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A role for Piezo2 in EPAC1-dependent
mechanical allodynia
N. Eijkelkamp1,2,w, J.E. Linley1,w, J.M. Torres1,3, L. Bee1,4, A.H. Dickenson4, M. Gringhuis1, M.S. Minett1,

G.S. Hong1,5, E. Lee1,5, U. Oh5, Y. Ishikawa6, F.J. Zwartkuis7, J.J. Cox1 & J.N. Wood1,5

Aberrant mechanosensation has an important role in different pain states. Here we show

that Epac1 (cyclic AMP sensor) potentiation of Piezo2-mediated mechanotransduction

contributes to mechanical allodynia. Dorsal root ganglia Epac1 mRNA levels increase during

neuropathic pain, and nerve damage-induced allodynia is reduced in Epac1� /� mice. The

Epac-selective cAMP analogue 8-pCPT sensitizes mechanically evoked currents in sensory

neurons. Human Piezo2 produces large mechanically gated currents that are enhanced by the

activation of the cAMP-sensor Epac1 or cytosolic calcium but are unaffected by protein kinase

C or protein kinase A and depend on the integrity of the cytoskeleton. In vivo, 8-pCPT induces

long-lasting allodynia that is prevented by the knockdown of Epac1 and attenuated by mouse

Piezo2 knockdown. Piezo2 knockdown also enhanced thresholds for light touch. Finally,

8-pCPT sensitizes responses to innocuous mechanical stimuli without changing the electrical

excitability of sensory fibres. These data indicate that the Epac1–Piezo2 axis has a role in the

development of mechanical allodynia during neuropathic pain.
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S
ensory neurons innervate peripheral tissues where they
transduce and transmit information about noxious and
innocuous stimuli to the central nervous system1,2. Damage

to sensory neurons as a result of chemotherapy, trauma or in
diabetics and human immunodeficiency virus-infected patients
may lead to neuropathic pain, often associated with mechanical
allodynia, where normally innocuous stimuli such as light
touch are perceived as painful3. The possible involvement of
mechanotransducers such as Piezo or TRPC channels in the
development of allodynia is a topic of interest4,5.

Cyclic AMP is an intracellular signalling messenger that
changes pain thresholds6 through the activation of two sensors:
protein kinase A (PKA) and Epac (exchange protein directly
activated by cAMP)7. Intradermal injection of a cAMP analogue
causes hypersensitivity to mechanical stimuli6. Importantly,
mechanical allodynia in murine neuropathic pain models is
severely attenuated in mice in which different adenylate cyclases,
the enzyme family that generates cAMP, are genetically
or pharmacologically targeted8,9. Interestingly, however,
the downstream cAMP-sensor PKA is not required for the
development of allodynia in neuropathic pain models10,11. The
role of the cAMP-sensor Epac in the development of neuropathic
pain-associated allodynia is unknown. Epac1 and Epac2 are
guanine nucleotide exchange factors that activate Rap, a small
GTP-binding protein of the Ras family of GTPases. The binding
of cAMP or the Epac-specific agonist, 8-pCPT, stimulates Rap1
via the exchange of GDP for GTP12,13. Various effector proteins,
including adaptor proteins that affect the cytoskeleton, regulators
of G proteins of the Rho family, and phospholipases (for example,
PLCe) and protein kinases, signal downstream from Rap14.

Here we investigated the role of Epac signalling in the
development of allodynia associated with neuropathic pain and
the role of Piezo2 in this process. We show that the cAMP-
sensor Epac1 sensitizes Piezo2 leading to allodynia. This work
highlights a new pain pathway, which if successfully targeted,
could potentially lead to better treatments for aspects of
neuropathic pain.

Results
Epac1 expression in sensory neurons during neuropathic pain.
We measured Epac1 and Epac2 mRNA expression in a neuro-
pathic pain model. Four weeks after a unilateral L5 nerve trans-
ection (L5 SNT), mice displayed mechanical allodynia in the
ipsilateral paw. Thresholds to mechanical stimulation were
unaffected in contralateral paws, sham-operated mice or in naive
untreated mice (Fig. 1a). At this time point, Epac1 mRNA levels
in dorsal root ganglia (DRG) innervating the ipsilateral paw
increased in comparison with DRG innervating the contralateral
paw, from sham-operated animals, or from untreated mice
by B1.8-fold (Fig. 1b). Epac2 mRNA expression levels in DRG
innervating the ipsilateral or contralateral paw were similar to
Epac2 expression levels in DRG from sham-operated animals
or naive untreated animals (Fig. 1c). The increase in Epac1
mRNA levels in the DRG innervating the ipsilateral paw was also
observed at the protein level (Fig. 1d).

Epac1-dependent allodynia in neuropathic pain. Next we
investigated whether Epac1 has a role in the development
of allodynia in an L5 SNT neuropathic pain model. Epac1 protein
levels were absent in DRG of Epac1� /� mice, while Epac1
protein levels were reduced by B50% in Epac1þ /� mice
compared with wild-type (WT) mice (Fig. 1e). In control
WT mice, spinal nerve transaction (SNT) induced mechanical
allodynia that was present from day 1 after the operation and had
fully developed in B6 days. In mice completely deficient for

Epac1 (n¼ 13), SNT-induced allodynia was greatly attenuated
compared with WT mice (Po0.001; n¼ 10; two-way analysis of
variance) or Epac1þ /� mice (Po0.001; n¼ 10; two-way ana-
lysis of variance) from day 1 (Fig. 1f). The magnitude of allodynia
in Epac1þ /� mice was also reduced compared with WT lit-
termates (Po0.05; n¼ 10; two-way analysis of variance) using
repeated measures analysis (Fig. 1f). Overall these data indicate
Epac1 is required for the development of allodynia in a mouse
model of chronic neuropathic pain.

