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Transcriptome analyses of the human retina
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3.5 Mb of novel transcribed sequence via
significant alternative splicing and novel genes
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Abstract

Background: The retina is a complex tissue comprised of multiple cell types that is affected by a diverse set of
diseases that are important causes of vision loss. Characterizing the transcripts, both annotated and novel, that are
expressed in a given tissue has become vital for understanding the mechanisms underlying the pathology of disease.

Results: We sequenced RNA prepared from three normal human retinas and characterized the retinal
transcriptome at an unprecedented level due to the increased depth of sampling provided by the RNA-seq
approach. We used a non-redundant reference transcriptome from all of the empirically-determined human
reference tracks to identify annotated and novel sequences expressed in the retina. We detected 79,915 novel
alternative splicing events, including 29,887 novel exons, 21,757 3′ and 5′ alternate splice sites, and 28,271 exon
skipping events. We also identified 116 potential novel genes. These data represent a significant addition to the
annotated human transcriptome. For example, the novel exons detected increase the number of identified exons
by 3%. Using a high-throughput RNA capture approach to validate 14,696 of these novel transcriptome features
we found that 99% of the putative novel events can be reproducibly detected. Further, 15-36% of the novel
splicing events maintain an open reading frame, suggesting they produce novel protein products.

Conclusions: To our knowledge, this is the first application of RNA capture to perform large-scale validation of
novel transcriptome features. In total, these analyses provide extensive detail about a previously uncharacterized
level of transcript diversity in the human retina.
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Background
The human retina is composed of a complex set of cell
types. It is estimated that this includes at least 60 types
of cells spread across 6 cell classes including: photo-
receptor, horizontal, bipolar, amacrine, glial and ganglion
cells [1,2]. Its normal function is dependent upon each
cell type working properly in a coordinated fashion.
Multiple disorders affect the retina and cause vision loss,
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including diabetes, age-related macular degeneration,
inherited retinal degenerations (IRDs) and cancer, which
are common causes of vision loss in patients of all ages
[3-6]. While research has lead to the development of
effective therapies for some of these disorders, such as
the successful application of gene augmentation therapy
to treat the severe, early onset form of inherited retinal
degeneration (IRD) Leber congenital amaurosis (LCA)
caused by mutations in the RPE65 (ENSG00000116745)
gene [7-9], therapies for many types of retinal disease
remain to be developed.
Sequencing of the 191 known IRD disease genes in pa-

tients with recessive IRDs can result in the identification of
a single mutant allele, but fail to identify a second mutation
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Table 1 Alignment statistics from RUM analysis with no
reference transcriptome

# of reads % of total reads

Total reads 314,649,719 n.a.

Uniquely aligned 280,138,816 89

Non-uniquely aligned 11,695,005 4

Total aligned 291,833,821 93
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[10,11]. Since these re-sequencing efforts are focused on
annotated exons, it is possible that unidentified transcribed
sequences harbor some of the missing mutations [12-14].
For example, identification of novel exons in the BBS8
(ENSG00000165533) and RPGR (ENSG00000156313)
genes lead to the detection of additional disease causing
mutations [12,13]. Specifically, the inclusion of exon 2a in
BBS8 is a retina-specific alternative splicing event [12].
Mutations in BBS8 cause Bardet-Biedl syndrome, a syn-
dromic form of IRD, characterized by rod-cone dystrophy,
obesity, and polydactyly, among other phenotypic disor-
ders [15,16]. An in-frame mutation in the splice acceptor
site results in skipping of exon 2A and leads to the non-
syndromic form of retinitis pigmentosa (RP) [12]. A retina-
specific novel exon 15a in RPGR contains a stop codon and
leads to a protein that is 55–169 amino acids shorter than
in other tissues, which was found to be required for normal
retinal function [13]. Mutations in this ORF15 are a com-
mon cause of X-linked RP [17].
RNA-seq is a powerful method for studying the tran-

scriptional landscape of a given cell or tissue. Unlike
microarrays, RNA-Seq is not limited to current anno-
tations of the transcriptome, allowing for the detection
of novel splicing events, including novel genes [18-21].
To date, tens of thousands of novel alternative splicing
events and hundreds of novel genes have been identified in
a variety of cell and tissue types by RNA-Seq analyses
[18,22,23]. A unique feature of RNA-Seq libraries generated
from poly-A RNA is the ability to detect certain types of
non-coding RNAs (ncRNAs), particularly long intergenic
non-coding RNAs (lincRNAs) [24]. lincRNAs resemble
protein-coding transcripts in that they are polyadenylated,
typically contain multiple exons, and are alternatively
spliced, containing 2.3 isoforms, on average. Functionally
they are not well characterized, but lincRNAs are known
to have important roles in X chromosome inactivation,
imprinting, maintaining pluripotency, and regulation
of transcription [25]. While not fully studied, over 9,000
lncRNAs (of which lincRNAs are a subgroup) have been
identified, and this number is expected to increase substan-
tially, given their high degree of tissue-specificity [24,26].
An analysis of the transcriptome of the human retina

using EST data was first reported in 2000 [27]. This work
was followed by studies using additional techniques aimed
at identifying the genes that were specific to the retina
[28-33]. These initial studies increased our understanding
of the normal function of the retina, and identified genes
involved in the pathogenesis of disease. We have used
RNA-Seq to more comprehensively interrogate the human
retinal transcriptome. The increased depth of sampling
provided by the RNA-Seq approach lead to the identifica-
tion of 79,915 novel alternative splicing events and over a
hundred potential novel genes. Using a targeted enrich-
ment RNA capture approach, we performed a technical
validation of 14,696 (18%) of the novel splicing events
found in the human retinal transcriptome data. To our
knowledge, this is the first application of targeted RNA
capture to perform large-scale validation of novel tran-
scriptome features. This method showed that 99% of
the putative novel events are real. Bioinformatic ana-
lyses indicate that between 15-36% of novel splicing
events maintain an open reading frame, and likely re-
sult in novel protein-coding transcript isoforms. These
analyses also identified 116 putative novel genes. We
validated the expression of the full-length gene for 10
of these using independent RT-PCR analyses. These data
provide an unprecedented level of information regarding
the human retinal transcriptome.

