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Abstract: The serotonin syndrome is a medication-induced condition resulting from serotonergic
hyperactivity, usually involving antidepressant medications. As the number of patients experiencing
medically-treated major depressive disorder increases, so does the population at risk for experiencing
serotonin syndrome. Excessive synaptic stimulation of 5-HT2A receptors results in autonomic and
neuromuscular aberrations with potentially life-threatening consequences. In this review, we will
outline the molecular basis of the disease and describe how pharmacologic agents that are in common
clinical use can interfere with normal serotonergic pathways to result in a potentially fatal outcome.
Given that serotonin syndrome can imitate other clinical conditions, an understanding of the molecular
context of this condition is essential for its detection and in order to prevent rapid clinical deterioration.

Keywords: serotonin syndrome; polypharmacy; 5-hydroxytryptophan; antidepressants;
genetic polymorphisms

1. Introduction

The serotonin syndrome (SS) is a clinical condition resulting from serotonergic over-activity at
synapses of the central and peripheral nervous systems. The true incidence of the disease is unknown,
given that its severity varies and that many of its symptoms may be common to other clinical conditions.
The SS is triggered by therapeutic drugs that are not only common, but ones whose use appears to be
increasing at an alarming rate [1]. The most common drug triggers of SS are antidepressants, for which
the incidence of use in adults in the United States has increased from 6% in 1999 to 10.4% in 2010 [2].
Furthermore, reported ingestions of selective serotonin reuptake inhibitors (SSRIs) increased by almost
15% from 2002 to 2005 [3–7].

In this review article, we will describe the clinical pathophysiology of SS and present the leading
molecular theories underlying the disease. Being a purely clinical diagnosis with protean manifestations,
an understanding of the presentation of this disease and related confounding diagnoses is necessary
to establish a relevant context. What follows is the putative molecular basis of the disease, and how
certain genetic polymorphisms are hypothesized to contribute to its manifestations in predisposed
individuals. This information will facilitate an understanding of how certain medications can trigger
the syndrome, especially in high risk patients. It will also help readers to comprehend current treatment
strategies and directions for future research in the field.
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2. Clinical Context

2.1. Definition and Epidemiology

The diagnostic basis of SS includes the triad of altered mental status, autonomic hyperactivity,
and neuromuscular abnormalities [8,9] in patients exposed to any medication which increases the
activation of serotonin (5-hydroxytryptamine; 5-HT) receptors in the body [10]. These medications
include SSRIs, monoamine oxidase inhibitors (MAOI), opioid analgesics, antiemetics, illicit drugs,
and others [10]. The widespread use of these medications puts a large portion of the population at
risk for developing this disease, especially if used in combination [11]. A retrospective cohort study
reviewing Veterans Health Administration records from 2009–2013 showed a disease incidence of
0.23% in patients exposed to serotonergic medications (0.07% overall) [12]. This same study also
reported a 0.09% incidence of SS in commercially insured patients exposed to serotonergic medications
in 2013 (0.03% overall) [12]. The median cost per inpatient hospital stay associated with SS was
$10,792 for commercially insured patients and $8765 for Veterans Health Administration patients [12].
No associated mortality data was reported [10,12]. There are no reports identifying specific patient risk
factors that are associated with the development of SS outside of the genetic polymorphisms that will
be described in further detail later. However, many of the medications with the potential to cause SS
are commonly used in the geriatric population, thus placing these patients at higher risk of developing
the disorder.

Since SS varies in presentation, it is likely to be grossly underdiagnosed in clinical practice and,
thus, studies into its precise mechanism are very limited [13]. Much of the relevant research data is
derived from animal models and from case descriptions of individuals in whom the disease has been
highly suspected.

2.2. Manifestations and Diagnosis

Several diagnostic algorithms have been proposed since SS was first recognized as a discrete
disease entity (Table 1). The main challenges encountered in establishing formal diagnostic criteria
are (1) the wide range of symptoms exhibited by patients affected by the disease and (2) the lack of a
confirmatory laboratory test. Thus, the diagnosis of SS remains purely clinical at present. The first
diagnostic criteria were proposed by Sternbach et al. in 1991, based on a review of 38 published case
reports in which patients demonstrated several shared symptoms [8]. Cases were reported by as
many as 12 different investigators, and the most commonly reported symptoms included confusion
(n = 16), hypomania (n = 8), restlessness (n = 17), and myoclonus (n = 13) [8]. Sternbach’s criteria were
based on the inclusion of three or more of the most commonly noted symptoms extracted from the 38
cases. The major weakness of Sternbach’s criteria was the inclusion of four separate altered mentation
symptoms (confusion/hypomania, agitation, and incoordination), which made it possible to diagnose
SS purely based on mental status changes [11]. Such mental status changes could be commonly
observed in many other conditions such as alcohol and drug withdrawal states and anticholinergic
delirium [3], a limitation which Sternbach fully acknowledged.
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Table 1. Comparison between the Sternbach, Radomski, and Hunter Criteria for diagnosing serotonin toxicity.