Epac signalling enhances sensory neuron mechano-
transduction. Sensory neurons are intrinsically mechanosensi-
tive and different types of mechanically gated current can be
identified in the cell bodies of sensory neurons in vitro15,16.
Neurons associated with detection of touch express low threshold
rapidly adapting (RA) mechanically gated currents2. We asked
whether activation of the cAMP-sensor Epac leads to changes
in mechanically evoked RA currents in DRG neurons? Large
diameter neurons (435 mm) with fast action potentials (width
of action potentialo1 ms) were mechanically distended17.
Application of the Epac-selective cAMP analogue 8-pCPT
shifted the stimulus response curves of mechanically evoked
RA currents to the left, resulting in increased currents in response
to mechanical stimuli (B2-fold increase in inward current at
a stimulus intensity of 12 mm) (Fig. 2a,d). 8-pCPT time depen-
dently enhanced mechanically activated peak currents evoked
by a B12.5-mm distension that plateaued after B15 min
(Fig. 2b,d). Finally, 15 min after application of 8-pCPT the
threshold of activation of RA currents was reduced by B24%
(Fig. 2c). Application of vehicle did not have any effect on
mechanically evoked current sizes (Fig. 2).

Characterization of human Piezo2. DRG neurons in culture
express at least three types of cation currents evoked by
mechanical stimulation16–18. Piezo2 is expressed in mouse
sensory neurons4, and Piezo2 short interfering RNA application
to sensory neuron cultures results in a B75% loss of neurons
expressing mechanically evoked RA currents4. As the Epac-
specific cAMP analogue sensitized mechanically evoked RA
currents, we first cloned human PIEZO2 (hPiezo2) cDNA into a
mammalian expression vector, transfected it into HEK293
cells and characterized its biophysical properties by whole-cell
voltage clamp. hPiezo2 currents activated within B1 ms of the
mechanical stimulus and were weakly outwardly rectifying
(Fig. 3a) with a reversal potential of 9.7±1.6 mV (n¼ 7).
hPiezo2 currents showed rapid adaptation to the mechanical
stimulus which was voltage dependent, being 7-fold faster at
negative holding voltages than positive holding voltages (Vhold

� 80 mV, Tau¼ 4.4±0.8 ms; Vhold þ 80 mV, Tau¼ 29.4±
3.5 ms; n¼ 7; Po0.001; t-test). Mechanically stimulating
hPiezo2-expressing HEK293 cells at a rate of 1 Hz resulted in a
rapid decay in the size of the mechanically evoked current
(Supplementary Fig. S1a,b), similar to native rapidly adapting
(RA) currents in DRG19. We next investigated the pharmacology
of hPiezo2 (Fig. 3b–d). Acute bath addition of FM1-43, a
permeant inhibitor of rapidly adapting mechanosensitive
channels in sensory neurons20, inhibited hPiezo2 currents
(Fig. 3b–d). By contrast preincubation with dihydrostrepto-
mycin, a blocker of the cochlear mechanotransducer channel21,
had no effect on either the magnitude or threshold of hPiezo2
currents (Fig. 3e,f).

Further characterization of hPiezo2 showed that mechanically
evoked peak currents were directly proportional to probe
velocity (Supplementary Fig. S1c,d), with decreased probe
velocity resulting in smaller mechanically evoked currents. The

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2673

2 NATURE COMMUNICATIONS | 4:1682 | DOI: 10.1038/ncomms2673 | www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


biophysical properties of hPiezo2 are similar to those described
for mouse Piezo2 and endogenous RA mechanosensitive currents
expressed in large and small diameter DRG neurons4,16,18.
Cytoskeletal elements have previously been shown to be
essential for normal mechanotransduction in sensory
neurons16,22. Preincubation of HEK293 cells overexpressing
hPiezo2 with the actin depolymerizing agent latrunculin
A strongly shifted the stimulus–response curve to the right
resulting in a reduction in mechanical sensitivity of hPiezo2
(Supplementary Fig. S1e). Latrunculin A increased the threshold
for activation B5-fold (control: 2.4±0.5 mm; lantruculin:
12.3±1.2 mm, Po0.001; n¼ 6–7; t-test). The microtubule
depolymerizing agent colchicine reduced hPiezo2 peak currents
in response to mechanical stimuli Z7 mm (Supplementary
Fig. S1f). However, no shift in the stimulus–response curve or
change in mechanical threshold (control: 3.3±0.5 mm; colchicine:
4.2±0.4 mm; P¼ 0.15; n¼ 16; t-test) was observed. These

findings indicate that the actin and tubulin cytoskeletons
regulate hPiezo2 via distinct mechanisms.