Results
Characterization of the annotated retinal transcriptome
We generated RNA-Seq libraries from 3 normal adult
human retinal total RNA samples using an adaptation of
a standard mRNA-Seq library preparation protocol [34].
The resulting libraries were sequenced using an Illumina
HiSeq 2000 instrument. In total, we generated 314 million
paired-end sequence reads that were 101 bp in length. We
aligned the reads to the human genome (hg19) using the
RNA-Seq Unified Mapper (RUM)[35]. RUM aligns RNA-
Seq reads in a two-step manner. The first step aligns reads
using Bowtie against a reference genome and transcriptome
[36]. Reads that do not align in this first step are then
aligned to the reference genome using BLAT [37]. Due to
the nature of our experiment, aiming to catalog both the
annotated human retinal transcriptome as well as novel
features, we chose to align our data without preference to a
given set of transcriptome annotation tracks. Using this
approach, we were able to align nearly 292 million reads
(93%), of which 280 million aligned uniquely (89%) (Table 1)
(GEO accession - GSE40524).
Currently, 12 annotation reference tracks exist for

the human transcriptome in the UCSC genome browser
[38]. Eight of these (UCSC, Refseq, CCDS, Vega, Ensembl,
Aceview, Gencode, and LincRNAs) are based on empirically-
observed EST or RNA-Seq data [24,39-45]. The remaining
four annotation tracks (N-Scan, Genscan, SGP, and GeneID)
are algorithm-based, generated by scanning the genome
for transcription start/stop sites, splice junction signals,
etc. [46-50]. Many studies that aim to characterize novel
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Figure 1 Depth of coverage plots for detected exons found in
a non-redundant database created from the eight empirically
determined human annotation tracks. This database included a
total of 1,016,490 unique annotated exons. A) Depth of coverage
determined from the combined set of annotation tracks by
detecting the number of annotated exons with an average of 1 and
5 read coverage at every 10 million reads. As shown, the plots
approach plateaus at 300 million reads, suggesting the transcriptome
is nearly fully covered at this level of sequencing. B) Depth of
coverage for the individual annotation tracks at 300 million reads.
The lincRNA and CCDS annotation tracks have the lowest (35%) and
highest (94%), respectively. On average, the other 6 annotation
tracks are covered near 80%.
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features often do so with only a subset of these annota-
tion tracks [19,20,23,51-53]. For our study, we chose an
inclusive approach and built a non-redundant reference
transcriptome from the 8 empirically-determined anno-
tation tracks. This reference transcriptome consists of
412,785 unique transcripts (unique CDS start and stop)
and over 1 million exons (Additional file 1). We chose not
to include the algorithm-based annotation tracks because
of their unknown biological relevance.
Using RPKM values, the distribution of transcript

abundance was determined. Approximately, 97% of the
transcripts had an RPKM value less than 100, with the
most highly expressed transcripts having an RPKM value
greater than 10,000 (Additional file 2). Using the stand-
ard of 1–4 RPKM being equal to one transcript/cell, this
suggests that we have detected between 1 to 2500 tran-
scripts, at a minimum per cell [54]. Approximately 50%
of all expressed transcripts fall within the 5–25 RPKM
(5–25 transcripts/cell) range. As shown in Additional file 2,
the distribution of expression levels is very similar between
the three retinal RNA samples, with an overall concordance
of 91%. The most highly expressed transcripts correspond
to proteins involved in mitochondrial respiration with at
least 2500 transcripts/cell, which is not surprising given the
high metabolic demand of the retina.
At 314 million reads, we were able to detect 75% of all

exons annotated in the reference transcriptome at an aver-
age read depth of 5 or greater (Figure 1A). Some additional
exons can be observed at average read depth of 1 or greater,
with 83% of all exons detected, corresponding to approxi-
mately 160,000 unique transcripts. Detection of annotated
exons from the standpoint of the individual databases was
relatively consistent, aside from the lincRNA and CCDS da-
tabases (Figure 1B). We detected only 35% of the annotated
lincRNA exons, but 90% of the annotated CCDS exons, at
an average read depth of 5. We detected between 77-82%
of the annotated exons in the remaining 6 databases.

Visualization of the retinal transcriptome
The coverage and splice junction data for the human
retinal transcriptome can be viewed from our website at
http://oculargenomics.meei.harvard.edu/index.php/ret-trans/
110-human-retinal-transcriptome. Additional file 3 is a
representative image of our data with a detailed description
of each feature. These data provide the ability to interrogate
genes of interest for expression of individual isoforms,
novel features, and the relative abundance for both the
annotated and novel features.