Sternbach Criteria Radomski Criteria Hunter Criteria

Inclusion Criteria Presence of serotonergic medication Presence of serotonergic medication Presence of serotonergic medication

Exclusion Criteria
Presence of other possible disease etiologies (e.g., infection, substance abuse,

and withdrawal)
and/or recent addition (or increase in dose) of neuroleptic medication.

None None

Signs and Symptoms

At least three of the following signs/symptoms:
Either four major, or three major plus

two minor signs/symptoms:
Any of the following combinations of

primary (1◦) ± secondary (2◦)
signs/symptoms:

Major:

Mental status changes (confusion, hypomania) Impaired consciousness

Elevated mood

Agitation Semicoma/coma 1◦: Spontaneous clonus alone
Myoclonus

Myoclonus Tremor
1◦: Inducible clonus AND

Shivering

Hyperreflexia Rigidity 2◦: Agitation or diaphoresis
Hyperreflexia

Diaphoresis Fever
1◦: Ocular clonus AND

Sweating

Shivering Minor: 2◦: Agitation or diaphoresis
Restlessness

Tremor
Insomnia

1◦: Tremor AND
Incoordination

Diarrhea
Dilated pupils 2◦: Hyperreflexia

Akathisia

Incoordination
Tachycardia 1◦: Hypertonicity AND fever (temperature

>38 ◦C) ANDTachypnea/Dyspnea

Fever
Diarrhea

2◦: Ocular clonus or inducible clonus
Hypertension/hypotension

Table adapted from [8,11,14].
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Between 1995 and 2000, Radomski and colleagues [14] reviewed subsequent cases of suspected
SS with the goals of refining Sternbach’s diagnostic criteria and outlining the medical management
of this disorder. The most recent diagnostic criteria, however, were developed by Dunkley et al.
in 2003 [11]. Dunkley’s criteria were formed through the use of a toxicology database called the Hunter
Area Toxicology Service, which included patients who were known to have overdosed on at least one
serotonergic medication. A decision tree was constructed by including symptoms which recurred at a
statistically significant frequency in patients with SS that had been diagnosed by a medical toxicologist.
This diagnostic algorithm was both more sensitive (84% vs. 75%) and more specific (97% vs. 96%) in
diagnosing SS than Sternbach’s criteria [11]. The Hunter Serotonin Toxicity Criteria, as they are now
known, are generally considered the gold standard for diagnosing this disease [10]. They consist of the
aforementioned triad of altered mental status, neuromuscular excitation and autonomic dysfunction.
Symptoms usually occur within one hour of exposure to triggering medications in 30% of patients,
and within six hours in 60% of patients [1]. Mild cases may present as little more than flu-like symptoms,
while severe cases may progress rapidly to cardiovascular collapse and death (Figure 1).
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Figure 1. Signs and symptoms of the serotonin syndrome occur along a spectrum of severity.
Mild symptoms may easily be overlooked, and may manifest as little more than diarrhea and flu-like
symptoms. Unless the disease is recognized and the causative drugs are discontinued, it can rapidly
progress to muscle rigidity, severe hyperthermia and death.

2.3. Differential Diagnosis

Several potentially life-threatening diseases share signs and symptoms similar to those present in SS,
making the importance of an accurate and timely diagnosis imperative (Table 2). These diseases include
neuroleptic malignant syndrome, anticholinergic toxicity, malignant hyperthermia [10], antidepressant
discontinuation syndrome, and alcohol withdrawal. All may result in some degree of autonomic
dysregulation (including tachycardia, hypertension, and hyperthermia) and an acutely altered mental
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status [10]. The first three of these disorders are most closely related, and their defining clinical features
are summarized in Table 2 [10,15]. Neuroleptic malignant syndrome is typically associated with the
use of antipsychotic medications, such as dopamine antagonists, and presents with signs of muscular
rigidity. These signs typically occur several days following exposure to triggering medications,
unlike SS which immediately follows medication exposure [15]. Anticholinergic toxicity, as the name
implies, is associated with the use of anticholinergic medications. Typical signs of this disorder include
dry, hot skin and absent bowel sounds, contrasting with the diaphoresis and hyperactive bowel sounds
that are typical of SS [10]. Malignant hyperthermia is associated with exposure to volatile anesthetic
agents or to the depolarizing neuromuscular blocker, succinylcholine. The result is severe muscle
rigidity and hyporeflexia [15].

