to the marked risk of poor long-term quality of life when 

deciding whether or not to treat M0 patients with residual disease with high dose 

craniospinal radiotherapy.

Limitations of this work include the lack of a central radiographic review and its 

retrospective nature. Discrepancies in central and institutional radiographic review of 

residual medulloblastoma can occur as can poor quality postoperative imaging.5 A 

prospective trial randomizing patients to < 1·5 cm2 residual vs. aggressive debulking but ≥ 

1·5 cm2 residual, while accounting for molecular subgroup would be the gold standard to 

determine the role of subtotal resection. Clearly, this would be both ethically and practically 

impossible to achieve. Assuming survival rates as observed in our cohort (GTR patients have 

83% (95% CI 79%–87%) survival after 3 years) and based on the hazard ratio from the 

multivariable analysis, in a trial with 3 years recruitment and 3 years minimal follow-up, 

one-sided α 2.5, 0.2, and clinical acceptable non-inferiority margin of 1.2 for the hazard 

ratio for the upper confidence limit, more than 6,400 patients would be required for such a 

trial. Indeed, the current manuscript contains 787 medulloblastoma patients, to our 

knowledge, the largest cohort to date in which the value of EOR has been assessed, and 

contains the largest number of incompletely resected medulloblastomas analysed to date. 

While we are unable to definitively exclude a small, statistically significant benefit for GTR, 

the authors would point out that the benefit of EOR has never been definitively demonstrated 

in a proper randomized trial, and that if the current data for EOR were instead for a novel 

drug or therapy, that this novel therapy would be rejected out of hand even if it had minimal 

side effects. Additionally, any potential age-related differences in clinical importance of 

extent of resection require further evidence in a prospective randomized trial.

We conclude that while the initial surgical goal should be GTR, there is no prognostic 

difference between NTR and GTR, therefore, GTR should not be pursued over NTR if there 

is clinical risk of neurological sequelae. The role of EOR in medulloblastoma is 

controversial in the literature, and we observe no profound clinical benefit on survival for 

increased EOR in WNT, SHH, Group3, or M0 Group 4 patients. While we cannot rule out 

any significant benefit due to EOR due to insufficient sample size, the clinical trial to 
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address this question is not feasible due to an immense sample size, and our nomogram 

demonstrates that the magnitude of any possible benefit is modest. These data question the 

clinical benefit of second look surgery for small residual medulloblastoma due to the 

possible morbidity of surgery and the delay in the commencement of radiation. Finally, both 

prior publications and the current manuscript question whether both statistical significance 

and the clinical magnitude of effect when using residual disease as a criteria to classify a 

patient as high risk and precipitate high-dose craniospinal radiotherapy. The relatively small 

effect size of residual disease as compared to the marked long-term neurocognitive side 

effects of high dose craniospinal radiotherapy suggest that the paediatric neuro-oncology 

community needs to revisit residual disease as a criteria for high risk stratification, 

particularly as more informative and robust molecular markers are described and validated.
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Fig 1. 
Five-year PFS and OS survival curves for the entire cohort by extent of resection (A and C) 

and by molecular subgroup (B and D).
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Fig 2. 
Five-year PFS and OS survival curves for EOR by subgroup. There was not a significant 

PFS or OS advantage of those patients that had NTR or STR compared to GTR for the WNT 

group (A and B), the SHH group (C and D), or Group 3 (E and F). There was an association 

of increased EOR and both PFS and OS for Group 4 (G and H).
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Fig 3. 
Nomograms for the multivariable Cox model. The presence or absence of each variable is 

scored (top row). The cumulative score from each variable is used to determine 3 and 5-year 

PFS (A) and OS (B) probabilities.
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Fig 4. 
Multivariable Forest Plots directly comparing EOR for PFS (A) and OS (B). Circles to the 

right of the grey vertical line indicate increased risk while those to the left of the grey 

vertical line indicated decreased risk.
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