Epac1 signalling enhances Piezo2-mediated mechan-
otransduction. As Epac signalling sensitizes mechanically evoked
RA currents, we also tested effects on Piezo2-mediated
mechanically evoked currents. We used HEK293a cells expressing
Piezo2 and Epac1 or Epac2 (HEK293a cells express very low
levels of Epac1/2) and mechanically distended these cells. Coex-
pression of Epac1 with Piezo2 in HEK293 cells did not change the
stimulus–response curve compared with expression of Piezo2
alone (Fig. 4a). However, the addition of Epac-selective 8-pCPT
to cells expressing Piezo2 and Epac1 strongly shifted the
stimulus–response curve to the left. At a distension of B8 mm,
currents increased by B2.5-fold (Fig. 4a,e). Coexpression of
Epac2 with Piezo2 or application of 8-pCPT to cells expressing
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Figure 1 | DRG Epac1 expression is increased in and required for L5 spinal nerve transaction-induced allodynia. (a) The sensitivity to mechanical

stimulation was determined in sham-operated mice (n¼ 5), naive controls (n¼ 10) or mice subjected to unilateral L5 SNT 4 weeks after surgery (n¼ 10).

Line with error bars represent mean±s.e.m. (b) Epac1 or (c) Epac2 mRNA levels in DRGs innervating the contralateral (contra) or ipsilateral (ipsi)

side of sham-operated, naive controls and L5 SNL mice 4 weeks after surgery. Epac1/2 mRNA expression levels were corrected for GAPDH and b-actin

mRNA expression levels. (d) Epac1 protein expression levels in ipsilateral (affected) and contralateral (unaffected) DRGs of mice subjected to unilateral L5

SNT 4 weeks after surgery. b-Actin and the neuron-specific b3-tubulin was used as loading control. (e) Epac1 protein expression in DRGs of WT (n¼6),

Epac1þ /� (HE, n¼4) and Epac1� /� (HO, n¼4) mice. (f) The sensitivity to mechanical stimulation was determined in wild-type (n¼ 10), Epac1þ /�
(n¼ 10) and Epac1� /� (n¼ 13) mice subjected to unilateral L5 SNT. Repeated measures one-way analysis of variance (ANOVA) showed a significant

genotype effect F(2,30)¼ 25,935, Po0.001. Bonferoni post hoc analysis showed a significant effect between Epac� /� and WT (Po0.001); Epac1� /�
and Epac1þ /� (Po0.001); and Epac1þ /� and WT (Po0.05). All data are expressed as mean±s.e.m. (a–c) Data are analysed by ANOVA followed by

the Bonferroni post hoc test. (d) Data are analysed using t-test. *Po0.05, **Po0.01, ***Po00.1.
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Piezo2þ Epac2 or Piezo2 alone did not change the stimulus–
response curve (Fig. 4b). In Epac1 expressing cells, 8-pCPT
also increased the maximal mechanically evoked inward
current before whole-cell configuration was lost because of the
strength of the mechanical stimulus and reduced the threshold of
activation, whereas Epac2 had no effect on either parameter
(Fig. 4c,d). In cells expressing hPiezo1 and Epac1, 8-pCPT-
induced activation of Epac1 also shifted the stimulus response
of mechanically evoked Piezo1 currents to the left and decreased
thresholds of activation, whereas no effect was seen when
Epac2 was coexpressed with hPiezo1 (Supplementary Fig. S2).
Overall these data indicate that Epac1 but not Epac2 activation
results in sensitization of mechanically evoked Piezo-dependent
currents. We further tested whether activation of other signal-
ling molecules known to be involved in the development of
mechanical hypersensitivity such as PKA, protein kinase C
(PKC) and Ca2þ sensitize Piezo2 currents. Increasing cytosolic
Ca2þ from 50 nM to 1 mM in Piezo2 expressing HEK293
cells resulted in sensitization of the mechanically evoked current
(Supplementary Fig. S3a,b) and a reduction in threshold for
channel activation (Supplementary Fig. S3c). Elevating cytosolic
calcium also produced a marked slowing of adaptation to
the static mechanical stimulus at cell displacements Z4 mm

(Supplementary Fig. 3d). In contrast, activation of PKC by pre-
incubation with the phorbol derivative PMA had no effect on
hPiezo2 channel activity or threshold (Supplementary Fig. S3e,f).
Similarly, activation of PKA by preincubation with 6-Bnz-cAMP,
a selective agonist of PKA, which does not activate Epac, had no
significant effect on the stimulus–response curve (Supplementary
Fig. S3g,h).

Epac activation causes long-lasting mechanical allodynia. 8-
pCPT has been shown to cause increased sensitivity to noxious
mechanical stimuli (hyperalgesia)23. Activation of the cAMP-
sensor PKA, induces hyperalgesia through effects on excitability,
but not through sensitizing mechanotransduction1. We tested
whether selective activation of Epac increased sensitivity to touch
and compared this with the development of mechanical
hypersensitivity induced by a PKA-selective cAMP analogue
(6-Bnz-cAMP). Intraplantar injection of either 6-Bnz-cAMP or
8-pCPT dose-dependently (12.5 pmol per paw–12.5 nmol per
paw) induced mechanical hypersensitivity that increased in
magnitude and duration with increasing doses (Fig. 5a,b). At every
dose tested, the magnitude of 6-Bnz-cAMP and 8-pCPT-induced
mechanical hypersensitivity was statistically indistinguishable
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(Fig. 5a). Importantly, however, 8-pCPT-induced mechanical
hypersensitivity lasted significantly longer than 6-Bnz-cAMP-
induced mechanical hypersensitivity (Fig. 5b,c). At the highest
dose tested (12.5 nmol per paw), 8-pCPT-induced sensitization
lasted B3 days while 6-Bnz-cAMP-induced mechanical
hypersensitivity only lasted B1 day (Fig. 5c).