Like alcohol withdrawal, benzodiazepine or barbiturate withdrawal can cause a hyperactive
state which may be mistaken for SS. Alcohol, benzodiazepines, and barbiturates are central nervous
system depressants, and their abrupt discontinuation in dependent patients may trigger a potentially
life-threatening reaction. Alcohol withdrawal typically ranges in severity from disorientation and
tremulousness to ‘delirium tremens’, which occurs within 48–72 h of the last alcoholic exposure
and may be deadly. Delirium tremens, as the name implies, is characterized by disorientation and
global confusion, hallucinations, and sometimes seizures [16]. Autonomic disturbances such as
tachycardia and hypertension are common in severe cases although, unlike SS, hyperthermia is not [16].
The timing of benzodiazepine or barbiturate withdrawal varies depending on the medication half-life,
and longer-acting medications are less likely to cause withdrawal symptoms [16]. Anxiety is common
following benzodiazepine or barbiturate withdrawal, although hyperthermia and neuromuscular
abnormalities (e.g., clonus and hyperreflexia) are not.

Withdrawal from antidepressant medications may also be mistaken for SS. Antidepressant
withdrawal syndrome is typically associated with second-generation antidepressants [17], although
it can also occur with SSRIs and tricyclic antidepressants (TCAs) [18]. It usually begins within three
days of stopping the offending medication, and symptoms are usually mild and resolve spontaneously
within one to two weeks [19]. Antidepressant withdrawal syndrome can cause a spectrum of signs
and symptoms including neuromuscular abnormalities such as akathisia, myoclonic jerks, and tremor,
as well as altered mental status, psychosis, and mood disturbances. However, it is not typically
associated with hyperthermia or with autonomic disturbances such as tachycardia [18].

Table 2. Differential clinical diagnosis for serotonin syndrome.

Disease Medication Exposure Shared Clinical
Features

Distinguishing Clinical
Features

Serotonin Syndrome Serotonergic medications Hypertension Clonus, hyperreflexia
Hyperactive bowel sounds

Neuroleptic Malignant
Syndrome Dopamine antagonists Tachycardia No clonus or hyperreflexia

Bradykinesia

Anticholinergic Toxicity Acetylcholine antagonist Hyperthermia
No clonus or hyperreflexia

Dry skin
Absent bowel sounds

Malignant Hyperthermia Halogenated anesthetics
Succinylcholine Altered mental Status No clonus or hyperreflexia

Extreme muscular rigidity

Table adapted from [10,20].

3. The Molecular Basis for the Serotonin Syndrome

3.1. Animal Models

The exact pathophysiologic mechanism for SS has been difficult to elucidate, partially due to
the multitude of known serotonin receptors classes and subtypes [21]. Although serotonin is the
primary ligand for all of these receptors, only the stimulation of certain receptor subtypes leads to
SS [21–23]. There is a dearth of research on the pathology of serotonin toxicity in humans, necessitating
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data collection from experimental animal models. Haberzettl et al. analyzed 109 publications in
which rodent behavioral and autonomic responses were altered by the administration of serotonin
agonists or serotonin-enhancing drugs [24]. Further, they identified “traditional behavioral responses,”
a distinct set of rodent responses that are consistently observed following the administration of these
medications and, thus, believed to be the rodent equivalent of SS in humans. These include, amongst
others, forepaw treading, hindlimb abduction, head weaving, head twitching, back muscle contraction,
and hyperthermia [8,22,24,25]. Haberzettl used these behaviors to assess the utility of standardized
animal models of SS for the study of this disease in humans.

While the relevance of these rodent models remains questionable, animal models have, nonetheless,
provided valuable insights into the importance of 5-HT receptors and the 5-HT transporter in the
pathophysiology of SS. Until recently, SS was believed to be primarily a disease involving 5HT1A

receptors [26], since the most prominent effects in the rodent serotonin behavioral syndrome appeared
to be mediated by postsynaptic 5-HT1A receptors [27–31]. Subsequent animal studies involving
hyperthermia and muscle excitation have shed some more light on the potential pathophysiology
of SS in humans. In these experiments, rats exposed to various serotonin receptor subtype-selective
antagonists demonstrated hyperthermia that was significantly associated with 5-HT2A receptor
stimulation [32]. Additionally, hyperthermia was prevented when rats exposed to a serotonin
precursor and MAOI was introduced to the 5-HT2A receptor antagonist ritanserin [33]. Conversely,
when the 5-HT1A receptor was directly stimulated, rats develop hypothermia [28,34]. Although 5-HT2A

stimulation would appear to be the cause of hyperthermia in SS, this is likely an over-simplification.
Rat models of SS also show increased levels of norepinephrine, dopamine and glutamate within the
hypothalamus [35,36], as well as elevated dopamine and norepinephrine levels in the frontal cortex
of rats exposed to 5-HT2A agonists [37]. The N-methyl-D-aspartate (NMDA) antagonist memantine,
as well as positive allosteric modulators at GABAA, diazepam, and chlormethiazole, have all been
found to be effective at decreasing the hyperthermic response in SS model rats. This suggests that,
at least in rats, GABA and NMDA receptors are also involved in the pathogenesis of SS [33,38].

