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Editorial 

The human body contains 60,000 miles of blood vessels, including at least 19 

billion capillaries, so that under physiological conditions cells are located no further than 

100-200μm from the nearest capillary. In those, endothelial cells and pericytes seem to 

play a pivotal role in COVID-19 by binding SARS-CoV-2 to the angiotensin-converting-

enzyme 2 (ACE-2) (1,2).  In the lung, the transmembrane ACE-2 receptor is 

predominantly expressed in endothelial cells, perivascular pericytes, and type 2 cells 

(2,3). 

We recently showed that SARS-CoV-2-infection leads to angiocentric 

inflammation in COVID-19-induced respiratory failure with a greater number of ACE2-

positive endothelial cells compared to uninfected controls or to post mortem lung tissue 

from patients succumbed to influenza A related ARDS (1). Although the SARS-CoV-2 

detection of SARS-CoV-2 in post mortem tissue by transmission electron microscopy is 

a challenging task (4), replicated virus-like particles were observed enveloped in 

endothelial cells (1,5), lymphatic cells (6) , but also in type 2 and 1 pneumocytes (6,7). 

Increasing clinical evidence shows that endothelial dysfunction is a common 

denominator after  SARS-COV-2 infection in the multi-organ complexity and severity of 

COVID-19 (3). COVID-19 related endothelial dysfunction is characterized by acute 

vascular inflammation and perivascular T-cell recruitment leading to disruption of 

alveolar-capillary barrier and increased permeability (1-3). The endothelial cells 

surrounded by T-lymphocytes show features of strong activation referred to as 

"endothelialitis", a process typically seen during rejection of solid organ transplants.  

The infection of endothelial cells by SARS-CoV-2 results in swelling and disruption of 

the endothelial cell barriers, an anomalous microvascular architecture, and an 

endothelial dysfunction (1,3). These vascular injuries  are accompanied by thrombosis, 

vasoconstriction and distinct intussusceptive angiogenesis, a unique rapid process of 

blood vessel neoformation by splitting a vessel in two lumens by an incorporation of 

circulating angiogenic cells (1,3). (Fig. 1A).  In the pulmonary circulation of COVID-19 

autopsies, we observed a distinct occurrence of intussusceptive angiogenesis not only 

in early SARS-CoV-2 infected lungs, but also in lung tissue with an infection lasting 



more than 20 days. Beyond these findings in COVID-19 post mortem lung tissue, we 

revealed distinctive features of compensatory angiogenesis by intussusception in many 

other organs as heart, liver, kidney, brain and lymphoreticular organs in patients 

succumbed to COVID-19. The chaotic vessel regulation of focally vasoconstricted and 

progressively dilated vessel segments results in severe disturbances of physiological 

laminar flow. Two major forms of thrombi have been reported so far in COVID-19 

patients (8).  Pulmonary embolism in larger pulmonary vessels probably based on DVT 

were seen in a minority of COVID-19 patients whereas the vast majority demonstrated 

platelet aggregates obstructing the microvasculature and the peripheral vascularity by 

fibrin strands, activated platelets, deformed neutrophils, and neutrophil extracellular 

traps (8, 9). Viral-associated thrombotic microangiopathies have been described in 

numerous inflammatory cardiorespiratory diseases (e.g. influenza (10) or myocarditis 

(11)). We compared post-mortem lung tissues from patients who died from COVID-19 

with severe ARDS and diffuse alveolar damage due to influenza A (H1N1) infection. 

Thereby, we realized nine times more microthrombi in COVID19-lungs compared to 

influenza A (H1N1)-lungs (1). The microangiopathy observed in COVID-19 

patients―specifically, the vasoconstriction and clotting in smaller blood vessels- results 

in hypoxia, shunting and an increase of pulmonary vascular resistance (8).  