8-pCPT-induced mechanical sensitization was dependent on
DRG Epac1 as intrathecal Epac1 antisense oligodeoxynucleotides
(ODNs) administration reduced DRG protein levels for Epac1
by B44% and almost completely prevented development of
mechanical sensitization induced by 8-pCPT (Fig. 5d,e). Epac1
antisense ODN treatment did not affect baseline thresholds to
von Frey filaments (Fig. 5e). The Epac1 antisense ODN strategy
was confirmed by using Epac1 knockout mice. 8-pCPT-induced
mechanical allodynia was prevented in Epac1� /� mice
(Fig. 5f; Po0.001; n¼ 8–12; two-way analysis of variance) and
Epac1þ /� mice (Fig. 5f; Po0.05; n¼ 8–12; two-way analysis of
variance). Epacþ /� mice did not statistically differ from
Epac1� /� mice. 6-Bnz-cAMP-induced mechanical hyper-
sensitivity was indistinguishable between WT, Epac1� /� and
Epac1þ /� mice (Fig. 5g). Thus, the activation of cAMP-sensor
Epac1 leads to sensitization that is longer in duration (3–4 days)
than PKA-mediated hypersensitivity (o1 day). Importantly,
Epac1 antisense-treated and genetically modified mice with low

Epac1 protein levels indicate that partial reduction of Epac1
induces large behavioural effects.

To determine whether sensitization of mechanotransducing
channels underlies 8-pCPT-induced mechanical allodynia, we
used intraplantar FM1-43 that blocks mechanically activated
currents in sensory neurons and Piezo2 currents (Fig. 3d)20.
Intraplantar FM1-43 almost completely reversed 8-pCPT-
induced allodynia (Fig. 5h). As shown before20, injection of
FM1-43 doubled the threshold to mechanical stimulation in naive
control mice (Fig. 5h). Thus, Epac1 activation causes a long-
lasting increase in sensitivity to touch that is mediated through
mechanosensitive channels in vivo.

Epac signalling enhances wide dynamic range responses to
mechanical stimuli. Lamina V wide dynamic range (WDR)
neurons in the dorsal horn respond to all sensory modalities.
Extracellular recording from rat WDR neurons in response to
mechanical input to the receptive field showed that 8-pCPT
enhanced WDR neuron firing in response to mechanical stimuli
applied to the hind paw that was r26 g (Fig. 6a). In contrast, 6-
Bnz-cAMP only enhanced WDR neuron firing in response to
mechanical stimuli applied to the receptive field (hind paw) that
were larger than 15 g (Fig. 6b). Intraplantar injection of saline did
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not change WDR neuron firing responses evoked by any
mechanical stimuli (Fig. 6c).

The enhanced responses to mechanical stimuli could be
mediated via changes in electrical excitability or at the level of
mechanotransduction. Intraplantar 8-pCPT administration did
not change WDR responses evoked by electrical activation of Ab,
Ad or C fibres (Fig. 6d). Moreover, no changes in input, post-
discharge or wind-up were observed (Fig. 6d). Both afferent
electrical and central excitability are unaffected by 8-pCPT in line
with our observation that 8-pCPT-induced allodynia is unaffected
in mice deficient for DRG expression of voltage-gated sodium
channels Nav1.7, Nav1.8 or Nav1.9 (Supplementary Fig. S4).
Intraplantar injection of 6-Bnz-cAMP activates PKA and
enhanced C-fibre-evoked WDR responses as well as input
(a measure of afferent drive) but did not change electrically
evoked Ab- or Ad-mediated WDR responses (Fig. 6e). Moreover
post-discharge or wind-up were not changed by 6-Bnz-cAMP
(Fig. 6e). Intraplantar vehicle injection did not induce any
changes in electrically evoked WDR responses (Fig. 6f). These

data indicate that 8-pCPT enhances responses to mechanical
stimuli independent of changes in electrical excitability.

Epac1-mediated allodynia is Nav1.8þ nociceptor independent.
Nav1.8þ sensory neurons comprise 85% of nociceptors and are
essential for detecting noxious mechanical stimuli as well as for
development of inflammatory hyperalgesia, but not neuropathic
pain24. To test whether Nav1.8þ sensory neurons are required
for 8-pCPT-induced mechanical allodynia, we used diphtheria
toxin to kill these sensory neurons (Nav1.8-DTA24). As
reported24, baseline sensitivity to touch was similar in WT and
Nav1.8-DTA mice (Fig. 7a). Importantly, the course of 8-pCPT-
induced mechanical allodynia in mice in which Nav1.8
nociceptors were ablated was indistinguishable from control
littermates (Fig. 7a). The absence of an effect of Nav1.8
nociceptor depletion on 8-pCPT-induced mechanical allodynia
was independent of the dose of 8-pCPT; at any dose of 8-pCPT
tested (12.5 pmol per paw–12.5 nmol per paw) mice showed no
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notable difference in magnitude (Fig. 7b) or duration (Fig. 7c) of
mechanical allodynia in Nav1.8-DTA mice compared with
control littermates.