3.2. Molecular Pathways

An understanding of the putative mechanisms of SS necessitates a basic understanding of
serotonin synthesis and clearance. 5-hydroxytryptamine is produced in enterochromaffin cells of the
gastrointestinal tract as well as in the midline raphe nuclei of the brainstem. The serotonin produced
in enterochromaffin cells is responsible for most of the neurohormone present in the blood, and of the
approximately 10 mg of serotonin present in the human body, 4–8 mg is found in enterochromaffin
cells located in the gastric and intestinal mucosa [26]. The remainder is found in the central nervous
system and in platelets (where it is taken up and stored alone, since platelets do not synthesize
serotonin) [26]. The serotonin produced in the gastrointestinal tract stimulates physiologic functions
as diverse as vasoconstriction, uterine contraction, bronchoconstriction, gastrointestinal motility,
and platelet aggregation. In contrast, centrally-released serotonin inhibits excitatory neurotransmission
and modulates wakefulness, attention, affective behavior (anxiety and depression), sexual behavior,
appetite, thermoregulation, motor tone, migraine, emesis, nociception, and aggression [10,39]. The signs
and symptoms associated with SS include a conglomeration of effects produced by overzealous
activation of central and peripheral serotonin receptors.

3.2.1. Synthesis and Release

5-hydroxytryptamine is synthesized from the essential amino acid L-tryptophan, supplied by
dietary protein (Figure 2). In the brain, other neutral amino acids, such as phenylalanine, leucine,
and methionine, are transported by the same carrier as L-tryptophan [40]. Hence, the entry of
tryptophan into brain is related not only to its concentration in blood, but also to its concentration
relative to that of these other amino acids [40]. While increased dietary intake of L-tryptophan can



Int. J. Mol. Sci. 2019, 20, 2288 7 of 17

lead to SS [41], the therapeutic relevance of amino acids that compete with tryptophan for treatment of
symptoms of SS has not yet been explored.
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by several processes, including synthesis, controlled release from the presynaptic neuron, reuptake,
and metabolism. 5-HTP = 5-hydroxytryptophan; 5-HT = 5-hydroxytryptamine (serotonin); VMAT =

vesicular monoamine transporter; SERT = serotonin reuptake transporter; 5-HIAA = 5-hydroxy indole
acetic acid. Asterisk denotes the rate-limiting step in serotonin synthesis.

The first, and rate-limiting, step in serotonin synthesis involves the conversion of L-tryptophan
to 5-hydroxytryptophan (5-HTP) by the enzyme tryptophan hydroxylase. Inhibition of this reaction
results in a marked depletion of serotonin. 5-HTP is then converted to serotonin by the enzyme
aromatic L-amino acid decarboxylase [10,42,43]. Once serotonin is synthesized, it is packaged into
vesicles via a vesicular monoamine transporter (VMAT). Storage of serotonin in vesicles requires its
active molecular transport from the cytoplasm by using energy stored in the electrochemical gradient
generated by a vesicular H+-ATPase. Thus, uptake of serotonin is coupled to efflux of hydrogen cations.
In the central nervous system, these vesicles then release serotonin into the synaptic cleft, most likely
through calcium-dependent exocytosis [42,44]. The rate of serotonin release is dependent on the firing
rate of serotonergic neurons.

