Cell Reports, Volume 31

Supplemental Information

Stem Cell Determinant SOX9 Promotes

Lineage Plasticity and Progression

in Basal-like Breast Cancer

John R. Christin, Chunhui Wang, Chi-Yeh Chung, Yu Liu, Christopher Dravis, Wei Tang, Maja H. Oktay, Geoffrey M. Wahl, and Wenjun Guo

Figure S1

Figure S1. *Sox9* deletion *in vivo* inhibits ER⁻ luminal stem/progenitor activity, related to Figure 1.

- A. FACS gating strategy for sorting basal, ER⁺ luminal cells and ER⁻ luminal cells.
- B. Expression levels of Sox9 and Esr1 in ER⁻ and ER⁺ luminal cells freshly sorted from normal mammary glands of C57BL/6J mice, as measured by qRT-PCR (n = 3 per group). *P < 0.05, ***P < 0.001.</p>
- C. *Sox9* allele frequency was measured by qPCR in FACS sorted mammary epithelial populations from ~3 months *Sox9*-cKO mice (n = 2).
- D. Wholemount carmine stain of the mammary gland at 4 weeks, 8 weeks, and pregnancy day 15.5.
- E. Frequency of ER– cells in ECFP+ luminal cells of animals at 8-12 weeks of age, as measured by flow cytometry (n = 7-8 per group).
- F. Organoid-forming ability of ER- and ER+ luminal cells. Cells were sorted from normal mammary glands of C57BL/6J mice and cultured in organoid medium for 7 days. Representative results of three experiments are shown. ****P < 0.0001.</p>
- G. *Sox9* expression levels in ER- luminal cell-derived acini and freshly sorted ER- luminal cells, as compared by qRT-PCR (n=3 mice per group)
- H. Western blot validation of SOX9 CRISPR knockout in acini.

Figure S2

Figure S2. *Sox9* deletion leads to NF-κB signaling defect *in vivo*, related to Figure 2.

- A. Ten most enriched gene sets in *Sox9*-WT cells compared to *Sox9*-cKO cells. Four of the ten gene sets are associated with NF-κB signaling (arrows).
- B. Preranked GSEA of scRNA-seq data showing an enrichment of NF-κB signaling in ERluminal cells.
- C. The expression levels of *SOX9* in various breast cancer subtypes in the TCGA (n = 837) and METABRIC (n = 1110) studies. Statistics were done by Kruskal-Wallis test with Dunn's multiple comparison correction. ****q < 0.0001.
- D. Molecular signatures enriched in SOX9-high cancer samples in the TCGA RNA-Seq dataset, as determined by GSEA using SOX9 expression as a continuous variable. FDR < 0.25 is considered statistically significant in GSEA.</p>
- E. ESR1 protein and ESR1 mRNA are both significantly downregulated in SOX9-high (Z-Score ≥ 2) tumors in the TCGA cohort. SOX9-high n = 68, SOX9-low n = 1025.
- F. Higher SOX9 levels correlate with shorter relapse free survival or overall survival in BLBC. Left: SOX9-high and -low BLBC samples in the KM Plotter database were stratified and compared using auto select cut off. Right: SOX9-high and -low BLBC samples in the TCGA and GSE81540 datasets were stratified and compared by the optimal setting in bc-GenExMiner. The P value was calculated by log-rank test.

Figure S3

Figure S3. Upregulation of SOX9 during C3(1)/Tag BLBC tumorigenesis results in luminalto-basal reprogramming, related to Figure 3.