In contrast to nociceptor-independent mechanical allodynia
induced by Epac activation, we found that PKA activation could

sensitize mechanosensation through effects on Nav1.8þ
nociceptors. Increasing doses of 6-Bnz-cAMP induced
mechanical hypersensitivity that increased in magnitude and
duration. The magnitude as well as the duration of 6-Bnz-cAMP-
induced mechanical hypersensitivity was severely reduced in
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Nav1.8-DTA mice at all doses tested (12.5 pmol per paw–
12.5 nmol per paw) (Fig. 7d,e). These data indicate that
the PKA-dependent 6-Bnz-cAMP-induced mechanical hyper-
sensitivity was almost completely absent in nociceptor-depleted
mice. The highest dose (12.5 nmol per paw) used induced some
mechanical hypersensitivity in nociceptor-depleted mice, but was
significantly less intense and shorter than in control littermates
(Fig. 7f).

Piezo2 is required for 8-pCPT-induced allodynia. We tested
whether sensitization of Piezo2 contributes to 8-pCPT-induced
allodynia. Intrathecal injection of antisense oligonucleotides
(ODN) results in their concentration in DRG neurons, where
RNA–DNA hybrids are degraded by RNase H; this approach to
downregulating gene expression has been used in a variety of
studies.25 However, possible effects of antisense ODN in other
cells within the spinal cord and DRG cannot be excluded.
Intrathecal injection of a mixture of three different Piezo2
antisense ODN reduced Piezo2 mRNA expression in L2-L5 DRG
by B26%, 2 days after the last injection of antisense ODN
(Fig. 7g). The reduction of DRG Piezo2 mRNA expression was
associated with an increase in baseline thresholds to mechanical
stimulation (Fig. 7h). 8-pCPT-induced mechanical allodynia was
attenuated in Piezo2 antisense ODN-treated animals compared
with mismatch ODN-treated mice (Fig. 7h). The partial reduction
in Piezo2 mRNA is consistent with the behavioural effect of
Piezo2 antisense treatment on 8-pCPT-induced allodynia.

Role of Piezo2 in touch sensation and allodynia. As Piezo2
antisense ODN treatment reduced Epac-mediated allodynia, we
examined whether Piezo2 contributes to neuropathy induced
allodynia and whether Piezo2 is involved in touch perception.
Piezo2 antisense ODN mixture reduced Piezo2 mRNA expression
in L2-L6 DRG by B35% as measured 1 day after the last injection
of Piezo2 antisense ODN, with no effect on Piezo1 levels (Fig. 7i).
Piezo2 antisense ODN did not affect motor behaviour
(Supplementary Fig. S5a). However, the reduction of Piezo2
mRNA expression was associated with an increase in 50%
threshold to light mechanical stimulation to the hind paw
(Fig. 7j). By contrast, responses to noxious mechanical stimula-
tion or noxious heat were similar to mismatched control ODN-
treated mice (Supplementary Fig. S5b,c).

To investigate the role of Piezo2 in neuropathy-induced
allodynia, a unilateral L5 nerve transaction (L5 SNT) or a sciatic
nerve ligation (chronic constriction injury (CCI)) was performed
in mice to induce neuropathic pain. In both models mice devel-
oped mechanical allodynia in the ipsilateral paw, while mechan-
ical thresholds to touch in the contralateral paw were unaffected
(Fig. 8a–e). In the L5 SNT model, mice were treated intrathecally
with Piezo2 antisense ODN starting at day 15. Piezo2 antisense
treatment significantly attenuated L5 SNT-induced allodynia
compared with mismatch-treated mice (Fig. 8a). Piezo2 antisense
ODN treatment also increased thresholds to touch compared
with mismatch antisense-treated mice at the unaffected con-
tralateral paw (Fig. 8a). In the CCI model of neuropathic pain,
multiple intrathecal Piezo2 antisense injections also significantly
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attenuated CCI-induced mechanical allodynia (Fig. 8b). At the
unaffected contralateral paw, Piezo2 antisense ODN treatment
also increased thresholds to touch (Fig. 8b). Although Piezo2
antisense ODN increased mechanical thresholds both at the
ipsi- and contralateral paw in both models of neuropathic pain,
Piezo2 antisense ODN reduced the neuropathic pain-induced
difference in mechanosensitivity between the contra and ipsi-
lateral paw (Fig. 8c).

Twenty-four hours after the last Piezo2 antisense ODN injec-
tion, Piezo2 mRNA was reduced by more than 50% in both the
ipsilateral and contralateral DRGs in both models of neuropathic
pain (Fig. 8d,e). Piezo1 DRG mRNA expression levels were
unaffected after Piezo2 antisense ODN treatment (Supplementary
Fig. 6). These data show that transcription of Piezo1 and Piezo2

are unaffected by nerve damage as no difference between the ipsi
and contralateral paw was observed.

Discussion
The molecular basis of touch and mechanical allodynia is poorly
understood. Here, we show that activation of Epac1 contributes to
the development of allodynia associated with neuropathic pain.
Epac1 signalling produces allodynia involving Piezo2-mediated
mechanotransduction in low threshold mechanosensitive sensory
neurons independently of Nav1.8þ nociceptors. Epac1 signalling
enhances mechanically evoked Piezo2-mediated currents in a
heterologous expression system, as well as endogenous rapidly
adapting mechanically gated currents in sensory neurons. We also
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show that Piezo2 is likely to have a role in the detection of light
touch and the development of allodynia.