3.2.2. Termination of Effects: Reuptake and Metabolism

The synaptic effects of serotonin are terminated by molecular reuptake and metabolism [42].
Reuptake occurs via the serotonin reuptake transporter (SERT) that is located along the axon of
presynaptic serotonergic neurons. Reuptake by the SERT controls the amount of serotonin in the
synaptic cleft. It is an energy- and temperature-dependent process and it can be inhibited by drugs such
as SSRIs, serotonin noradrenaline reuptake inhibitors (SNRIs), and inhibitors of sodium–potassium
ATPase activity [44]. Inhibition of serotonin reuptake leads to accumulation of this molecule within
the synaptic cleft, thereby potentially overstimulating its molecular receptors.
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There is significant structural homology amongst molecular transporters of serotonin,
norepinephrine and dopamine. Furthermore, different drugs exhibit selective but incomplete inhibition
of each transporter protein. For example, secondary amine TCAs, such as desipramine, are 25- to
150-fold more potent at inhibiting transport of norepinephrine than serotonin, while SSRIs are 15 to
75 times more potent at inhibiting the uptake of serotonin than the uptake of norepinephrine [40].
Drugs such as cocaine, on the other hand, are nonselective inhibitors of all three transporters.
Inhibition of serotonin reuptake is one of the most common mechanisms by which drugs cause SS.
3,4-Methylenedioxy methamphetamine (MDMA), commonly known as the recreational drug ‘ecstasy’,
and fenfluramine are unique in that they are able to target both VMATs and SERTs [44]. These drugs
directly compete for the VMATs’ substrate binding site, and they also act as SERT substrates inhibiting
serotonin transport into the cell and facilitating efflux by the SERT [44]. SERTs are the targets of SSRIs,
TCAs, and clomipramine, and long-term exposure to SERT-blocking drugs, such as SSRIs, eventually
causes downregulation of the protein transporters [44].

The primary pathway for serotonin metabolism is oxidative deamination by the enzyme
monoamine oxidase (MAO). MAO converts serotonin to 5-hydroxyindoleacetaldehyde, and this
product is further oxidized by a nicotinamide adenine dinucleotide (NAD)-dependent aldehyde
dehydrogenase to form 5-hydroxyindoleacetic acid (5-HIAA). The intermediate acetaldehyde can also
be reduced by NADH-dependent aldehyde reductase to form the alcohol 5-hydroxytryptophol [40].
Either oxidation or reduction may take place depending on the concentration ratio of oxidized (NAD+)
to reduced (NADH) nicotinamide adenine dinucleotide in the tissue. In the brain, 5-HIAA is the
primary metabolite of serotonin.

There are at least two isoenzymes of MAO: MAO-A and MAO-B. The metabolism of serotonin
and norepinephrine preferentially occurs by MAO-A [44], since MAO-A enzymes are specific for
monoamine neurotransmitters and inactivate these molecules by terminal deamination [45]. The first
prescribed MAOI were nonselective and irreversible, but more modern drugs in this class are selective
for MAO-A or MAO-B and are reversible [46]. MAO inhibitors (MAOIs), therefore, can increase
the concentration of serotonin and contribute to the development of SS. MAOIs that are irreversible,
nonselective, or inhibit MAO-A are strongly associated with severe cases of SS, especially when
these agents are used in combination with an SSRI or a serotonin-releasing drug (e.g., meperidine,
dextromethorphan, and MDMA) [47–51].

3.2.3. Serotonin Receptors Subtypes

Serotonin receptors consist of seven numerically named families, 5-HT1 through 5-HT7, several of
which have multiple members (e.g., 5-HT1A, 5-HT1B, 5-HT1C, 5-HT1D, 5-HT1E, and 5-HT1F) [10,42].
This classification scheme is based on a combination of the pharmacologic properties of each receptor,
their secondary messenger systems, and their amino acid sequence [43]. 5-HT1, 5-HT2, 5-HT4, 5-HT6,
and 5-HT7 are all G-protein coupled receptors, while 5-HT3 is a ligand-gated receptor [44]. Regarding
secondary messenger systems, the 5-HT1 family inhibits adenylate cyclase while the 5-HT2 family
activates phospholipase C. [43] Each of the receptor subtypes is present in the central nervous system,
while subtypes 1C, 2, 3, and 4 have additionally been identified in the gastrointestinal tract [43].

Although no single receptor has been identified as causing the signs and symptoms associated with
SS, it appears that 5-HT2 receptor agonism and, more specifically, 5-HT2A agonism plays a significant
role in causing the severe symptoms associated with serotonin toxicity [20,52]. 5-HT2A is present in
the cerebral cortex, gastrointestinal tract, vascular and bronchial smooth muscle, and platelets [43],
and causes neuroexcitation, bronchoconstriction, platelet aggregation, and smooth muscle contraction.
The role of genetic polymorphisms affecting the 5-HT2A receptor is the focus of current research
in neuropsychiatric disorders [20,53]. It may also shed light on molecular basis of SS, and will be
discussed in more detail later.
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3.3. Medications Triggering the Serotonin Syndrome

Several discrete mechanisms have been hypothesized to explain how drugs cause SS, although it
is likely that more than one of these mechanisms may need to be simultaneously triggered in order
to result in clinically significant SS. Thus, the most common cause of SS is polypharmacy causing (1)
inhibition of serotonin uptake, (2) decreased serotonin metabolism, (3) increased serotonin synthesis,
(4) increased serotonin release, and/or (5) activation of serotonergic receptors [22]. Given the centrality
of serotonin excess in precipitating the disease, the term ‘serotonin toxicity’ has been advocated by some
in lieu of ‘serotonin syndrome,’ in order to more accurately describe the disease pathophysiology [52].
Table 3 provides a summary of the drugs that have been reported to cause serotonin syndrome.
The combination of an MAOI with an SSRI, and SNRI or another MAOI is the most dangerous
combination and the most likely to result in SS [54]. The Therapeutic Goods Administration of
Australia published a drug safety report in 2009, warning against the risk of life-threatening reactions
when MAOIs are combined with SSRIs or phenylpiperidine opioids [55].

