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The development of the cardiopulmonary bypass (CPB) revolutionized cardiac surgery and contributed immensely to improved
patients outcomes. CPB is associated with the activation of different coagulation, proinflammatory, survival cascades and altered
redox state.Haemolysis, ischaemia, and perfusion injury andneutrophils activation duringCPBplay a pivotal role in oxidative stress
and the associated activation of proinflammatory and proapoptotic signalling pathways which can affect the function and recovery
of multiple organs such as the myocardium, lungs, and kidneys and influence clinical outcomes. The administration of agents with
antioxidant properties during surgery either intravenously or in the cardioplegia solution may reduce ROS burst and oxidative
stress during CPB. Alternatively, the use of modified circuits such as minibypass can modify both proinflammatory responses and
oxidative stress.

1. Introduction

The development of the cardiopulmonary bypass (CPB)
revolutionized cardiac surgery and contributed immensely to
improved patients outcomes [1, 2].

It is accepted that CPB exposes patients to a complex set
of nonphysiological conditions during which organs are sub-
jected to severe functional alterations. CPB is associated with
the activation of different coagulation, proinflammatory, sur-
vival cascades and altered redox state [3–5] (Figure 1). Despite
significant refinements over the years, oxidative stress and
inflammation remainmajor concerns when using CPB [6, 7].

2. Reactive Oxygen Species

Free radicals are molecules with unpaired electrons making
themhighly reactive.They can be derived fromoxygen, nitro-
gen, or sulfur molecules. Free radicals derived from oxygen
are usually called reactive oxygen species (ROS) [8, 9]. The
main forms of cardiac ROS are superoxide (O

2

−∙), hydrogen
peroxide (H

2
O
2
), hydroxyl radicals (∙OH), and peroxynitrite

(ONOO−). Although hydrogen peroxide is not a free radical
it is considered a ROS due to its highly reactive nature.

ROS can be formed as a natural byproduct of normal
metabolism of oxygen as aerobic metabolism results in the

production of ROS in the mitochondria during ATP forma-
tion. Nonetheless, cells are normally able to shield themselves
against ROS through different defense mechanisms that
include enzymatic and free radical scavenging activities to
neutralize these radicals resulting in a balance (redox state)
between ROS production and cells ability to detoxify ROS
or to repair any subsequent damage. During periods of
stress, however, ROS levels can increase drastically leading to
substantial damage to many cellular molecules such as lipids,
proteins, and DNA [8–10].

Redox signalling occurs as a response to changes in
the levels of ROS and the mitochondria appear to be of
pivotal importance for this signalling due to its role in
metabolism, the continuous flux of O

2

∙− and oxygen sensing.
Redox signalling is involved in multiple processes such as
homoeostasis, stress response pathways, and cardiac remod-
eling and fibrosis [8, 10–12].

3. Oxidative Stress, Inflammation, and
Cardiopulmonary Bypass

The presence of atherosclerotic coronary artery disease
requiring intervention is associated with evidence of oxida-
tive stress and inflammation prior to surgery which can
be markedly accentuated during CPB [13]. Furthermore,
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Figure 1: Schematic overview of inflammatory and oxidative stress
response during cardiopulmonary bypass.

patients undergoing cardiac surgery tend to have other
coexisting morbidities such as diabetes and renal and lung
diseases which are associated with abnormal redox state and
oxidative stress.

CPB initiates multiple processes that impact both cellular
and noncellular contents of blood. The repeated passage of
blood through the nonendothelialised extracorporeal circuit
triggers the activation of polymorphonuclear leukocytes
(mainly neutrophils) which are believed to be a prime source
of ROS during cardiac surgery. Activation of neutrophils
during CPB is evident by the loss of L-selectin and the
upregulation of CD11b/CD18 (Mac-1) [14–17] (Figure 2).