Interestingly, COVID-19 does not show characteristics of a "typical" ARDS (12). The 

discrecancy between a general well-preserved lung mechanics and the severity of 

hypoxemia could be explained by a decreased capacity of vascular tone in venules and 

the capillary plexus.  Our molecular data on COVID-19 lung tissue gave evidence of a 

significant upregulation of vasoconstrictive mediators such as prostaglandins 

(phospholipase A, leukotrienes) (1) and as well as an increase of nitric oxide synthase 

(NOS). Nitric oxide (NO) is produced in endothelial cells by the enzyme endothelial nitric 

oxide synthase (eNOS) or in monocytes and macrophages by the inducible nitric oxide 

synthase (iNOS). The rheologic properties of blood flow (laminar vs. turbulent) and 

vessel morphology determine the shear stress on the vascular wall (13). In general, 

high shear stress, as observed in physiological laminar flow, is considered, 

angioprotective promoting endothelial cell survival, vasodilation, and anticoagulation 

(14,15). Low shear stress, on the other hand, results in the secretion of 



vasoconstrictors, platelet aggregation, coagulation, and pathological reshaping of 

microvascular architecture (15-17). The pathologic consequences of these blood flow 

dynamics have been described in many diseases such as atherosclerosis (18), 

inflammatory diseases (15,17), and malignancies (16). Our own hemodynamic studies 

on inflammatory-related changes of the blood flow (13,14,17) revealed heterogeneity in 

flow patterns with dispersed flow velocities, occluded vessel segments and platelet 

aggregates associated with upregulation of thrombotic agonists.  

The structural adaption of the microvascular architecture, the transmigration of 

lymphocytes and the "cytokine storm" observed in COVID-19 patients is a response to 

SARS-CoV-2-induced cellular damage. Many cytokines appear to be involved in 

enhancing lymphocyte recruitment. TNFα is known to increase the adhesion of 

lymphocytes by activating the SDF-1/CXCR4 pathways. The T-lymphocyte/ endothelial 

interaction likely contributes to the prolonged interstitial inflammation in COVID-19.  

Activated T-cells attracted by chemotactic chemokines (e.g. CCL17, CCL8, or CCR1) 

(1) preferentially adhere to activated endothelial cells (19,20). Despite an increase in 

inflammatory blood flow and increased wall shear stress, transendothelial lymphocyte 

recruitment can occur in selected capillary beds (liver and lung), post-capillary venules 

(most parenchymal organs), and even specialized vascular segments that acquire 

structural modifications that reduce flow velocity and wall shear stress (21). Therefore, 

the structure of the microcirculation is continuously adapting to metabolic demands and 

immunosurveillance. The close association of inflammation and angiogenesis 

represents a pivotal pillar in perpetuating inflammatory processes during wound healing 

and infections such as COVID-19. Inflamed human endothelial cells and pericytes 

express high levels of toll-like receptors (TLRs) which are recognized together with their 

intracellular adaptor protein MyD88 as sentinels of the innate immune system (22). 

SARS-Co-V and other coronaviruses may be recognized by TLRs and MyD88 (23, 24). 

Stimulation of endothelial TLRs and MyD88 results in a release of cytokines (e.g. IFNγ, 

TNFα, Il1α, G-CSF), chemokines, leucocyte adhesion molecules (e.g. E-selectin, 

ICAM1, VCAM1), procoagulation mediators (e.g. fibrin, PAI, vWF), and proangiogenic 

factors (e.g. VEGF, NOS, or CD14 monocytes) (25).  