- A. Tag expression levels in sorted mammary epithelial populations of 2-3 months old C3(1)/Tag mice (n = 5) were measured by qRT-PCR.
- B. Flow cytometric analysis of GFP levels in basal cells from Sox9-GFP or Sox9-GFP;C3(1)/Tag mice at ~3 months old. No significant change was observed between 2 groups.
- C. Mammary epithelial cells from 3 months old Sox9-GFP;C3(1)/Tag mice were cytospun, and then immunostained for SOX9. Percentages of SOX9-high or SOX9-neg/low cells in GFP-high (n = 71) or GFP-neg/low cells (n = 663) were quantified.
- D. Luminal cells from ~3-month old Sox9-GFP; C3(1)/Tag mice (n = 4) with different levels of GFP were analyzed for KRT14 expression by intracellular flow cytometry. Only Sox9-GFP^{Hi} luminal cells gained the expression of KRT14. Statistics were done by one-way ANOVA with Tukey multiple comparison correction. **P < 0.01.</p>
- E. The expression levels of basal (*Krt14* and *Krt5*) and luminal (*Krt8*) keratins, *Esr1*, and *Ki67* in luminal cells expressing various levels of Sox9-GFP reporter, as determine by qRT-PCR. n = 5 Sox9-GFP;C3(1)/Tag animals. *P < 0.05, **P < 0.01.</p>
- F. BrdU incorporation of GFP-high or GFP-neg/low luminal cells in ~3-month old Sox9-GFP;C3(1)/Tag mice (n = 2). Mice were injected with BrdU by i.p. (200 µg/mouse). 10 hours later, mammary glands were harvested, cryo-sectioned and stained with anti-BrdU and anti-KRT8 antibodies. A representative image of mammary ducts was shown (left). The graph shows frequencies of BrdU⁺ cells among GFP-neg/low or GFP-high KRT8⁺ cells in individual mammary duct sections (n = 12-24 ducts).
- G. Waterfall plot showing significantly open or closed chromatin regions comparing Sox9-GFP^{Hi} and Sox9-GFP^{Iow} luminal cells from ~3-month old Sox9-GFP; C3(1)/Tag mice (n = 2 biological samples, 4 animals per sample).
- H. Average ATAC-seq signals of basal, luminal progenitor (LP), and mature luminal (ML) unique accessible regions (UARs) in Sox9-GFP^{Low} or Sox9-GFP^{high} luminal cells from ~3-months Sox9-GFP; C3(1)/Tag mice (n = 2 biological samples, 4 animals per sample).
- I. ChromVAR analysis of ATAC-seq data comparing TF activity between Sox9-GFP^{low} and Sox9-GFP^{high} cells. The top TFs with higher activities in Sox9-GFP^{high} cells were shown.

В

Sox9-WT;C3(1)/Tag

Figure S4. *Sox9* deletion inhibits the progression of benign lesions to invasive carcinoma, related to Figure 4.

- A. Expression of the Tag protein in WT (*Sox9*^{F/F};C3(1)/Tag) and Sxo9-cKO (MMTV-iCre;*Sox9*^{F/F};C3(1)/Tag) MINs, as determined by immunohistochemistry.
- B. Freshly isolated tumor cells from *Sox9*-WT;C3(1)/Tag or *Sox9*-cKO;C3(1)/Tag tumor were infected with adenovirus expressing either Cre/GFP or GFP. The cells were then measured for their organoid-forming ability. Representative results from 2 experiments were shown. ****P < 0.0001.</p>

Primer Name	Genotype	Primer Sequence
11576	Sox9 ^{Flox}	AGACTCTGGGCAAGCTCTGG
11577	Sox9 ^{Flox}	GTCATATTCACGCCCCCATT
Sox9-floxed1	Sox9 ^{wt}	GGGGCTTGTCTCCTTCAGAG
Sox9-floxed3	Sox9 ^{wt}	TGGTAATGAGTCATACACAGTAC
oIMR8543	Sox9 ^{wT}	GGTTAAACCCAGCTTGACCA
	Internal Positive Control	
oIMR8544	Sox9 ^{wT}	GGAGGCAGAGACAGTTGGAG
	Internal Positive Control	
iCre-new-F	MMTV-iCre	CTCTGACAGATGCCAGGACA
iCre-new-R	MMTV-iCre	TCTCTGCCCAGAGTCATCCT
Slug-YFP-3	MMTV-iCre	GGGAAAAGCCTTTCTCTTGCCCTC
	Internal Positive Control	
Slug-YFP-4	MMTV-iCre	GGTTGGTAAGCACATGAGAAAATGTC
	Internal Positive Control	
oIMR0069	C3(1)-TAg	GGACAAACCACAACTAGAATGCAGTG
oIMR0068	C3(1)-TAg	CAGAGCAGAATTGTGGAGTGG
oIMR8745	C3(1)-TAg	GTCAGTCGAGTGCACAGTTT
	Internal Positive Control	
olMR8744	C3(1)-TAg	CAAATGTTGCTTGTCTGGTG
	Internal Positive Control	