A significant fraction of detected splice junctions are novel
We compared our aligned data to the eight empirically-
determined annotation tracks as previously mentioned.
We found that a total of 825,781 reads crossed 117,030
novel splice junctions, while a total of 105,911,729 million
reads crossed 229,906 annotated splice junctions (Table 2).
While this number of junctions is nearly identical to that
detected other transcriptome studies, it is fewer than the
438,000 junctions predicted to correspond to the tran-
scripts detected [54]. This is not surprising given that
nearly 50% of the detected transcripts have an RPKM level
of less than 5, and only one out of every three reads will
cross a splice junction. We have previously calculated that
the false positive/false negative rates for detection of splice
junctions using the RUM analysis algorithm are 1.41% and
2.48%, respectively suggesting that the majority of the
novel junctions detected are real [35].
Greater than 100-fold more reads cross annotated

splice junctions, relative to those reads crossing novel

http://oculargenomics.meei.harvard.edu/index.php/ret-trans/110-human-retinal-transcriptome
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Table 2 Statistics for reads crossing splice junctions

Junction type # of Reads # of Junctions

Annotated 105,911,729 229,906

Novel 825,781 117,030
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splice junctions. However, nearly 4% of the novel splice
junctions in our dataset have more reads crossing them
than reads crossing their annotated counterpart (Figure 2).
Roughly 9% of the novel and the corresponding annotated
splice junction have an equal number of reads crossing
each splice junction. Over 87% of the annotated splice
junctions have more reads crossing them relative to
the corresponding novel splice junction. A novel exon
in MLL2 (ENSG00000167548) is a clear example where
the novel junctions form a major transcript isoform of
the gene (Figure 3).

Characterization of the products of novel splice junctions
In order to better characterize the novel splice junctions,
we categorized them into three types of events: novel
exons, exon skipping, and alternate 3′ or 5′ splice sites.
In this case, only novel events that occur within an
annotated transcript (i.e. between two annotated exons)
were considered. We identified 29,887 novel internal
and terminal exons, 28,271 novel exon skipping events,
10
x

5-
10

x
2-

5x
0-

2x
2-

5x
5-

10
x

10
x

0

5

10
60

75

%
 o

f T
ot

al
 J

un
ct

io
ns

Novel > Annotated Annotated > Novel
Figure 2 The ratio of novel to annotated isoform abundance as
determined by reads crossing splice junctions. The number of
reads crossing a novel splice junction relative to the corresponding
annotated splice junction were used to calculate the ratio. This data
demonstrates that a relatively significant portion (~15%) of novel
isoforms in the human retinal transcriptome are at least as abundant
or more abundant than their annotated counterparts. The green
bars represent the percentage of total junctions in which the novel
isoform was more abundant than the annotated. The blue-green bar
represents the percentage of total junctions where the novel and
annotated isoforms are equal (< 2-fold change). The blue bars
represent the percentage of total junctions in which the annotated
isoforms are more abundant than the novel.
and 21,757 novel alternate 3′ or 5′ splice sites that fit
this criterion. Approximately half of these events occur
in transcripts with an RPKM in the 5–25 range, consist-
ent with the distribution of overall transcript abundance
(Additional file 4).
Similar to the depth of coverage plot for the detection

of annotated exons, we performed an analogous analysis
for the detection of novel splicing events (Figure 4). A
majority of the novel features are detected within the
first 100 million reads (71-92%). However, analogous to
the detection of annotated exons, as sequencing depth
increases more novel features are discovered. Between
200 and 300 million reads, the percentage of new novel
features detected is minimal, suggesting that we have
sampled the transcriptome sufficiently.
We next set out to characterize the three types of

novel events with respect to their effect on the coding re-
gions of the annotated transcripts. The novel exons ranged
in size from 8 to 482 bp with a mean of 118 bp. The 19,637
novel internal exons are found in 5,815 unique annotated
transcripts. Eighteen percent are in-frame and maintain the
coding sequence of the transcript (Figure 5A). Thirty
percent of the novel exons cause frame-shifts, which
are predicted to result in premature termination in the
novel exons. The remainder (52%) form exons within
the annotated untranslated regions (UTRs) of the tran-
scripts. We have determined that 34% of the novel
exons in UTRs maintain an ORF, while 66% result in a
frameshift or contain a stop codon. In total, 36% of the
19,637 novel internal exons are in frame.
Novel terminal exons are difficult to accurately identify

because they can be ambiguous. A general analysis of
the transcriptome identified over 34,000 novel terminal
exons. To determine the false positive rate for this ana-
lysis, we visually inspected 500 randomly selected puta-
tive novel terminal exons using the following criteria: 1)
if the terminal exon was part of a novel transcript, the
transcript had to be 3 or more putative exons in length,
2) in all cases, the coverage of the terminal exon had to
be consistent for at least 50 bp, and 3) a novel terminal
exon within an annotated transcript must lie outside of the
annotated UTR (An example novel terminal exon is shown
in Figure 6). Applying these criteria to our dataset, we esti-
mate that 30% (approximately 10,250 novel terminal exons)
of the identified novel terminal exons are real.
Combining the novel internal and putative terminal

exons, we have detected 29,887 previously unannotated
exons. Relative to the combined 8 transcript reference
tracks consisting of over 1 million exons, we have detected
an additional 3% of exons. Of the annotated exons
expressed in the retina, 4% of the exons detected in these
analyses are novel. Based only on the novel internal exons
(excluding novel terminal exons), these data contribute an
additional 2.7 Mb of novel transcribed sequence to the