“Intussusceptive” (non-sprouting) angiogenesis is a well-characterized morphogenetic 

process in cancer (26), inflammatory diseases and tissue regeneration (27). Distinct 

from intussusceptive angiogenesis, sprouting angiogenesis is characterized by sprouts 

composed of endothelial cells. The endothelial sprouts typically grow toward an 

angiogenic stimulus (such as VEGF-A) and add vessels to tissues devoid of blood 

vessels. Intussusceptive angiogenesis is a rapid process of intravascular septation that 

produces two lumens from a single vessel within minutes.  The process appears to 

recruit bone-marrow derived mononuclear cells―expanding and adapting capillary 

plexuses without requiring active proliferation of endothelial cells (Figure 1B) (28). The 

newly formed "intussusceptive pillars" (Fig. 1C) are then permeated by pericytes and 

myofibroblasts providing mechanical stabilization of the transcapillary pillar core. We 

previously showed that this formation of intussusceptive pillars is primarily located in 

dilated vascular segments with low blood flow velocity and reduced wall shear stress 

(12,13). Recently, CXCL12/CXCR4 signaling has been identified as an important 

molecular regulator of intussusceptive angiogenesis and hypoxia (29):  the positive 

feedback loop between vascular shear stress, CXCL12 (SDF1)-expression, hypoxia and 

the release of eNOS has been identified as an adaptation of the vascular system to 

maintain blood flow responsive to the demands of prolonged inflammation.  Therefore, 

the pronounced release of eNOS cascade is a pivotal physiological process to maintain 

blood flow into tissues with occluded vessels and to initiate tissue repair by expanding 

the vascular architecture by intussusceptive angiogenesis. In our own studies, we 

observed abundant intussusceptive angiogenesis in the disrupted pulmonary vascular 

architecture of patients who died of COVID-19 (Fig. 1C, D), stated in numbers nearly 

three times higher than in influenza A (H1N1)-lungs. Furthermore, the expression of 

CXCL12 and CXCR4 was highly upregulated in these COVID-19 lungs and was 

associated with dense T-cell infiltration.  These findings are consistent with 

inflammation-induced angiogenesis observed in other conditions such as colitis (30,31) 

and malignant tumors (26).   

In a recent morphomolecular study published in the European Respiratory Journal (32), 

we demonstrated the presence and impact of microvascular alterations in fibrotic 

interstitial lung diseases. We observed a higher frequency of intussusceptive features in 



the injury patterns of NSIP and AFE fibrotic lungs whereas UIP lungs revealed 

compensatory angiogenesis predominantly by sprout formation (32, 33). In addition, 

intussusceptive angiogenesis was observed in chronic pulmonary vascular diseases 

with variable degree of thrombosis, such as CTEPH (34), pulmonary capillary 

hemangiomatosis (35,36), and pulmonary veno-occlusive disease (PVOD) (35) (Table 

1).  Although the pathologic mechanisms underlying fibrotic remodeling in pulmonary 

thromboembolic occlusions are poorly understood, thrombofibrosis and endothelial-

mesenchymal transition seem to be promoted by hypoxia-induced activation of 

endothelial cells, intussusceptive angiogenesis, activation of mesenchymal cells and 

immune cells (31-34).  There is a compelling evidence that at least the progress and 

severity of progressive interstitial lung disease may be influenced by coagulation and 

fibrinolytic capacities and vascular permeability (38,39), although the therapeutic use of 

orally-administered anticoagulants has been critically evaluated in IPF patients (40).  

Especially in the light of inestimable long-term complications in COVID-19, further 

experimental and observational studies should investigate the contribution and the 

interplay between the overwhelming angiocentric T-cell inflammation, thrombotic 

microangiopathy and the compensatory flow-regulated intussusceptive angiogenesis in 

the increased morbidity and mortality COVID-19. 
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Figure 

 

 

(A) Schematic of pulmonary endothelialitis, thrombosis, and intussusceptive angiogenesis in COVID-19. 

(B) Intussusceptive angiogenesis is a morphogenetic process which rapidly expands the vascular plexus. 

(C) Transmission electron micrograph of lung tissue of a deceased COVID-19 patient highlights the 

formation of an intussusceptive pillar (red arrowheads) which spans the lumen of the vascular walls. (D) A 

disrupted vascularity with distorted vessels and intussusceptive pillars (blue arrowheads) is observed in 

COVID-19 lungs, as depicted as scanning electron micrograph of microvascular corrosion casts of 

COVID19 autopsies. 

 