We found that Epac1 activation enhances mechanically evoked
currents in low threshold mechanosensitive sensory neurons,
many of which are associated with touch. Interestingly, this subset
of sensory neurons lose their mechanically evoked currents after
treatment with Piezo2 siRNA4. Mechanically evoked Piezo2
currents are enhanced upon Epac1 activation and in vivo
activation of Epac1 produces a Piezo2-dependent allodynia
that can be blocked by the permeant mechanosensory channel
blocker FM1-43. PKA-mediated effects on mechanosensation
do not involve mechanotransduction but act through sen-
sitization of nociceptor electrical excitability1, and activation of
PKA does not enhance Piezo2 currents in HEK293 cells. Overall,

Epac1 signalling appears to selectively enhance Piezo2-mediated
mechanotransduction contributing to allodynia.

The contribution of cAMP signalling to sensitization of sensory
neurons is well described. However, the role of the cAMP-sensor
protein Epac1 in peripheral pain pathways is relatively unex-
plored. Intraplantar injection of the Epac agonist 8-pCPT has
been shown to lead to a decrease in mechanical nociceptive
thresholds in rats via a PKCe-dependent pathway23. We have
found that activation of Epac1 leads to long-lasting allodynia,
while activation of PKA induces a transient mechanical
hypersensitivity linked to enhanced electrical excitability.
The Epac1-mediated development of allodynia required a
different subset of sensory neurons compared with those activa-
ted by PKA. PKA-mediated mechanical hyperalgesia requires
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Nav1.8þ nociceptors, while Epac-mediated allodynia was
independent of these sensory neurons. Earlier findings showed
that 8-pCPT enhanced noxious mechanosensation in IB4þ
sensory neurons,23 that can be either Nav1.8þ or Nav1.8� .
Interestingly, 8-pCPT-induced thermal hyperalgesia is almost
completely absent in Nav1.8 nociceptor-depleted mice
(Supplementary Fig. S7). Thus, these data indicate that Epac
activation in non Nav1.8 expressing cells selectively leads to
mechanical allodynia, while Epac activation in Nav1.8þ neurons
causes thermal hyperalgesia or mechanical hyperalgesia in
IB4þ neurons. Consistent with these observations, Nav1.8þ
nociceptors are not required for the development of allodynia in a
neuropathic pain model24, and the development of allodynia
is also attenuated in Epac1þ /� and Epac1� /� mice in a
neuropathic pain model. The sensory neuron subset-specific role
of Epac1 signalling is also highlighted by the fact that reduction of
an endogenous inhibitor of Epac1, G protein-coupled receptor
kinase 2 in Nav1.8 expressing neurons, enhanced 8-pCPT-
induced thermal hyperalgesia.26 Finally, we have found that
downstream signalling cascades activated by inflammatory
mediators and linked to mechanical hyperalgesia rather than
allodynia, such as PKC and PKA, do not alter Piezo2 currents.
In contrast, increased intracellular calcium concentrations
strongly potentiated hPiezo currents.

Although Ab fibre-associated pain is little studied, Ab
nociceptors exist27, and allodynia has been linked with Ab
sensory neuron activation28. It is also possible that besides the
role of Epac1–Piezo2 in peripheral sensitization, other (spinal)
processes induced by nerve damage link Ab fibres to pain
pathways.

The question arises whether Epac1 activation acts directly or
indirectly on Piezo2. Epac signalling,has been shown to cause
PKCe translocation to the cell membrane, and PLCe activation
that could potentiate Piezo2-mediated currents through elevated
intracellular calcium29. Further research to elucidate the
mechanisms underlying Epac1-mediated Piezo sensitization and
allodynia is required.

Characterization of human Piezo2 showed that this channel has
similar properties to mouse Piezo2, already linked to rapidly
adapting mechanically gated currents in DRG neurons. Consistent
with this, antisense-mediated Piezo2 knockdown decreases mRNA
expression and sensitivity to touch. This contrasts with the role of
Piezo in Drosophila, which has no role in touch30. Intrathecal
Piezo2 antisense ODN treatment attenuates mechanical allodynia
induced by Epac1 activation or neuropathy.

In conclusion, these findings are the first to demonstrate a role
for the cAMP-sensor Epac1 in mechanical allodynia in neuro-
pathic pain and highlight Epac1 as a modulator of Piezo2, a
mechanotransducer that we show here to be linked to mechanical
allodynia and touch. These data suggest that the Epac1–Piezo2
axis is an important regulator of allodynia and is a potential
therapeutic target for the treatment of neuropathic pain.

Methods
Animals. All behavioural tests were approved by the United Kingdom Home Office
Animals (Scientific Procedures) Act 1986. Epac1þ /� , Epac1� /� and their
WT control littermates were from a C57BL/6 and CBA mixed background31.
Nav1.8� /� , Nav1.9� /� C57Bl/6 and WT control littermates were used32,33.
Nav1.7 deletion in all sensory neurons was accomplished by using heterozygous
advillin-Cre/homozygous floxed Nav1.7 mice34. Ablation of Nav1.8 neurons was
achieved by crossing heterozygous Nav1.8-Cre mice with homozygous eGFP-
diphtheria toxin (DTA) mice24. For behavioural testing, mice aged 8–12 weeks
were used. In vivo spinal cord electrophysiology was performed on Sprague-
Dawley rats.

Measurement of mechanical allodynia and thermal hyperalgesia. The
development of thermal hyperalgesia was measured with the Hargreave’s
apparatus35. Mechanical hyperalgesia was measured using von Frey hairs

(Stoelting, Wood Dale, USA), and the 50% paw withdrawal threshold was
calculated using the up-and-down method36. Noxious mechanical sensitivity
was assessed using Randall Selitto apparatus37. Baseline withdrawal latencies or
mechanical thresholds were averaged over at least three measurements before
intraplantar injection of compounds or surgery. All experiments were performed
in a blinded manner.