Figure 3 MLL2 is a disease-relevant gene in which a novel exon that constitutes a major transcript isoform was detected. The scale is
provided by the bar at the top of the figure. The numbers shown indicate position on chromosome 12. The green bars in the junction track are
the novel splice junctions, the blue bars are the current annotation of the splice junction. The red coverage track shows depth of sequence
coverage, and the RefSeq track at bottom shows the current annotation for this portion of MLL2.
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annotated transcriptome. A list of the novel internal exons
is provided as Additional file 5.
Exon skipping is reported to be the most common

alternative splicing event [55]. We identified 28,271 novel
skipping events found in 12,512 unique annotated tran-
scripts in the retinal transcriptome. One or two exons were
skipped the most frequently at 69% and 18% of the total
novel exon skipping events, respectively (Figure 5B).
Analyses of the ORFs for these events found that 15%
maintained the ORF, 53% caused a frameshift, and 32%
were located in annotated noncoding RNAs (ncRNA).
On average 1.2 exons were skipped in the cases where
the ORF was maintained, while an average of 2 exons
were skipped when a frameshift was induced.
Alternate 3′ and 5′ splice sites can both add and remove

sequence from a transcript [56,57]. We detected 21,757
novel alternate 3′ or 5′ splice sites in our dataset, which
are found in 11,860 unique transcripts. Specifically, we
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Figure 4 Depth of coverage plots for the detection of novel
splicing events in the human retinal transcriptome. The percent of
annotated features detected for 10 million read increments are shown.
For novel exons and alternate 3′ or 5′ splice sites, the coverage plots
nearly plateau at 300 million reads, suggesting that 300 million
sequence reads provides good depth of sampling for these features.
The slope of the exon skipping curve suggests that a majority of the
exon skipping events have been detected, but that additional events
could be detected with greater depth of sequencing.
detected 10,195 novel alternate 3′ splice sites and 11,562
novel alternate 5′ splice sites. We found that 23% of
the novel alternate splicing events maintained an ORF
(Figure 5C). Conversely, 56% caused a frameshift or intro-
duced a premature stop codon. We also detected alternate
3′/5′ splice sites in ncRNA in 21% of the cases. The 8,720
events that resulted in new transcribed coding sequence
are predicted to add 846 Kb of sequence to the transcrip-
tome. There were 13,037 novel events that removed pre-
viously annotated transcribed sequence, resulting in a loss
of 4.3 Mb of transcribed sequence in total. A list of
the novel alternate 3′ and 5′ splice sites is provided in
Additional file 4.

Targeted enrichment and high-throughput validation
Recently, the technology used for targeted DNA capture
and exome sequencing has been adapted for RNA capture
[58]. We used this approach to investigate the reproducibil-
ity of the detection of novel transcript features identified in
the RNA-Seq analyses, providing technical validation of our
approach. For these studies, we selected a total of 14,696
putative novel splicing events from the retinal transcrip-
tome data for capture, representing novel exons, exon skip-
ping, and alternate 3′ and 5′ splice sites. We applied the
capture technology to the original 3 retinal cDNA libraries
individually, the three RNA samples combined and pre-
pared specifically for the capture experiment, and to human
skeletal muscle, brain, and liver RNA samples. Since not all
14,696 of the novel splicing events were found in all three
samples, we performed individual capture analyses based
on the specific set of novel events from each sample. Using
sample-specific analyses, we were able to capture and valid-
ate 99% of the novel alternative splicing events in our target
set (Figure 7A). In the pooled retinal sample, we validated
93% of the targets, while the brain, liver, and muscle sam-
ples validated at lower levels of 71%, 61%, and 58%, respect-
ively. It should be noted that in these cases, unlike the
original 3 retinal samples, the validation rate was deter-
mined by using the total capture set as reference, rather
than the individual transcriptome as a reference. For every
novel event in our capture set, we were also able to identify



Figure 5 The effects of novel transcript features/splicing on
reading frame. A) Of the 19,637 novel internal exons, 18% maintain
an open reading frame (ORF), 30% result in a frameshift or contain a
stop codon, and 52% are found within an untranslated region of the
transcript. Of the 52% of novel exons that lie in an annotated UTR,
34% maintain an ORF (green bar) and 66% (gray bar) result in a
frameshift or contain a stop codon. B) Of the 28,271 novel exon
skipping events, 15% maintain an ORF, 53% result in a frameshift,
and 32% are located in non-coding RNA (ncRNA). C) Of the 21,757
novel alternate 3′/5′ splice sites, 23% maintain an ORF, 56% result in
a frameshift or contain a stop codon, and 21% are located in ncRNA.
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the corresponding annotated event. A list of the novel cap-
tured events and their corresponding rate of enrichment is
provided in Additional file 6.
Alternative splicing among individuals is known to be

variable [59-61]. As expected, the three retinal samples
used for our analysis showed variability with regards to
alternative splicing. This is likely a factor of gender, age,
and technical factors such as post-mortem time to
RNA isolation [62,63]. Among the novel events in the
RNA capture set, nearly 7,000 were common within
the three samples (Figure 7B). Of those 7,000 common
novel events, nearly 2,000 were specific to these retinal
samples, as they were not observed in the non-retinal
samples. While these data are not a comprehensive
analysis of the transcriptomes of all human tissues, the
results suggest that these novel events are, at a minimum,
enriched in the retina.