Table 3. Drugs associated with development of serotonin syndrome, classified according to their
mechanism of action.

Synthesis and Release

Increase Serotonin
Synthesis Dietary supplements: L-tryptophan

Increase Serotonin
Release

Psychostimulants: Amphetamines, phentermine, MDMA
Antidepressants: mirtazapine

Opioids: meperidine, oxycodone, tramadol
Cough suppressants: dextromethorphan

Metabolism

Inhibit Serotonin
Uptake

Psychostimulants: Amphetamines, MDMA, cocaine
Antidepressants: trazodone

SNRI: desvenlafaxine, duloxetine, venlafaxine
SSRI: citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine, sertraline

TCA: amitriptyline, amoxapine, clomipramine, desipramine, doxepin, imipramine,
maprotiline, nortriptyline, protriptyline, trimipramine

Opioids: meperidine, methadone, tramadol
Cough suppressants: dextromethorphan

Inhibit Serotonin
Metabolism

Anxiolytics: buspirone
MAOI: furazolidone, isocarboxazid, linezolid, methylene blue, phenelzine,

selegiline, tranylcypromine

Inhibit Cytochrome
P450 Microsomal

Oxidases

CYP2D6 CYP3A4 CYP2C19

Inhibitors: fluoxetine,
sertraline

Substrates:
dextromethorphan,

oxycodone, risperidone,
tramadol

Inhibitors:
ciprofloxacin, ritonavir
Substrates: methadone,
oxycodone, venlafaxine

Inhibitors: fluconazole
Substrates: citalopram

Receptor Activation

Activate Serotonin
Receptors

Hallucinogen: LSD
Anxiolytics: buspirone

Antidepressants: trazodone
Opioids*: fentanyl, meperidine

Mood stabilizers: lithium

* opioids most likely activate serotonergic receptors through a combination of postsynaptic 5-HT receptor stimulation
as well as synergistic µ-opioid and 5-HT receptor presynaptic inhibition of GABA release [56]. Adapted from [57].
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Increased production of serotonin (through an overabundance of the precursor molecule
L-tryptophan [58]) as well as decreased metabolism of serotonin (by the administration of MAOI [59]),
may each cause receptor overstimulation and SS. The combination of L-tryptophan administration
with the use of the MAO-A inhibitor clorgyline has been reported to be sufficient to trigger SS in
experimental rats [23,33,35,36,38]. Serotonin metabolism may also be influenced by alterations in the
function of the cytochromes p450 (CYPs). These are enzymatic hemeproteins which generally act as
terminal oxidases in electron transfer chains. CYPs are ubiquitous in nature, although in humans they
are associated with the inner membranes of endoplasmic reticulum or mitochondria and they account
for approximately 75% of drug metabolism [60]. SSRIs (most notably fluoxetine and paroxetine) and
antibiotics, such as ciprofloxacin [61] and fluconazole [62], strongly inhibit CYPs such as CYP2D6 and
CYP3A4 [63]. These CYPs are responsible for the metabolism of SSRI and other serotonergic drugs
such as venlafaxine, citalopram, methadone, tramadol, oxycodone, risperidone, dextromethorphan,
and phentermine, resulting in a potentially toxic level of serotonergic drugs as well as a vicious cycle
of progressive SSRI accumulation.

Some medications that cause SS act by increasing serotonin concentrations at the synapse
without altering the synthesis or metabolism of neurotransmitters. Stimulants such as amphetamines,
phentermine, MDMA, and phenanthrene opioids (e.g., morphine, codeine, hydromorphone,
buprenorphine, and oxycodone) have been associated with increased localized release of serotonin at
presynaptic nerve terminals [59,64–66].