Drugs and preparation. Mice received an intraplantar injection of 2.5 ml of the
Epac activator 8-(4-Chlorophenylthio)-20-methyl-cAMP (8-pCPT; Biolog Life
Science Institute, Bremen, Germany), or N6-Benzoyl-cAMP salt (6-Bnz-cAMP,
Biolog Life Science Institute)26. As a control, a similar amount of vehicle was
injected. FM1-43 (2 nmol ml� 1) was dissolved in saline and injected intraplantarly
(2.5 ml) 2 h after 8-pCPT injection20.

In vivo antisense ODN treatment. Antisense ODNs38 dissolved in saline (Epac1:
10 mg per 5 ml; Piezo2 mixture: 15 mg per 5 ml) were injected intrathecally39. Epac1
antisense ODN: mice were injected with Epac1 antisense ODN at 5, 3 and 1 days
before injection of 8-pCPT. Piezo2 antisense ODN: mice were injected with Piezo2
antisense ODN at day 5, 3, 2 and 1 days before injection of 8-pCPT. During
chronic neuropathic pain, Piezo2 antisense ODN were intrathecally injected daily.
24–48 h after the last injection DRGs were isolated. All antisense ODN had a
phosphorothioate backbone.
The following ODN were used:

Epac1: 50-AACTCTCCACCCTCTCCCA-30 ; mismatch: 50-ACATTCCACCCTC
CTCCAC-30

Piezo2: 50-GTCCTTCCAGCCACATCTTCT-30 þ 50-CCTTCTACCACCTCCT
CCTC-30 þ 50-ACCACCCGACCTCACAAGCA-30 ; mismatch: 50-TCCGTCTCG
CACAACTCTCTT-30 þ 50-CTTCTACCACTCCTCCCTCC-30 þ 50-ACACCAC
CCTCGCCAACGAA-30.

Neuropathic pain models. A unilateral L5 nerve transaction (L5 SNT) was
introduced in anaesthetized mice40. The L5 transverse process was removed
using a blunt fine forceps and the left L5 spinal nerve was cut.

CCI was introduced to mice according to a modified protocol used for rats41.
In anaesthetized mice, the left sciatic nerve was exposed at mid-thigh level and
three loose ligatures were made around the nerve.

In vivo rat spinal cord electrophysiology. Experiments were performed on
anaesthetized male Sprague-Dawley rats (Central Biological Services, UCL), as
previously described42. Saline, 8-pCPT or 6-Bnz-cAMP was administered into the
receptive field of the cell (hind paw). The results were calculated as maximum
change from the pre-drug control values for each response per neuron. See for full
details Supplementary Methods.

Expression plasmids. The full-length hPiezo2 open reading frame was cloned into
pcDNA3 (Invitrogen) in two sections to give the construct ‘PIEZO2 in pcDNA3’.
The 2,752 amino-acid PIEZO2 protein encoded by the construct is identical to
NP_071351, except for containing SNPs rs7234309 (I) and rs3748428 (I). Finally, a
polio IRES-eGFP fragment was PCR amplified from clone JC5 (ref. 45) and ligated
into ‘PIEZO2 in pcDNA3’ to give the final construct ‘PIEZO2-IRES-eGFP’. The
coding sequence of the PIEZO2 construct has been sequenced entirely and has
been submitted to GenBank under accession number JN790819. For Epac1/2
overexpression studies YFP-Epac1 and YFP-Epac2 were used44.

Culture of DRG neurons. Adult mice DRG neurons were dissected out and
subsequently digested in an enzyme mixture containing Ca2þ - and Mg2þ -free
HBSS, 5 mM HEPES, 10 mM glucose, collagenase type XI (5 mg ml� 1) and dispase
(10 mg ml� 1) for 1 h before mechanical trituration in DMEMþ 10% heat-inacti-
vated fetal bovine serum. Cells were centrifuged for 5 min at 800 r.p.m., resus-
pended in DMEM containing 4.5 g l� 1 glucose, 4 mM L-glutamine, 110 mg l� 1

sodium pyruvate, 10% fetal bovine serum, 1% penicillin–streptomycin
(10,000 i.u. ml� 1), 1% glutamax, 125 ng ml� 1 nerve growth factor, and plated on
poly-L-lysine- (0.01 mg ml� 1) and laminin- (0.02 mg ml� 1) coated 35-mm dishes.
Neurons were used 24 h after plating.

Cell culture. HEK293a cells were cultured in DMEM supplemented with 10% fetal
calf serum (FCS). Plasmid DNA was transiently transfected into the cells using
Lipofectamine 2000 (Invitrogen) in a ratio of 1 mg DNA:2.5 ml Lipofectamine 2000
according to the manufacturer’s instructions. Electrophysiology recordings were
made 48 h post transfection.