Identification of novel genes
To further characterize the novel elements within the
human retinal transcriptome, we also analyzed the data
for transcripts derived from potential novel genes. For
these analyses, we identified potentially novel genes
based on an ENCODE-inspired definition that a “gene is
a union of genomic sequences encoding a coherent set
of potentially overlapping functional products” [64]. This
definition is more broadly based and allows for inclusion
of non-coding RNAs. Using this definition as a guideline,
we developed the following rules to identify potentially
novel genes as those that are: 1) intergenic, 2) contain 3
or more putative exons, and 3) are of sufficient read
depth to provide consistent coverage across the exon
(average read depth > 5). Using these criteria, we iden-
tified 116 potential novel genes (Additional file 7). We
then manually curated the genes following the criteria
described by Jia, et al. (2010) to determine their protein
coding capacity [65]. Briefly, this method uses the length
of the ORF (>80 amino acids), homology to known pro-
teins, and conservation to other species as a foundation
for determining the potential protein-coding capacity of a
gene. We found that 16 of the genes contained an ORF
that was greater than 80 amino acids in length. For the 97
genes with an ORF less than 80 amino acids, we did not
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identify homology with proteins known in human and
non-human primates. For these 97 novel genes that had
ORFs of less than 80 amino acids in length and were not
found to have homology with known proteins, we classi-
fied them as encoding potential lincRNAs [24]. Figure 8A
depicts a novel gene that we believe to encode a lincRNA.
It is composed of 5 exons with an estimated length of
2184 bp, and no ORF. Figure 8B is an example of a gene
that is composed of 6 exons with an estimated length of
925 bp, and an ORF of 90 amino acids.

Validation of novel genes
We were able to validate up to 99% of the novel splicing
events detected in the RNA-Seq data in the RNA capture
experiment, suggesting that the identified novel genes are
real. In addition, we selected 10 of the potential novel
genes for further validation using RT-PCR and Sanger
sequencing. To do this, we designed primers to the puta-
tive terminal exons of the novel genes, without preference
to the abundance of the isoforms that contained these
exons. These novel genes varied from 925 to 10,205 bp in
length, represented by 3 to 7 exons (Additional file 8). RT-
PCR from human retinal RNA, followed by sequencing,
validated the expression and full-length sequence of all 10
of the novel genes.
To evaluate the distribution of expression of these

novel genes, we also tested the human brain, liver, and
muscle RNA samples for expression of the 10 novel genes
by RT-PCR. We found that 9/10 of the putative novel genes
were expressed in all tissues tested, with the only exception
being NG106, for which as noted in Figure 8B expression
was not detected in the muscle and liver samples.

Discussion
A more complex transcriptome
The data presented here indicate that the retinal transcrip-
tome is more complex than previously understood in at
least two ways. First, the RNA-Seq analyses of human ret-
inal RNA samples detected 75% of previously annotated
exons, based on the combined annotation track used for
these studies, which includes over 1 million unique exons.
This is a notable increase over earlier estimates of the num-
ber of genes expressed in the retina, which suggested that
26,355 transcripts were expressed in this tissue [32]. This
diversity of gene expression is not entirely surprising,
however, given the cellular diversity of the retina, with
at least 60 functionally distinct cell types [1]. Our results
are comparable to those found in the RNA-Seq analyses
of the ENCODE project [54]. In those studies, consortium
investigators used RNA-Seq to analyze the transcriptomes
of 15 cell lines, and determined that 85% of the anno-
tated exons in the Gencode V7 transcript database were
expressed in the aggregate data. As shown in Figure 1B, we
identified 80% of the annotated exons found in the same
reference transcriptome.
Our data suggest that the current annotations may

under represent the full extent of expressed exons in the
human genome. This is likely due to the conservative
approach used to build an annotation databases such as
the CCDS [42]. This conservative approach provides a very
high quality annotation set at the expense of non-coding re-
gions of protein coding genes, as well as genes that encode
non-coding RNAs. The lack of transcriptomes that have
been fully characterized in a wide variety of tissues is likely
to be another factor for incomplete annotation databases.
For example, we have identified over 29,000 novel exons in
a single tissue suggesting that RNA-Seq studies in other tis-
sues is warranted to truly understand the complexity of
gene expression at an organismal level [20,23,56,58,66-70].
We report here the first RNA-Seq based characterization

of the human neural retina transcriptome, although there
have been previous RNA-Seq analyses of the mouse retinal
transcriptomes [35,71,72]. Brooks, et al. (2011) noted that
between 16,000 and 34,000 transcripts are expressed in
the mouse retina, which is in line with earlier EST and
microarray based estimates in the human retina [32,71].
From a functional and disease standpoint, Gamsiz, et al.
(2012) determined that 24% of the retinal genes are alter-
natively spliced and genes implicated in IRDs are among
some of the most highly expressed [72]. While these data
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Figure 7 High throughput validation of novel alternative
splicing features. From the novel features identified in the analyses
of the human retinal transcriptome, 14,696 novel exons, exon skipping,
and alternate 3′/5′ splice events were selected for capture using a
custom Agilent SureSelect RNA Capture System. RNA samples from
human retina, brain, muscle, and liver were enriched using baits
designed against the novel features. The enriched samples were
sequenced and aligned to the genome using the RUM pipeline.
Following alignment, the samples were analyzed for the detection of
the novel and annotated transcripts associated with the putative novel
feature. A) 99% of the novel features detected by the RNA-Seq
analyses were detected by the RNA capture in the individual retinal
samples. 93% of all novel features were detected in a pooled library
prepared from all three retinal RNA samples. Fewer of the novel
transcript features were detected in RNA brain (71%), muscle (58%),
and liver (61%). B) 6696 novel features were detected in all 6 RNA
samples, while 1968 were detected only in the retina samples.
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are interesting, they lack sufficient read depth to fully
cover the retinal transcriptome. We previously reported
that not only were 100 million reads necessary to fully
cover the mouse retinal transcriptome, but tens of thou-
sands of novel splicing features can be identified as well
[35].These data combined provide detailed insight into the
mouse retinal transcriptome, but it should also be noted
that there is considerable variation in gene expression and
alternative splicing among species, thus increasing the
importance of a thoroughly characterized human tran-
scriptome [57,73,74].
At present, it is not possible to determine how the