During CPB, ischaemic injury occurs when the blood
supply to tissue is suboptimal and accompanied by cellular
adenosine triphosphate depletion due to its degradation by
hypoxanthine [7, 18]. Hypoxanthine is normally oxidized by
the enzyme xanthine dehydrogenase to xanthine using nicoti-
namide adenine dinucleotide (NAD) in a reaction converting
NAD to nicotinamide adenine dinucleotide hydrogenase
(NADH), conversely; xanthine dehydrogenase is converted to
xanthine oxidase during periods of ischaemia. Furthermore,
anaerobic metabolism results in the production of lactic
acid and altered cellular homeostasis with the loss of ion
gradients across cell membranes [7, 16–19]. Reperfusion after
a period of ischaemia plays a pivotal role in oxidative stress
by initiating a series of biochemical events that result in
the generation of excessive amount of ROS. Reduction of
oxygen leads to the production of the superoxide anion,
which is able to penetrate through cell membranes where it
is converted into other more toxic oxygen species. Therefore,
the dismutase reaction (catalyzed by superoxide dismutase)
leads to the conversion of the superoxide anion into hydrogen
peroxide. This can lead to the production of hypochlorous
acid by the action of MPO, or through interaction with iron

salts, in the Haber-Weiss reaction to generate the highly
toxic hydroxyl radical. The toxicity of the hydroxyl radical
results from its ability to take electrons from a wide range of
molecules, leading to the formation of a new radical that can
continue the reaction [16, 17, 19].

ROS can modulate signalling proteins activity by nitro-
sylation, carbonylation, disulphide bond formation, and glu-
tathionylation triggering the activation of proinflammatory
and proapoptotic signalling pathways such asMAPKandNF-
𝜅B.

Superoxide radicals (O
2

−) are generated rapidly in EC
by the NADPH oxidase complex in response to TNFR [20].
Application of antioxidants to EC or the overexpression of
HO-1 can inhibit the induction of E-Selectin and VCAM-
1 whereas ICAM-1 is relatively refractory [21, 22]. MAPK
activities are tightly regulated by redox. Antioxidants shorten
the kinetics of MAPK activation following treatment with
TNF𝛼, suggesting that endogenous ROS are essential for
prolonged MAPK activity and the underlying mechanism
may involve suppression of negative regulators of MAPK
by ROS [23]. For example, in resting cells, thioredoxin
suppressesMAPK signalling pathways by interactingwith the
N-terminal portion of ASK1 to inhibit its catalytic activity
[24]. This interaction is disrupted by ROS which alters
the structure of thioredoxin by triggering the formation of
intramolecular disulphides. Thus the prolonged activation of
MAPK in response to proinflammatory signalling relies on
disruption of thioredoxin-ASK1 interaction by ROS [24].

Activation of NF-𝜅B under oxidative stress has been
reported in a number of inflammatory conditions [25–27].
Oxidative stress-induced LDAs and their GS-conjugates play
a major role in the mediation of NF-𝜅B-induced inflamma-
tory signals via PLC/PKC/IKK/MAPK pathways. Further-
more, ROS can act as toxic messengers that activate NF-𝜅B
and affect the cellular functions of growth factors, cytokines,
and other molecules [28, 29].

CPB and ischaemia and reperfusion injury during
surgery can cause substantial myocardial stress leading to the
generation of proinflammatory mediators and ROS resulting
in damage to proteins, lipids, and DNA which impact on
postoperative cardiac functional and outcomes [13].

Ischaemia leads to reduction in mitochondria energy
production due to the lack of oxygen andnutrients.This is fol-
lowed by fall in ATP, decrease in intracellular pH, and a rise in
intracellular concentrations of Na+ and Ca2+ [7, 18] Further-
more, cardiac myocytes exposed to ischaemia react by pro-
ducing proinflammatory cytokines and the consequent acti-
vation of leukocyte adhesion cascade allowing neutrophils
to accumulate in the myocardium, adhere to the myocytes,
and release ROS and other proteolytic enzymes. Moreover,
reperfusion can lead to irreversiblemyocardial damage due to
mitochondrial dysfunction driven by cytosolic Ca2+ loading
and generation of ROS [7, 30, 31]. ROS can also stimulate the
opening of the mitochondrial permeability transition pore
(mPTP) leading to further ROS production and generating
a positive feedback loop of ROS formation and mPTP
opening [32–35]. The opening of mPTP can also result in
mitochondrial swelling, mitochondrial membrane damage,
and cell death via either apoptosis or necrosis [35, 36].
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Figure 2: Main triggers of inflammatory response during cardiopulmonary bypass.