Opioid analgesics include some of the most commonly prescribed drugs in the hospital and
outpatient settings [67]. They can cause SS when taken in conjunction with other serotonergic
medications (such as MAOIs, SSRIs, SNRIs, and TCAs [58]), when taken with serotonin reuptake
blockers (such as methadone and tramadol [59]) or when administered alone in high doses. Meperidine,
tramadol, methadone and other synthetic opioids have been shown to inhibit SERT function in vitro,
although fentanyl and phenantrene opioids such as morphine have not [56]. This implies that opioids
have SERT-independent effects in vivo. Seminal animal studies by Tao et al. have provided important
insight regarding the opioid-induced modulation of serotonin efflux in the central nervous system [68].
They demonstrated that different opioid subtypes cause distinct serotonergic effects. Whereas the µ-
and δ-opioid agonists cause a release of serotonin by the dorsal raphe nucleus, they had no effect on
serotonin release in the median raphe nucleus or in the nucleus accumbens [68]. In contrast, κ-opioid
agonists produced localized decreases in serotonin in all three regions of the brain. The investigators
further discovered that morphine (a predominantly µ-opioid agonist) does not directly stimulate
serotonergic neurons [69]. However, it indirectly stimulates serotonin release via activation of opioid
receptors on gamma-amino butyric acid (GABA)-ergic and glutamatergic afferent neurons in the dorsal
raphe nucleus [70].

The increasing use of opioids along with the increase in serotonergic drug prescriptions in
the general population [71] has dramatically increased the risk of SS. In 2016, the food and drug
administration (FDA) issued a drug safety communication concerning the risk of serotonin toxicity
with the use of opioids [72]. Although there is limited clinical data to support this warning, several
cases of opioid-associated serotonin toxicity have been reported [56,73]. In a retrospective analysis
of 203 cases of serotonin toxicity registered in the French pharmacovigilance database from 1985 to
2013 [74], for example, the association between opioids and either SSRI or MAOI was implicated in
over 25% of the cases of SS. Clinical case reports of opioid-induced serotonin toxicity have often come
under heavy criticism relating to inconsistent reporting of toxic events, failure to report important
positive and negative findings, and the presentation of incomplete or erroneous information on drugs
involved, symptoms, and treatments [75]. Nonetheless, all opioids should be used with caution in
patients taking serotonergic drugs.

Lastly, certain medications have serotonin receptor agonist properties and are able to activate
serotonin receptors in the absence of endogenous agonist [59]. Buspirone, an anxiolytic that is in
common clinical use, has receptor agonist activity at several serotonin receptors including 5-HT1A and
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5-HT2A [76]. The drug of abuse, lysergic acid diethylamide (LSD), has also been proposed to act in
similar fashion as it independently binds to 5-HT1 and 5-HT2 receptors [59,77]. Lithium is used for
the treatment of certain psychiatric disorders such as bipolar disorder and increases the sensitivity
of the postsynaptic serotonin receptors to serotonin without affecting the concentration of serotonin
itself [21]. While its precise mechanism of action remains unknown [21,78], its use has frequently been
associated with the development of SS [79,80].

3.4. Genetic Polymorphisms

It appears that certain individuals with known polymorphisms at the T102C site of the
5-HT2A receptor gene may be predisposed to developing SS [20,53]. Over the last decade, genetic
polymorphisms affecting the 5-HT2A receptor have also been implicated in antidepressant therapy
failure and in the pathophysiology of neuropsychiatric disorders, ranging from schizophrenia to
affective disorders [81]. A prospective, double-blind, randomized pharmacogenetic study compared
treatment outcomes with the SSRI paroxetine and the non-SSRI antidepressant mirtazapine in patients
having different T/C single nucleotide polymorphisms affecting the 5-HT2A receptor [82]. The study
found that patients who are homozygous for polymorphisms at the HTR2A locus (C/C) are more likely
to discontinue paroxetine due to more severe adverse side effects. Incidentally, mirtazapine has a
unique mechanism of enhancing serotonergic and noradrenergic pathways in the central nervous
system [83]. It inhibits presynaptic inhibitory receptors on noradrenergic and serotonergic neurons
(thus, increasing release of these neurotransmitters in the synaptic cleft). However, since it also blocks
5-HT2 and 5-HT3 receptors, only serotonergic transmission via 5-HT1A is enhanced [84].

Another published case report described a patient taking the MAOI phenelzine, who developed SS
without being exposed to other serotonergic agents. He was subsequently found to be a homozygous
carrier for T102C allele (i.e., C/C) [85]. Contrary evidence is presented by Cooper et al., who failed to
find a significant increase in clinically significant cases of SS in individuals having polymorphisms at
the T102C locus [53].

Individual variations in serotonin metabolism by CYPs have also been proposed to contribute to SS
susceptibility [86–88]. One case report describes the development of SS in an individual who was taking
the SSRI paroxetine in the absence of other known serotonergic medications [87]. While paroxetine
infrequently causes SS in isolation, this patient was found to have a polymorphism for the CYP2D6
allele, which may have impaired the metabolism of paroxetine and contributed to the development of
SS [87]. A similar case report postulated that altered drug pharmacokinetics may have contributed to
SS in a patient taking fluoxetine who was found to have a nonfunctioning CYP2D6 genotype, as well
as being heterozygous for an allele of CYP2C19 that results in poor metabolizing ability [88].

