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Given the tissue-specific nature of epigenetic processes, the assessment of disease-relevant tissue is an important
consideration for epigenome-wide association studies (EWAS). Little is known about whether easily accessible tissues,
such as whole blood, can be used to address questions about interindividual epigenomic variation in inaccessible
tissues, such as the brain. We quantified DNA methylation in matched DNA samples isolated from whole blood and 4
brain regions (prefrontal cortex, entorhinal cortex, superior temporal gyrus, and cerebellum) from 122 individuals. We
explored co-variation between tissues and the extent to which methylomic variation in blood is predictive of
interindividual variation identified in the brain. For the majority of DNA methylation sites, interindividual variation in
whole blood is not a strong predictor of interindividual variation in the brain, although the relationship with cortical
regions is stronger than with the cerebellum. Variation at a subset of probes is strongly correlated across tissues, even
in instances when the actual level of DNA methylation is significantly different between them. A substantial proportion
of this co-variation, however, is likely to result from genetic influences. Our data suggest that for the majority of the
genome, a blood-based EWAS for disorders where brain is presumed to be the primary tissue of interest will give
limited information relating to underlying pathological processes. These results do not, however, discount the utility of
using a blood-based EWAS to identify biomarkers of disease phenotypes manifest in the brain. We have generated a
searchable database for the interpretation of data from blood-based EWAS analyses (http://epigenetics.essex.ac.uk/
bloodbrain/).

Introduction

There is increasing interest in the role of epigenetic processes in
health and disease, with the primary focus of most epigenetic epi-
demiological studies to date being DNA methylation.1 Platforms
such as the Illumina Infinium HumanMethylation450 BeadChip
(450K) have enabled the economical, high-throughput profiling
of methylomic variation across large numbers of samples and epi-
genome-wide association studies (EWAS), which aim to identify
DNA methylation differences associated with environmental
exposure and disease, are now underway for many types of pathol-
ogy, including cancer,2-4 autoimmune disorders,5,6 psychiatric
phenotypes,7 neurodevelopmental disorders,8,9 and dementia.10,11

Despite the recent successes in identifying disease-associated epige-
netic variation, the design, analysis, and interpretation of EWAS
requires careful attention; there are a number of critical issues that

need to be considered in epigenetic epidemiology that preclude a
simple re-analysis of DNA samples collected for genome-wide
association studies (GWAS).9,12-14

Of particular importance is the fact that, unlike germline
genetic variation, epigenetic signatures are tissue-specific; there-
fore, the selection of tissue type for epigenetic epidemiology is
potentially critical. The ENCODE and the NIH Epigenomics
Roadmap projects,15-17 for example, have recently characterized
the distinct epigenetic profiles defining human cell-types,
highlighting how these reflect the developmental relationships
between them. It is clear that intraindividual epigenetic differen-
ces (i.e., between tissues within a single person) greatly outweigh
interindividual differences within a specific tissue type.18-23

Although many clinical and epidemiological studies are examin-
ing epigenetic variation in easily accessible cells obtained from
tissues, such as whole blood, the extent to which these can be

© Eilis Hannon, Katie Lunnon, Leonard Schalkwyk and Jonathan Mill
*Correspondence to: Jonathan Mill; Email: J.Mill@exeter.ac.uk
Submitted: 07/27/2015; Revised: 09/18/2015; Accepted: 09/21/2015
http://dx.doi.org/10.1080/15592294.2015.1100786

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s)
have been asserted.

1024 Volume 10 Issue 11Epigenetics

Epigenetics 10:11, 1024--1032; November 2015; Published with license by Taylor & Francis Group, LLC

RESEARCH PAPER

http://epigenetics.essex.ac.uk/bloodbrain/
http://epigenetics.essex.ac.uk/bloodbrain/
http://creativecommons.org/licenses/by/3.0/


used to address questions about inter-
individual epigenomic variation in
inaccessible tissues, such as the brain,
has not yet been systematically
explored. Addressing this issue will be
critical given the paucity of high-qual-
ity brain tissue from clinically welL-
phenotyped patients and controls,
especially if EWAS analyses require
sample sizes approaching those neces-
sary to identify genetic associations
with complex disease phenotypes.
Because the brain and blood originate
from different developmental cell line-
ages and are epigenetically distinct,23 it
is clearly inappropriate to use blood as
a proxy measure for actual brain DNA
methylation profiles. Despite this, epi-
demiological studies using accessible
peripheral tissues may still be informa-
tive in an epidemiological context if
interindividual variation is correlated
across tissues.