CPB exposes RBCs to abnormal settings resulting in
integrity and function alteration. Shear stress forces gen-
erated by the CPB pump cause mechanical damage to the
RBCs and induce ionic pump changes at the cell surface
and an abnormal accumulation of intracellular cations [37–
39]. This reduces RBC deformability which is important for
maintaining normal microcirculation by making them more
rigid and fragile. Furthermore, and as a consequence of
membrane distortion, RBC become vulnerable to the mem-
brane attack complex (MAC) generated from the activation of
complement, leading to haemoglobin leak, thus substantially
increasing the concentration of free Hb which can act as a
peroxidase in the presence of H

2
O
2
[37, 39–41].

Blood transfusion during or postsurgery is associ-
ated with increased oxidative stress due to the use of
stored blood which has decreased antioxidant properties.
Blood storage will lead to changes in erythrocytes (stor-
age defect) which include depletion of adenosine triphos-
phate and 2,3-diphosphoglycerate, alterations in nitric oxide-
mediated functions, and increased lipid peroxidation [42, 43].
Moreover; erythrocyte membrane changes make them less
deformable and more fragile with an increased tendency
toward progressive haemolysis leading to the accumulation of
free haemoglobin and iron in the circulation which are redox
active and prooxidant as discussed previously.

Increased ROS production and, more specifically,
increased superoxide anion production derived from the
atrial nicotinamide adenine dinucleotide phosphate oxidase
are independently associated with a higher risk of POAF
supporting an association between ROS in human atrium
and POAF [44, 45]. Furthermore, atrial tissue from patients
in whom POAF developed displayed an upregulation of
mitochondrial MnSOD activity and an increased sensitivity
of mPTP opening [45, 46].

It is recognised that cardiac surgery using CPB is asso-
ciated with a wide spectrum of acute lung injury which can
manifest in its most severe form as acute respiratory distress
syndrome (ARDS). ARDS is rare after surgery; however it
can have significant impact on morbidity and mortality. It
has been thought that complement and neutrophils acti-
vation alongside red blood cell damage and reoxygenation

injury in lung tissue are responsible for altering the redox
status towards oxidative stress conditions. Bronchoalveolar
lavage and plasma analysis of patients with ARDS after
cardiac surgery has shown evidence of severe oxidative
stress including the presence of high levels of chlorotyrosine,
nitrotyrosine, and orthotyrosine [47–49].

Acute kidney injury (AKI) as a complication of cardiac
surgery using CPB can be triggered bymany elements includ-
ing ischaemia and reperfusion injury, altered blood flow
patterns, haemolysis, and blood transfusion [50, 51]. Haemol-
ysis associated with increased levels of free haemoglobin in
conjunction with increased levels of plasma myoglobin has
been shown to be independent predictors of AKI after CPB
due to their prooxidant properties. Ischaemia and reperfu-
sion injury with the associated depletion of energy in renal
epithelial cells causes mitochondrial dysfunction, the release
of ROS, and the activation of proinflammatory signalling
pathways (MAPK and NF-𝜅B) that can cause disruption of
the cytoskeleton and lead to cell tubular damage [52–55].
Furthermore, these events taking place in the kidney will
result in active neutrophil sequestration to renal tissue and
more ROS generation [53, 55].

4. Intervention to Reduce Oxidative
Stress during CPB

4.1. Antioxidant Supplements. Theeffects of ROS are counter-
acted under physiological conditions by antioxidants which
are molecules that are capable of neutralizing free radicals
by accepting or donating electron(s) thereby eliminating the
unpaired condition of the radical. The antioxidant molecules
may directly reactwith the reactive radicals and destroy them,
while they may become new free radicals which are less
active, longer-lived, and less dangerous than those radicals
they have neutralized. They may be neutralized by other
antioxidants or other mechanisms to terminate their radical
status.

The use of additive antioxidants such as propofol, L-
arginine, and N-acetyl-cysteine (NAC) during CPB as intra-
venous infusion or mixed with cardioplegia can be an
appropriate strategy to counteract the impact of ROS.