Electrophysiology. Neurons whose cell bodies were not in contact with those of
other neurons and transfected HEK293a cells tagged with fluorescent proteins were
selected for recording. Currents were recorded using Axopatch 200B and Multi-
clamp 700 amplifiers (Axon Instruments, Molecular Devices Inc.). Pipettes were
pulled from borosilicate glass capillaries with a P-97 puller (Sutter Instrument Co.)
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with resistances of 2–4 MO. Currents were digitized with the Digidata 1322A and
1440A data acquisition systems (Axon Instruments, Molecular Devices Inc.). Data
were captured using PClamp 8.1 & 10 software and analysed using ClampFit 10.2
(Axon Instruments). Currents were low-pass filtered at 5 kHz and sampled at
10 kHz. Capacity transients were cancelled, however, series resistance were not
compensated. Voltages were not corrected for liquid junction potentials. Record-
ings were performed at room temperature. Recordings were carried out in the
perforated patch configuration. The pipette solution contained (in mM) 110
CH3COOK, 30 KCl, 5 NaCl, 1 MgCl2 and 10 HEPES (pH corrected to 7.35
using KOH, osmolarity: B310 mOsm with sucrose). 205 Mg per mililitre of
fresh amphotericin B was added to this solution before recording. The bath
solution contained (in mM): 140 NaCl, 4 KCl, 2 CaCl2, 1 MgCl2, 5 glucose and
10 HEPES (pH 7.4 adjusted using NaOH, osmolarity: B320 mOsm with sucrose).
8-pCPT was added to the bath solution after establishment of a stable response
to a 0.008 Hz mechanical stimulus. In HEK293 cells expressing Piezo1/2 either
bath solution or 8-pCPT was added to the bath solution. Recordings were made
20–50 min after the addition of 8-pCPT at room temperature. For experiments
in which cytosolic Ca2þ concentration was fixed, the conventional whole-cell
configuration was used. Whole-cell patch clamp solution contained (in mM) KCl
(130), MgCl2 (2.5), CaCl2 (1.94 or 4.63 to give 50 nM or 1mM free Ca2þ ), EGTA
(5) K-ATP (3) HEPES (5) and pH 7.4 KOH (osmolarity was set to 310 mOsm
with sucrose).

Mechanical stimulation. Mechanical stimulation of cell bodies was achieved
using a heat-polished glass pipette (tip diameter B2mm), controlled by a piezo-electric
crystal drive (Siskiyou MXPZT-300 series or Burleigh LSS-3000 series), positioned
at an angle of about 70� to the surface of the dish. The probe was positioned so that
a Bxmm (x¼ 10–14mm) movement did not visibly contact the cell but that a xþ
1mm stimulus produced an observable membrane deflection. The probe was moved
at a speed of 1mm ms� 1 and the stimulus was applied for 250 ms. A series of
mechanical steps in B1 (HEK cells) or B2mm (DRG neurons) increments were
applied. Criteria for classifying adaptation kinetics of rapidly adapting mechan-
osensitive currents (RA) in DRG neurons had a decay kinetic that was best described
by a bi-exponential fit5. Kinetics of adaptation to the mechanical stimuli were
fitted with a standard mono exponential decay with the equation below using
PClamp 10.2.

f ðtÞ¼
Xn

i¼ 1

Aie
� t=ti þC

The fit solves for the amplitude A, the time constant t, and the constant y-offset
C for each component i.

Western blot analysis. DRG cultures were homogenized in ice-cold RAL lysis
buffer (200 mM NaCl, 50 mM Tris–HCl (pH 7.5), 10% glycerol, 1% NP-40, 2 mM
sodium orthovanadate, 2 mM phenylmethylsulfonyl fluoride and protease
inhibitor mix (Sigma-Aldrich, p3840, 1:100)). Proteins were separated by
SDS–polyacrylamide gel electrophoresis and transferred to PVDF membranes
(Millipore, Bedford, MA, USA). Blots were stained with mouse-anti-Epac1 and as
loading control rabbit-anti-b-actin or the neuron-specific mouse-anti-b3-tubulin
(all cell signalling). Subsequently, blots were incubated with goat anti-mouse-
peroxidase or donkey-anti-rabbit IgGþ IgM (Hþ L) (GE Healthcare) and
developed by enhanced chemiluminescence plus (Amersham Int.).

mRNA isolation and real-time PCR. Lumbar DRGs (L2-L5) were isolated and
total RNA was isolated with RNeasy Mini Kit (Qiagen) in accordance with the
manufacturer’s instructions. Reverse transcription was performed with 1 mg of
RNA by using iScript Select cDNA Synthesis Kit (Invitrogen). Real-time quanti-
tative PCR was then performed with iQ SYBR Green Supermix (Invitrogen).
The following primer pairs were used:

Epac1: 50-gTgTTggTgAAggTCAATTCTg-30 (forward), 50-CCACACCACgggCA
TC-30 (reverse)

Epac2: 50-TgTTAAAgTgTCTgAgACCAgCA-30 (forward), 50-AAAggCTgTCCC
AATTCCCAg-30 (reverse)

Piezo1: 50-CTACAAATTCgggCTggAg-30 (forward), 50-TCCAgCgCCATggATA
gT-30 (reverse)

Piezo2: 50-CCAAgTAgCCCATgCAAAAT-30 (forward), 50-gCATAACCCTgTgC
CAgATT-30 (reverse)

b-Actin: 50-AgAgggAAATCgTgCgTgAC-30 (forward), 50-CAATAgTgATgACC
TggCCgT-30 (reverse)

GAPDH: 50-TgAAgCAggCATCTgAgg-30 (forward), 50-CgAAggTggAAgAgTggg
Ag-30 (reverse)

Data analysis. Data are expressed as mean±s.e.m. Measurements were compared
using Student’s t-test, one-way one-way analysis of variance (ANOVA), repeated
measures, or two-way ANOVA followed by Bonferroni’s analysis. A P-value of
o0.05 was considered to be statistically significant.
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