In this study we quantified DNA
methylation using the 450K array in a
collection of matched DNA samples
isolated from pre-mortem whole blood
and 4 post-mortem brain regions [pre-
frontal cortex (PFC), entorhinal cortex
(EC), superior temporal gyrus (STG),
and cerebellum (CER)] dissected at
autopsy from 122 individuals. We
describe patterns of co-variation across
tissues and identify sites where esti-
mates of DNA methylation in whole
blood are predictive of interindividual
variation in DNA methylation across
the 4 brain regions. Our data are avail-
able in an online searchable database

Figure 1. Variation in DNA methylation in
whole blood is correlated with variation in
the brain for a small proportion of probes.
(A) The proportion of sites (y-axis) for
which tissue (black), sex (red), or individ-
ual (green) explain a given percentage of
DNA methylation variance (x-axis). (B) to
(E) Histograms showing the distribution of
correlation coefficients between DNA
methylation in whole blood and the 4
brain regions (PFC, EC, STG and CER). For
all 4 brain regions the distribution of cor-
relation coefficients is significantly skewed
to the right, with stronger correlations
seen between whole blood and cortical
regions than between whole blood and
cerebellum.
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(http://epigenetics.essex.ac.uk/bloodbrain/) to enable the research
community to explore the relationship between whole blood and
brain DNA methylation patterns at specific locations across the
genome.

Results and Discussion

Cortex, cerebellum, and blood are defined by very distinct
profiles of DNA methylation

We used the Illumina 450K array to quantify DNA methyla-
tion in 4 dissected brain regions (PFC: n D 114, EC: n D 108,
STG: n D 117 and CER: n D 112) and matched pre-mortem
whole blood samples (n D 80) from an overlapping set of 122
individuals (Table S1). Following pre-processing, normalization,
and stringent quality control (see Materials and Methods), prin-
cipal component (PC) analysis was performed across the full
dataset (comprising 531 individual DNA samples and data for a
pruned set of 427,018 high-quality probes). The first PC,
explaining 51.4% of the variance, clearly distinguishes between
whole blood, cerebellum, and the three cortical regions (Fig. S1).
A similar separation of these tissues is observed with the second
PC, which explains 29.4% of the variance. This observation con-
curs with previous studies comparing whole blood and brain
samples based on smaller samples and using alternative technolo-
gies for assessing DNA methylation.23-25 These differences
between tissues are reflected in gene expression data,26,27 which
confirm the cerebellum as being clearly distinguishable from cor-
tical brain regions. The three cortical regions have strikingly simi-
lar DNA methylation profiles; however, while examination of
further PCs, none of which explain more than 5% of the vari-
ance, starts to tease apart these regions, none of the top 20 PCs
does this definitively (Fig. S1).

Interindividual variation and sex make a much smaller
contribution to overall variation in autosomal DNA
methylation than tissue differences

We used linear regression models to calculate the proportion
of variance in DNA methylation explained by tissue, individual,
and sex. Across autosomal probes, tissue is the strongest predictor
of DNA methylation (Fig. S2), although there is a subset of
probes for which individual predicts more of the variance
(5.39% of all probes) than tissue type (see Table S2). Across all
autosomal probes passing stringent QC (n D 416,872), tissue
explains > 50% of the variance in DNA methylation at 193,333
(46.4%) sites, compared to individual differences which explain
> 50% of the variance at 4,669 (1.12%) sites (Fig. 1A). Consid-
ering only autosomal DNA methylation sites characterized as
being variable in whole blood (n D 185,060, see Materials and
Methods), these percentages increase to 66.2% and 1.61%. As
expected, sex makes a strong contribution to variation observed
at probes on chromosomes X and Y (n D 10,146), explaining
>50% of the variance at 5,920 (58.3%) of these positions
compared to tissue which explains >50% of the variance at
only 1,359 (1.34%) sites. In contrast, sex makes a very small
contribution to autosomal variation, explaining >50% of the

variance at only 18 (4.32 £ 10¡3%) of autosomal probes
(Fig. S3).