4 Oxidative Medicine and Cellular Longevity

Propofol (2,6-diisopropylphenol) is a commonly used
agent in cardiac surgery for both induction and maintenance
of anaesthesia. The phenolic hydroxyl group included in
Propofol’s structure is similar to vitamin E which is known to
be a natural antioxidant. Multiple in vitro and in vivo studies
have demonstrated significant antioxidant effects of propofol
[56–58]. It has been reported to inhibit lipid peroxidation
to protect cells against oxidative stress and to increase the
antioxidant capacity of plasma in humans [59]. Propofol
can react with peroxynitrite, leading to the formation of a
propofol-derived phenoxyl radical and it therefore can act as
a peroxynitrite scavenger. Furthermore, propofol can protect
against peroxynitrite-mediated cytotoxicity, DNA ladderiza-
tion, and apoptosis [59–61]. Moreover propofol adminis-
trated intravenously can attenuate the activation of NF-𝜅B
[62] which has a pivotal role in oxidative stress and inflam-
matory responses activated during ischemia/reperfusion.

Animal studies demonstrated that propofol increases
the antioxidant capacity of the liver, kidney, heart, and
lung by decreasing t-BHP-induced TBARS formation in an
ischaemia and reperfusion model [56–58, 63]. During CPB,
RBC antioxidant capacity as measured by MDA production
is enhanced and maintained with the administration of
intravenous propofol. Furthermore, the administration of a
large dose of propofol during CPB attenuates postoperative
myocardial cellular damage in patients undergoing CABG
[64]. We have previously demonstrated in an animal model
that propofol protects isolated perfused rat hearts from
ischaemia/reperfusion injury through the preservation of
mitochondrial function during reperfusion by inhibiting
mitochondrial permeability transition pore opening [65].
Moreover, in another animal study, we demonstrated that
propofol infusion during CPB attenuated the changes in
myocardial tissue levels of adenine nucleotides, lactate, and
amino acids during ischaemia and reduced cardiac troponin
I release on reperfusion [66]. Furthermore, the permeability
transition in mitochondria isolated from hearts treated with
propofol was less sensitive to [Ca2+] than control mitochon-
dria. The result of a randomised trial designed to address the
effect of adding propofol to cardioplegia solution in patients
undergoing cardiac surgery will report shortly [67].

L-Arginine is an amino acid that can play an important
role in immune function and vascular homeostasis as a
precursor for the synthesis of nitric oxide (NO). It is recog-
nised that cardiac surgical patients have arginine/nitric oxide
pathway impairment evident by increased levels of nitric
oxide inhibitor asymmetric dimethylarginine [68, 69]. The
use of oral L-arginine supplements in patients undergoing
heart transplant resulted in reduced vascular endothelial cells
dysfunction and decreased serum H

2
O
2
production suggest-

ing an increase in bioavailability of NO [70]. Such changes
were translated clinically by improved exercise capacity of
postsurgery [71]. When L-arginine was added to cardioplegia
solutions in patients undergoing CABG, it was associated
with higherMyocardial O

2
uptake and reducedmalondialde-

hyde (MDA) extraction [72, 73]. In patients with impaired
LV function, L-arginine cardioplegia decreases biochemical
markers of myocardial damage and oxidative stress and
resulted in increased superoxide dismutase activity [74].

NAC is another effective scavenger of free radicals with
neutrophil aggregation inhibitory properties. When NAC
is used as intravenous infusion during CABG surgery, it
was noted that luminol, H

2
O
2
, HOCl-, and lucigenin levels

were significantly lower than the control group. Further-
more, tumour necrosis factor-alpha levels were significantly
decreased as a result of NAC administration [75, 76].
Moreover, MDA levels were significantly lower in the NAC
enriched group during the reperfusion period [75]. When
adding NAC to cardioplegia solution, it was noted that it can
significantly reduce serumMDA, glutathione, catalase, SOD,
glutathione peroxidase, and glutathione reductase [77–79].

Levosimendan is a calcium sensitizer that enhances
myocardial contractility without increasing myocardial oxy-
gen. Its function involves the activation of mitochondria
ATP-sensitive potassium (mito-KATP) channels and pro-
duction of eNOS-dependent NO through Akt and MAPK
[80, 81].