complexity of the retinal transcriptome compares to
other tissue types, since this is the first reported use of a
complete annotation track for transcriptome analyses.
Further, other reported transcriptome analyses may
overestimate the number of novel features discovered
due to the incompleteness of the reference annotation
tracks used [20,23,51,53,75]. For example, we have incor-
porated the lincRNA annotation track into our study and
detected approximately 35% of the more than 50,000
known lincRNA exons, thus preventing incorrect identifi-
cation of 17,500 lincRNA exons as novel [38]. Kim, et al.
(2012) identified as many as 1007 novel transcripts using
Refseq, Ensembl, UCSC and Vega as their annotation
database, however a quick review of some of the novel
genes shows that they are lincRNAs, while others partially
overlap annotated protein coding genes [23].
Questions have been raised about the biological im-

portance of novel transcript features detected at low
abundance by RNA-seq. For example, it has been sug-
gested that “noisy,” or inaccurate splicing can account
for rare novel splicing events detected by RNA-Seq
[52,76]. RNA-Seq studies evaluating novel splice site
location and conservation of the splice junction have
shown that splicing errors occur at a rate of 0.7% [52].
The authors of this study conclude that low abundance
novel splice junctions may be due to erroneous splicing
because they are often enriched around annotated
splice junctions, suggesting that the spliceosome mis-
ses its intended target. In addition, because many of
these events are not evolutionarily conserved, it has
been suggested that splicing errors render the resulting
transcript isoforms non-functional due to nonsense
mediated decay (NMD) [77,78].
A large majority (97%) of the retinal transcriptome

is found to be expressed at a low to mid-level range
(25 or fewer transcripts per cell). Djebali, et al., 2012,
noted 80% of the detected transcripts existed as 1 or fewer
copies per cell in the 15 cell lines studied in the ENCODE
project, whereas 24% of the transcripts in the neural retina
transcriptome exist at this level [54]. This can likely be
explained by the cellular diversity of the neural retina [1].
Approximately 75% of the novel features are found in
transcripts expressed between 5–100 transcripts per cell.
This is interesting given this class represents 47% of
the expressed transcripts, the other 48% are expressed
at fewer than 5 transcripts per cell, yet contain only
16% of the novel features.
While up to 15% of the novel features in the retinal

transcriptome compose the major isoform, or are expressed



Figure 8 Identification and tissue distribution of novel genes. Using the novel splice junctions (green bars) and coverage data (red),
transcripts with 3 or more novel exons located in intergenic regions were identified as putative novel genes (transcript models in black). A) An
example of a five exon gene (NG78) with multiple isoforms that does not contain an ORF. B) An example of a six exon gene (NG106) that
contains an ORF and is believed to be protein coding. C) Primers were designed in the putative terminal exon regions of the novel genes, and
subject to RT-PCR and Sanger sequencing for validation of expression. NG78 was found in the original 3 retinal samples, an independent retinal
sample (retina 4), as well as in the brain, liver, and muscle. NG106 was not found in the liver and muscle.
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at the same level as the annotated isoform, the remaining
85% constitute the minor isoform. The analyses reported
here suggest that at least a portion of low abundance novel
transcript features detected in the retina produce novel
protein-coding transcripts, which may have functional
importance in the retina. Since the NMD machinery is
thought to help regulate expression of transcripts with
premature stop codons, we hypothesize that novel tran-
script isoforms which maintain an ORF are likely to encode
proteins and be functional [77,79]. We found that 15-36%
of the novel splicing events detected in our dataset main-
tain the ORFs of the transcripts they affect. It has also been
suggested that alternative splicing events which do not
maintain an ORF may play roles in the regulation of gene
expression and genomic evolution [78,80,81]. Additional
studies of the novel transcript isoforms identified will be
needed to test these hypotheses.
The more comprehensive human retinal transcriptome

described here will likely be beneficial to studies of the
genetics of retinal dystrophies and other inherited retinal
disorders. Novel exons in the BBS8 and RPGR genes
were discovered to harbor mutations that lead to IRDs
[12,13]. Our analyses identified 206 novel exons in 99 of
the 191 known IRD disease genes. The novel features in
the retinal transcriptome can also be applied to genes
that cause disease in other tissues. For example, we have
identified novel exons in MLL2, which harbors mutations
known to cause Kabuki Syndrome [82,83]. Our transcrip-
tome data offers a unique resource in which genes can be
quickly screened for novel features that can be incorporated
into genetic analyses. To fully utilize this resource, we have
included as separate files lists of all novel internal exons
identified in our analyses (Additional file 2). These data, in
combination with the coverage and splicing data viewable
on UCSC, provide easy access for researchers to identify
novel splicing features in genes or loci of interest.
RNA-Seq has become the standard approach for studying