Interindividual variation is correlated across tissues at a small
number of sites

Although overall DNA methylation profiles are clearly distinct
across different brain regions and blood, driven by highly signifi-
cant mean differences in DNA methylation at multiple sites across
the genome,23 we were interested in exploring the extent to which
interindividual variation detected in whole blood reflects interindi-
vidual variation in the three cortical regions and cerebellum.
Focusing only on probes defined as ‘blood variable’ (nD 185,060,
seeMaterials and Methods), correlation coefficients across all indi-
viduals were calculated between DNA methylation in whole blood
and each of the four brain regions. Compared to the null distribu-
tion, i.e., the scenario where there is no relationship between DNA
methylation in blood and brain, established by randomly permut-
ing samples and recalculating correlations between DNA methyla-
tion in whole blood and brain across unmatched pairs, we found a
modest but highly significant positive shift in the distribution of
correlations for each of the four brain regions (PFC: Wilcoxon
test P < 2.2 £ 10¡308, EC: P < 2.2 £ 10¡308,
STG: P < 2.2 £ 10¡308, CER: P < 2.2 £ 10¡308), with a small
peak highlighting a number of probes characterized by a near per-
fect correlation (Fig. 1B-E). For the majority of probes, however,
interindividual variation in DNA methylation in whole blood
explains only a small amount of the variation seen in any of the
brain regions (Fig. 2). For example, DNA methylation in whole
blood is strongly correlated with levels in cerebellum (i.e.,

Figure 2. Variation in DNA methylation in whole blood as a predictor of
variation in the brain. Shown is the proportion of sites (y-axis) for which
variation in blood explains a certain of percentage of DNA methylation
variance (x-axis) in the PFC (black), EC (red), STG (green), and CER (blue)
from the same individuals.
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explaining >50% of the variance) for only 1.19% of “blood varia-
ble” probes, and moderately correlated (i.e., explaining >20% of
the variance) with 3.68% of “blood variable” probes (see Table S3
for corresponding values with
other brain regions). Of note,
the extent of interindividual
correlation is significantly
higher (P < 1.0 £ 10¡308)
between whole blood and each
of the three cortical regions
than with the cerebellum,
although the proportion of cor-
related probes is still low
(Table S3). These data concur
with previous small studies cor-
relating interindividual varia-
tion in DNA methylation
between tissues. Slieker et al.
compared DNA methylation
profiles between blood and sev-
eral internal organs and
reported a comparable number
of sites (5,532, 3,909, 10,905,
and 2,446 sites for liver, subcu-
taneous fat, omentum, and
skeletal muscle, respectively)
with a strong relationship
(r > 0.8) with variation in
blood.19 Similarly, a study com-
paring DNA methylation in
matched blood and buccal sam-
ples found only »3% of 998
sites were characterized by an
absolute Pearson correlation
> 0.5.20 Density plots of DNA
methylation across the probes
with the strongest positive cor-
relations (> 0.95) between
blood and brain indicate that
many are characterized by a
clear trimodal distribution of
DNA methylation (Fig. S4),
suggesting that DNA sequence
variation likely mediates much
of the observed cross-tissue sim-
ilarities via processes such as
allele-specific DNA methyla-
tion.28 Many DNA methyla-
tion quantitative trait loci
(mQTL) have consistent effects
across tissues29,30; Figure S5
shows a couple of examples
where the correlated DNA
methylation profiles across tis-
sues are likely to result from
mQTLs, as the distribution of

DNA methylation levels cluster into distinct groups reflecting
genotype, with consistent effects across tissues.