KATP channels belong to the ATP-binding cassette trans-
porter superfamily. Two KATP channel subtypes coexist in
themyocardium,with one subtype located in the sarcolemma
(sarc-KATP) membrane and the other in the inner mem-
brane of the mito-KATP [82]. Under homeostatic conditions
KATP channels are closed. However, under conditions of
ischemia/reperfusion, KATP channels are activated allowing
a net influx of K+ ions into the matrix and preventing
Ca2+ accumulation in the matrix, thus blunting the opening
of mPTP and its deleterious effects (as discussed above).
Furthermore, the activation of mito-KATP can protect cells
from damage induced by ROS and reduce cell apoptosis [83–
86]. Clinical studies in patients undergoing cardiac surgery
showed that Levosimendan significantly enhanced primary
weaning fromCPB comparedwith placebo in patients under-
going CABG. Moreover, the need for additional inotropic
or mechanical therapy was decreased especially in patients
with blunted ventricular function [87–90]. Furthermore, a
meta-analysis whichwas of randomised studies including 529
patients in 5 trials suggested that Levosimendanmight reduce
renal injury in adult patients undergoing cardiac surgery [91].

Recent years have witnessed the use of mitochondrial
targeted antioxidants such asMitoquinonemesylate (MitoQ).
MitoQ is made up of a lipophilic triphenylphosphonium
(TPP) cation covalently attached to a ubiquinone antioxidant
moiety. The positive charge on the TPP cation means that it
is rapidly and extensively taken up by mitochondria due to
the large membrane potential across the mitochondrial inner
membrane. Within mitochondria, the ubiquinone moiety of
MitoQ is rapidly reduced by complex II of the mitochondrial
respiratory chain to the active antioxidant ubiquinol form
and, after detoxifying a ROS, it is converted to the ubiquinone
form which is then rapidly recycled back to the active
antioxidant [92, 93].

MitoQ has been used in a wide range of animal stud-
ies and demonstrated efficacy in preventing mitochondrial
oxidative damage in the heart, liver, kidney, and brain
[92, 94–97]. Furthermore, MitoQ has been shown to be
protective against liver damage in hepatitis C patients [98].
The combination of strong evidence indicating a pivotal role
of mitochondrial damage in CPB related oxidative stress and



Oxidative Medicine and Cellular Longevity 5

data from animal studies showing that MitoQ prevents such
damage in the heart provides a compelling case for evaluating
the effectiveness of MitoQ in protecting the myocardium as
an additive to cardioplegia solution during cardiac surgery to
counteract the effect of CPB.

4.2. Mini-CPB. The impact of surface contact activation,
air-fluid interface, and cell damage by cardiotomy suction
associated with conventional bypass on the activation of
proinflammatory and survival cascades has led to the devel-
opment of minimised cardiopulmonary bypass circuit (mini-
CPB). The design is a closed CPB system characterised by
reduced surface area and thus priming volume, elimination
of cardiotomy suction, and prevention of air-blood contact.
The use of mini-CPB is associated with delayed or reduced
secretion of different proinflammatory cytokines, attenuated
complement activation, and blunted leukocytes activation
compared to conventional circuit [99, 100].

The utilization of mini-CPB is associated with significant
reduction in red blood cell damage (as measured by free
Hb), activation of coagulation cascades, and blunted fibri-
nolytic and proinflammatory activities. Furthermore, serum
concentration of MDA and allantoin/urate ratio as markers
of oxidative stress tend to be reduced in patients undergoing
surgery using mini-CPB when compared to conventional
circuit [101, 102].

5. Conclusions

Cardiopulmonary bypass, although not perfect, remains an
essential part of cardiac surgery. The utilization of CPB is
associated with the production of ROS and oxidative stress.

Haemolysis, ischaemia, and perfusion injury and neu-
trophils activation during CPB play a pivotal role in oxidative
stress and the associated activation of proinflammatory and
proapoptotic signalling pathways which can affect the func-
tion and recovery ofmultiple organs such as themyocardium,
lungs, and kidneys and influence clinical outcomes.

The administration of agents with antioxidant properties
during surgery either intravenously or in the cardioplegia
solution may reduce ROS burst and oxidative stress during
CPB. Alternatively, the use of modified circuits such as
minibypass canmodify both proinflammatory responses and
oxidative stress.More in-depth research and adequately pow-
ered randomised clinical studies with strict CPB protocols are
still required.
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