the transcriptomes in a variety of organisms and the
changes in gene expression that occur in a wide range of
diseases [84-88]. Many RNA-Seq studies have reported the
identification of thousands of novel features with the as-
sumption that a certain percentage of these are real, based
on low-throughput validation studies of selected transcript
variants via RT-PCR and sequencing [23,66,67,75,86,89]. In
a previous study, we had identified over 12,000 novel
features in the mouse retina, and attempted to validate 75
(0.63%) of the features [35]. While we were able to validate
64% of the 75 novel features, this question remains: can val-
idation of a small number of novel transcript features be
extrapolated to the thousands of novel transcript variants?
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One approach to answer this question is to validate
the results of RNA-Seq studies on a large scale. High-
throughput targeted RNA capture is a novel approach
that offers enhanced specificity and scale over more
traditional validation methods such as RT-PCR. Where
RT-PCR uses primers designed to a specific region of a
transcript, targeted RNA capture uses hybridization
baits that are tiled over a specific region of interest. In
our study, we used 3X tiling of baits for each of the
14,696 novel features to provide specificity for the
targeted transcript features. The data obtained show
that 99% of the novel transcript features identified in
the RNA-Seq analyses were detected in the RNA cap-
ture experiments. This result provides robust technical
validation of the RNA-Seq analyses. To our knowledge,
this is the first report of such a validation of RNA-Seq
data. Because the RNA capture set incorporated 19% of
the novel transcript features detected by RNA-Seq, we
believe these data can be more reliably extrapolated to
the whole RNA-Seq dataset.
The RNA capture experiments demonstrated that 7,000

of the novel transcript features studied were shared be-
tween all three retinal RNA samples, further confirming
their presence in the human retinal transcriptome.
Approximately 2,000 of these novel transcript features
were not detected in the RNA capture experiments using
human brain, liver and muscle RNA, suggesting that these
splicing alterations may be specific to the retina. Extrapo-
lation of these data indicate that up to 2.5% of the novel
transcript features detected in the RNA-seq analyses may
be retina specific, with the potential to provide insight into
retinal biology.
As a corollary, the RNA capture experiments also

showed that 63-71% of the novel transcript features
identified in the retina were shared with brain, liver and
muscle. These results provide biologic validation for these
novel transcript features, with their detection in other
tissues. They also suggest that transcriptome annotation
in other tissues such as brain, liver and muscle may also
be incomplete, since the non-redundant reference tran-
scriptome we used is not tissue-specific. In total, these
data suggest that RNA-Seq experiments analyzed by the
RUM pipeline produce high quality and reliable results
that are applicable to other tissues [35]. This further
supports the conclusion that RNA-Seq experiments do
not require large-scale validation once the experiment
and analysis pipeline have been thoroughly validated.
We suggest that it would be both worthwhile and in-
formative to apply a similar comprehensive empiric
validation methods to other analysis pipelines.
Finally, we identified 116 potential novel genes. These

novel genes are located in regions of the genome that
are currently annotated as intergenic, and varied in the
number of exons, length, alternative isoforms, and coding
potential. In an attempt to be conservative with our
definition of a novel gene, we identified only those that
were three or more putative exons, of which all exons of
the putative gene were completely intergenic. A majority
(81%) of the novel genes identified showed little to no
coding potential. We have identified these genes as encod-
ing putative lincRNAs. Many potential lincRNAs have also
been identified in transcriptome analyses of other tissues
[84]. lincRNAs are typically classified as non-coding RNAs
that are longer than 200 bp, intergenic, spliced, and
polyadenylated [24]. Functionally, lincRNAs are best
known for their role as regulators of gene expression
through associations with chromatin modifying complexes
[90-92]. Additional studies will be required to investigate
the function of the putative novel genes lincRNAs identi-
fied by these studies in the retina.

Conclusions
Novel transcriptome features, both alternative splicing of
annotated genes and transcription of novel genes, is
more abundant than previously understood in the human
neural retina. Further, by identifying tens of thousands
novel alternative features, and validating a significant por-
tion of them, these transcriptome data have increased our
understanding of transcription, in general. Ultimately, these
data have the potential to influence disease research. By
elucidating the specific isoforms present in the retina,
disease genes can be more appropriately studied.

Methods
RNA-seq library preparation and sequencing
Total RNA samples from normal human retina from a
male and two females of ages 42, 44, and 46 years old,
respectively were purchased from Biochain. No post-
mortem time information was available, although all
samples had a RIN between 7–8, suggesting the RNA
was slightly degraded. The individuals from which these
samples were obtained were not reported to have ocular
disease, although detailed medical information is not avail-
able. RNA-Seq libraries were prepared from 5 μg total
RNA following a modified Illumina mRNA-Seq protocol
(Illumina). Briefly, mRNA was purified using oligo-dT beads
(Invitrogen). The purified mRNA was then fragmented
for 2 minutes at 94°C on a thermalcycler with the addition
of 2 μl of 10X fragmentation buffer (1 mM ZnCl2, 1 mM
Tris–HCl, pH 7.0). The reaction was stopped with the
addition of 4 μl of 100 mM EDTA, pH 8.0. First strand
cDNA was synthesized using SuperScript II reagents
following manufacturer’s instructions (Invitrogen). The
remaining steps: second strand cDNA synthesis, end-repair,
monoadenylation, and adapter ligation were performed
following Illumina’s mRNA-Seq protocol. All reagents,
excluding paired-end adapters, were purchased from New
England Biolabs. Paired-end adapters and PCR primers
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were purchased from Illumina. cDNA libraries were size
selected using a 2% agarose gel and fragments between
300–350 bp were selected. Size selected samples were
then PCR amplified using 15 cycles. cDNA library quan-
tity and quality were determined using DNA 1000 chips
on a Bioanalyzer 2100 (Agilent). Each of the three samples
were clustered at 10 pM in individual lanes of a flow cell.
101 bp paired-end sequencing was performed on an
Illumina HiSeq 2000. For quality control, PhiX was spiked
into each sample at 1% of the sample concentration.
Additional normal human brain, muscle, liver, and the