Figure 3. DNA methylation in whole blood significantly co-varies with that in the brain at some genomic loci.
An example output of our online database (http://epigenetics.essex.ac.uk/bloodbrain/) for blood-brain correla-
tions at cg26039926. Shown is a boxplot of the distribution of DNA methylation values across all individuals
split by tissue and four scatterplots demonstrating the relationship between DNA methylation in whole blood
and four brain regions (PFC, EC, STG, CER). At this probe there is a highly significant correlation between
individual variation in whole blood and that observed in all four brain regions.
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The extent to which
interindividual variation is
correlated between whole blood
and brain differs by brain region
at some loci

Although genome-wide pat-
terns of DNA methylation clearly
distinguish between tissues, the
overall extent to which interindi-
vidual variation in whole blood is
correlated with that in the brain is
similar across the 4 brain regions
(Figs. 3 and S6), with a highly sig-
nificant correlation of probe-wise
correlations. Of note, the three
cortical regions are more similar to
each other in this regard than the
cerebellum, indicating that there is
a subset of probes where variation
in whole blood predicts variation
in the cortex and not the cerebel-
lum, and vice versa (for example
see Fig. S7). This suggests that the
extent of co-variation between
pairs of tissues can differ depend-
ing upon the tissues in question,
and establishing a correlation
between any two tissues does not
imply a correlation between all tis-
sues. Of additional interest are sites where there is a significant, but
negative, correlation between blood and brain (see Fig. S8 for spe-
cific examples), a phenomenon that has been reported previously for
certain loci.25 This phenomenon is relatively rare with between 2
and 5 DNA methylation sites strongly negatively correlated (explain
> 50% of the variance) between blood and cortex, and most nota-
ble between DNA methylation in whole blood and cerebellum with
19 DNA methylation sites classed as strongly negatively correlated
(Table S4).

Sites at which interindividual variation in DNA methylation
is highly correlated between whole blood and brain are enriched
in CpG-rich promoter regions

Sites at which DNA methylation is strongly correlated between
whole blood and brain (r2> 0.5) are not equally distributed across the
genome. Of note, we find a significant over-representation at loci in
the vicinity of transcription start sites (PFC: P D 1.34 £ 10¡22,
EC: P D 5.15 £ 10¡21, STG: P D 1.06 £ 10¡18,
CER: P D 1.34 £ 10¡22), 1st exon (PFC: P D 2.48 x 10¡175,
EC: P D 8.78 £10¡174, STG: P D 6.72 £10¡171, CER:
P D 3.50 £ 10¡172) and 5’UTR (PFC: P D 2.07 £ 10¡119,
EC: P D 5.04 £ 10¡120, STG: P D 2.98 £ 10¡119, CER:
P D 2.28 £ 10¡118) and a depletion in the gene body (PFC:
PD 6.15£ 10¡94, EC: PD 4.43£10¡97, STG: PD 2.56£ 10¡87,
CER: P D 1.85 £ 10¡88), 3’UTR (PFC: P D 2.92 £ 10¡24, EC:
P D 1.06 £ 10¡23, STG: P D 2.02 £ 10¡21, CER:
PD 4.74£ 10¡23) and intergenic regions (PFC: PD 1.10£ 10¡72,

EC: P D 2.24 £ 10¡65, STG: P D 3.51 £ 10¡71, CER:
PD 1.57 £ 10¡86) (Fig. 4 andTable S5). In addition there is enrich-
ment in CpG islands (PFC: P < 2.2 £ 10¡308, EC: P < 2.2 £
10¡308, STG: P< 2.2£ 10¡308, CER: P< 2.2£ 10¡308) and deple-
tion in open sea (PFC: PD 8.16£ 10¡262, EC: PD 3.57 £ 10¡276,
STG: P D 2.87 £ 10¡273, CER: P D 7.10 £ 10¡244) (Fig. 4 and
Table S5). Although these differences across genomic regions are
highly significant, they may be partly biased by the relative paucity of
Illumina 450K microarray probes away from CpG-rich promoter
regions.

Co-variation between tissues often occurs when absolute
levels of DNA methylation are different

It is a common misconception that a similar average level of
DNA methylation between two tissues at a given locus is suffi-
cient to establish that one of these tissues may be used as a proxy
for the other.31 In fact, for epidemiological studies that use
peripheral tissues as a proxy, it is actually more important that
the 2 tissues co-vary, regardless of their absolute DNA methyla-
tion levels. To demonstrate this point, Table S6 lists 887 sites
characterized by similar levels of DNA methylation between tis-
sues (paired t-test P > 0.1) but no evidence for interindividual
co-variation (r2 < 0.05), with specific examples shown in
Figure S9. In contrast, Table S7 and Figure S10 demonstrate
sites that are characterized by highly tissue-specific levels of DNA
methylation (paired t-test P < 1.00£10¡5) but strong evidence
for interindividual co-variation (r2 > 0.5).