lated to STAR Methods.

Primer Name	Primer Sequence
mSox9RT F	AGGAAGCTGGCAGACCAGTA
mSox9RT R	CGTTCTTCACCGACTTCCTC
mESR1 F	CGTGTGCAATGACTATGCCTC
mESR1 R	TTTCATCATGCCCACTTCGTAA
mElf5 F	ATGTTGGACTCCGTAACCCAT
mElf5 R	GCAGGGTAGTAGTCTTCATTGCT
mID4-new F	AGGGTGACAGCATTCTCTGC
mID4-new R	CCGGTGGCTTGTTTCTCTTA
h/m Sox10 F	CCCACACTACACCGACCAG
h/m Sox10 R	GGCCATAATAGGGTCCTGAGG
Tnfaip3 FWD	CCACTTGGGCTCTGCGAGG
Tnfaip3 REV	TTCTGGGGTTCTCTCGTATCT
Tnfaip2 FWD	TTAAGATCGAGGTGGCCACA
Tnfaip2 REV	CACTGCTTGGTAGATTGCCCT
Tnf FWD	ATGGCCTCCCTCTCATCAGT
Tnf REV	TTTGCTACGACGTGGGCTAC
Rel FWD	GCTCTGCCTCCCATTGTTTC
Rel REV	AGTTCTTGTTCACACGGCAGA
Rela FWD	CTGTGCCTACCCGAAACTCA
Rela REV	AGGGATGCTGGGAAGGTGTA
Relb FWD	GTCACTAACGGTCTCCAGGA
Relb REV	GCCAAAGCCGTTCTCCTTAAT
Nfkb1 FWD	GGAGTCACGAAATCCAACGC
Nfkb1 REV	CCTCGTCATCACTCTTGGCA
Nfkb2 FWD	TCCTTCGTAGTTACAAGCTGGC
mKeratin 5 F	TCTGCCATCACCCCATCTGT
mKeratin 5 R	CCTCCGCCAGAACTGTAGGA
mKeratin 8 F	TCCATCAGGGTGACTCAGAAA
mKeratin 8 R	CCAGCTTCAAGGGGCTCAA
Krt14 FWD	GCGGCCCACTGAGATCAAA
Krt14 REV	TCGATCTGCAGGAGGACATTG
Rpl13a FWD	CGAAGATGGCGGAGGGG
Rpl13a REV	CCTTCACAGCGTACGACCAC

Table S2. RT-PCR primers, Related to STAR Methods.

Table S3. Cloning primers, Related to STAR Methods.

Primer Name	Sequence
sgSox9 Exon 1	GTACCCGCATCTGCACAACG
sgNfkb2 Exon 2	TCCTTAGGCTCCACGATGGA
sgNfkb2 Exon 5	CTGTGGGCATGCGCACGAGG
sgNT1	GCGAGGTATTCGGCTCCGCG
Nfkbia Mut FWD	GATCTCGAGCTCAAGCTTCGATGTTTCAGCCAGCTGGG
Nfkbia Mut REV	AGAATTATCTAGAGTCGCGGTTATAATGTCAGACGCTGGC