retina samples described above were prepared for targeted
capture using a modified Nextera DNA library preparation
protocol (Illumina). Total RNA for all samples was pur-
chased from Biochain. To prepare cDNA libraries, 185 ng
of total RNA was first converted to double stranded cDNA.
First strand cDNA was prepared using Superscript III with
anchored oligo-dT primers according to manufacturers
protocol (Invitrogen). Second strand cDNA was produced
using RNase H, DNA polymerase I, dNTPs, and Second
Strand buffer (New England Biolabs). The reaction was
incubated for 2.5 hours at 16°C. Following the incubation,
the samples were purified using Clean and Concentrator-5
spin columns (Zymo). The samples were eluted with 25 μl
of molecular biology grade water. Fragmentation, PCR
amplification, and bead purification of the cDNA libraries
was performed according to the Nextera protocol. Finally,
the libraries were size selected using a 1% agarose gel and
fragments between 400–600 bp were selected.

Alignment and post-processing of RNA-seq reads
All data was aligned using the RNA-Seq Unified Mapper
(RUM v1.10) pipeline using the default settings against
the hg19 genome and no transcriptome database. Due
to aligning the data without a transcriptome, the files
containing the splice junctions (both novel and annotated)
were generated manually using the make_RUM_junctions_
file.pl script that is downloaded with the RUM pipeline.
The annotation file used to generate the splice junctions
was a non-redundant transcriptome database generated
from the 8 empirically-determined transcriptome anno-
tation tracks (UCSC, Refseq, Vega, Aceview, Ensembl,
Gencode V7, CCDS and lincRNA) [32,42-48].

Identification of novel features
Novel exons, alternate 3′/5′ splice sites, and exon skip-
ping events were identified using the splice junction file
generated using RUM. The splice junction files contain
both novel and annotated splice junctions based on the
8-track annotation file, which can be parsed to identify
each of the novel features. Novel exons were determined
by pairing a left coordinate of a novel splice to the right
coordinate of a novel splice junction, if they are within
15–650 bp of each other. Novel alternate 3′/5′ splice sites
were identified where either the 3′ or 5′ coordinate is
shared with an annotated exon and the novel site is
15–350 bp upstream or downstream of the corresponding
site of the annotated exon. Novel exon skipping events
were determined by identifying novel splice junctions that
share are within annotated transcripts and span at least
one annotated exon.

Determination of open reading frame
Custom scripts were developed to determine the open
reading frames of novel features within annotated tran-
scripts. For each novel feature, the script determined the lo-
cation of the feature within the annotated transcript found
in the 8-track transcriptome. Each type of novel feature
(novel exons, exon skipping, and alternate 3′/5′ splice sites)
first required the addition or removal of sequence from
the annotated transcript sequence, depending on the
novel feature. Using the CDS start coordinate, the novel
transcript isoforms were translated and the position of the
stop codon determined.

Targeted RNA capture and high-throughput validation
Using the RUM_Unique and splice junction files, 14,696
novel internal exons (novel exons found between two
annotated exons), exon skipping, and alternate 3′/5′
splice sites were selected for high-throughput validation.
Selection of novel features was dependent on a few criteria:
1) novel exon and alternate 3′/5′ slice site length was
between 15–400 bp, 2) the novel features had to be flanked
by at least 50 bases of annotated sequence, and 3) the total
region to be captured (novel + annotated) had to be between
300–500 bases in length. Baits to the regions of interest were
generated using Agilent’s eArray software. Blockers designed
specifically to the Nextera adapters were provided separately
by Agilent. Capture was performed following the manufac-
turer’s protocol on the human retina, brain, muscle, and
liver samples. Sequencing and alignment was performed as
described above. However, the data was aligned using both
the hg19 genome and the 8-track transcriptome.

Identification and coding potential of novel genes
The list of novel exons was parsed to identify exons that
were intergenic based on the 8-track transcriptome. This
list was used to manually determine if they belonged to a
putative novel gene. The criteria used to determine if an
exon belonged to a novel gene were: 1) based on splice
junction data, the novel exon was not connected to another
exon that overlapped an annotated gene, 2) at least 3 novel
exons were connected to form a novel gene, and 3) there
was sufficient coverage data (average read depth of 5).
Open reading frames of the novel genes were determined

for all six frames. Homology for ORFs that contained both
a methionine as a start codon and an in-frame stop codon
were determined using BLAST [93].
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Validation of novel genes
First-strand cDNA was produced from the 3 human ret-
inal tissues, brain, liver, and muscle used in the previous
transcriptome studies, as well as a fourth retinal tissue
(Biochain) using SuperScript III following the manufac-
turer’s instructions (Invitrogen). Primers were designed to
the putative terminal exons of the novel genes and ampli-
fied using Phusion polymerase (New England Biolabs).
The PCR products were visualized on a 1% agarose gel.
Amplicons of the expected size were excised and purified
using the Zymoclean Gel DNA Recovery Kit (Zymo). The
products were Sanger sequenced, and confirmation of the
novel gene was performed by aligning the output against
the retinal transcriptome data hosted at UCSC using BLAT.
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