Figure 4. Sites at which interindividual variation correlates between whole blood and brain are enriched in
specific genic features. Bar charts plotting the percentage of sites annotated to particular genic feature cate-
gories and CpG Island annotations for the full set of “blood variable” sites, in addition to the subset of sites
characterized by the highest correlation (r2 > 50%) between blood and brain. Fisher’s exact tests were used
to test for either over or underrepresentation for each type of feature and are presented in Table S2.
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Whole blood cannot be used
as a proxy for DNA
methylation sites that are only
variable in the brain

One potential caveat to
performing an EWAS of a
neurological/psychiatric phe-
notype using a peripheral tis-
sue as a proxy is that a
proportion of sites are charac-
terized by limited interindi-
vidual variation in whole
blood but high levels of inter-
individual variation in the
brain, and vice versa. We
defined probes as having ‘low’
variation when the range of
DNA methylation values
across the total sample < 5%
and ‘high’ variation when the
range of DNA methylation in
the middle 80th percentile of
samples > 5%. Figure 5A
shows that there are 2,505
sites characterized by high
interindividual variation in
whole blood but not in the
cortex (STG) (see Fig. S11
and Table S8 for correspond-
ing data for the other cortical
regions) and 6,909 sites that
vary in whole blood but not
in the cerebellum. Whether
these sites are omitted from
analyses (for example, to
reduce multiple testing bur-
den) depends upon the ulti-
mate aim of the study being

Figure 5. EWAS analyses of
brain phenotypes using whole
blood DNA may potentially miss
disease associated variation and
interrogate DNA methylation
sites that are not actually vari-
able in the brain. Venn diagrams
showing the overlap of DNA
methylation sites that are (A)
variable in whole blood but not
variable in the cortex (STG) or
cerebellum and (B) variable in
the cortex (STG) and cerebellum
but not in whole blood.
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undertaken; while they may not be able to inform directly about
mechanistic processes in disease, they could still represent useful
biomarkers. In contrast, some sites are non-variable in whole
blood but vary in the brain (see Fig. 5B).

Conclusion

Our data suggest that across the majority of the genome, an
EWAS using whole blood for disorders where brain is the pre-
sumed to be the primary tissue of interest will give limited infor-
mation relating to underlying pathological processes. However,
there are a proportion of sites where interindividual variation is
correlated between whole blood and brain, and these results do
not discount the utility of using a blood-based EWAS to identify
potential biomarkers of psychiatric disease phenotypes. We have
developed a searchable online database (http://epigenetics.essex.
ac.uk/bloodbrain/) to enable researchers to investigate the rela-
tionship between whole blood and brain for any probes on the
Illumina 450K array to aid in the interpretation of EWAS analy-
ses of brain disorders.

Materials and Methods

Samples
We obtained entorhinal cortex (EC), prefrontal cortex (PFC),

superior temporal gyrus (STG), and cerebellum (CER) tissue
from 117 individuals archived in the MRC London Neurodegen-
erative Disease Brain Bank (http://www.kcl.ac.uk/iop/depts/cn/
research/MRC-London-Neurodegenerative-Diseases-Brain-
Bank/MRC-London-Neurodegenerative-Diseases-Brain-Bank.
aspx). Ethical approval for the study was provided by the NHS
South East London REC 3. All samples were dissected by trained
specialists, snap-frozen and stored at ¡80�C. Matched whole
blood samples collected before death were available for 80 sam-
ples (Table S1) as part of the Alzheimer’s Research UK funded
study “Biomarkers of AD Neurodegeneration” with informed
consent according to the Declaration of Helsinki (1991). Geno-
mic DNA was isolated from »100 mg of each dissected brain
region or »10 ml whole blood stored in EDTA collection tubes
using a standard phenol-chloroform extraction method, and
tested for degradation and purity before analysis. The samples
used in this study included both neuropathologically unaffected
controls and individuals with variable levels of neuropathology.
More information about the specific samples can be found in
Lunnon et al.11

Methylomic profiling
DNA (500 ng) from each sample was sodium bisulfite-treated

using the Zymo EZ 96 DNA methylation kit (Zymo Research)
according to the manufacturer’s standard protocol. DNA methyl-
ation was quantified using the Illumina Infinium HumanMethy-
lation450 BeadChip (Illumina) using an Illumina HiScan
System (Illumina). All samples were assigned a unique code for
the purpose of the experiment and grouped by tissue and

randomized with respect to other variables status to avoid batch
effects, and processed in batches of 4 BeadChips. Illumina
Genome Studio software was used to extract the raw signal inten-
sities of each probe (without background correction or normali-
zation). Raw data are downloadable from GEO with accession
identifier GSE59685.

Data pre-processing
All analyses were performed using R 3.0.2.32 and Bioconduc-

tor 2.13.33 Signal intensities were imported into R using the
methylumi package.34 and transformed into b values. In order to
confirm that each set of tissues derived from the same individual,
initial quality control checks were performed using functions in
the methylumi package to assess concordance between reported
gender in the phenotype information and that inferred from
DNA methylation sites located on the sex chromosomes. In addi-
tion, the 65 non-CpG SNP probes on the array were also used to
confirm that all 4 brain regions and matched blood samples were
sourced from the same individual, as their genotypes across these
variants should be identical. Data was subsequently normalized
in the R package wateRmelon using the dasen function as previ-
ously described.35 Prior to data analysis, we removed the 65 non-
CpG SNP probes and probes characterized by either non-specific
binding (n D 43,233) or containing common (minor allele fre-
quency > 5%) SNPs within 10 bp of the CG or single base
extension position (n D 15,261, identified from previously pub-
lished lists).36,37 to prevent technical artifacts influencing our
results. The final data set comprised 427,018 DNA methylation
sites.

Data analysis
Separate linear regression models were used to calculate the

proportion of variance explained (adjusted r2) by a) tissue, b)
individual, and c) sex, for each DNA methylation site on the
array across individuals for which data from all 5 tissues passed
quality control. These linear regression models took the form

DNAmij Da1 Cb1 � tissuei Equation aÞ
DNAmij Da2 Cb2 � individualj Equation bÞ

DNAmij Da3 Cb3 � sexj Equation cÞ

Where DNAmij is the DNA methylation value for individual j
in tissue i, a is the intercept, and b the regression coefficient for
each factor of interest.

A subset of “blood variable” probes was identified by calculat-
ing the DNA methylation difference between the 10th and 90th

percentile across all samples, and selecting sites where this was >
5% (all chromosomes n D 194,426; autosomes n D 185,060).
Sites characterized by overall differential DNA methylation
between blood and each brain region were identified by a paired
t-test of matched samples. Pairwise correlation coefficients were
calculated between DNA methylation values from whole blood
and each of the 4 brain regions across matched samples from lin-
ear regression models; the values were squared and multiplied by
100 to obtain the percentage of variance explained for each
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probe. Samples were permuted and correlations between DNA
methylation in whole blood and brain were recalculated across
unmatched pairs to establish the distribution in the scenario
where there is no relationship between DNA methylation in
blood and brain. The density curve of these simulated correla-
tions was added to the histograms of the true correlation coeffi-
cients to represent the null distribution (Fig. 1 and Fig. S4). The
annotation file provided by Illumina for all probes on the array
was used to classify DNA methylation sites into genomic feature
and CpG island feature categories; any site with no UCSC gene
annotation was classed as “intergenic." Enrichment was calcu-
lated from a 2 x 2 Fisher’s exact test, comparing the number of
probes with blood-brain correlation r2 > 0.5 annotated to each
feature category to the background of all probes.

Web Resources

A searchable database of matched blood and brain region
DNA methylation data is available at http://epigenetics.essex.ac.
uk/bloodbrain/. It reports the distribution of DNA methylation
values in each tissue and the correlation of individual values
between blood and each of the 4 brain regions for each probe on
the 450K array.
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