The contribution of CYP polymorphisms to the development of SS is further complicated when one
considers the multitude of pharmacologic CYP inducers and inhibitors in clinical use today. Medications
for the treatment of human immunodeficiency virus (HIV) are notorious for altering the intrinsic
metabolic rates of CYPs. Indeed, one case describes the development of SS in an HIV-infected patient
taking antiretroviral medications which are known inhibitors of CYP2C19 and CYP3A4. In addition to
polypharmacy-induced alterations in CYP-driven drug metabolism, this patient was also found to
express a poor metabolizer phenotype of CYP2D6 [86]. Unlike T102C polymorphisms, the CYP2D6
genotype has not yet been shown to alter tolerance to antidepressant medications, although large-scale
studies are needed to establish the risk conferred by CYP polymorphisms on the development of SS [83].

As described above, SERT proteins are critical to the termination of synaptic serotonergic activity.
Animal studies have suggested that genetic differences in the SERT gene may also partially explain the
susceptibility of certain individuals to develop SS [83,89]. Fox et al. showed that SERT knockout mice
(SERT-/-) exhibited increased susceptibility to SS-like behavior when given serotonergic drugs. Some of
these mice even displayed SS-like behavior without administration of 5-HTP. This was also true in
mice heterozygous for the gene (SERT+/-). However, in wild type mice (SERT+/+), administration of
both 5-HTP and MAO-A-selective inhibitor was needed to induce SS-like behavior. Furthermore,
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knockout and heterozygous mice expressed significantly less presynaptic inhibitory Htr1a autoreceptors.
These receptors direct a negative feedback mechanism, so that their activation by serotonin decreases
serotonin synthesis and, conversely, fewer inhibitory receptors lead to increased serotonin synthesis.

These findings in mice may have implications for patient care. SERT polymorphisms are known
to exist in humans [90], and some can reduce SERT function by as much as 50% of normal levels.
Further research is needed to assess whether they have a clinically meaningful impact in patients who
develop SS.

4. Receptor-Targeted Therapy for Serotonin Syndrome

Ideally, the occurrence of SS is prevented by clinicians who are vigilant of patients taking high-risk
medications. Preventative strategies include yearly reassessment of the continued need for serotonergic
medications, the use of the lowest medication dose required to treat symptoms, accurate medical
history-taking with an emphasis on illicit drug use, close medical follow-up during medication dose
increases and during hospital encounters where patients may be exposed to triggering medications,
and patient education geared at recognizing early symptoms of SS [54].

In patients experiencing SS, toxicity usually resolves following the discontinuation of serotonergic
medications. Seventy percent of patients recover completely within 24 h, 40% of patients require
admission to an intensive care unit, and only 25% of patients require endotracheal intubation [91].
In addition to stopping serotonergic medications, the treatment of SS in humans has consisted
primarily of supportive care, including the administration of benzodiazepines [1,10,92–94]. Given that
life-threatening manifestations of SS such as rigidity and hyperthermia seem to result only from
stimulation of 5-HT2A receptors [20], it would follow that directed therapy for this disease would
target this particular receptor. While the 5-HT2A blockers ritanserin and pimperone have been used
successfully in certain animal studies [35], there are no specific 5-HT2A receptor antagonists approved
for human use. Nor are there medications capable of increasing the body’s clearance of serotonin.

Most medications currently recommended for the treatment of SS are nonselective receptor
antagonists. There is anecdotal evidence to support the use of atypical antipsychotic agents that have
5-HT2A antagonist activity, such as olanzapine and chlorpromazine [10]. However, chlorpromazine
also causes sedation while increasing the risk of hypotension and neuroleptic malignant syndrome.
The nonselective 5-HT1A and 5-HT2A antagonist cyproheptadine has also been suggested as a potential
treatment for SS, with some documented success in the medical literature [95,96]. Based on these
findings, cyproheptadine has been added to the list of recommended antidotes to be kept in supply at
hospitals in Maryland, per the Maryland Poison Center established within the University of Maryland,
School of Pharmacy [97]. Critics of this approach have found no significant differences in outcomes
between patients receiving cyproheptadine versus those receiving supportive care alone [12,95,98]

Alternative symptomatic therapies include the beta blocker, propranolol, which possesses 5-HT1A

antagonist activity and may ameliorate SS-related tachycardia. However, like chlorpromazine, its use
is discouraged due to concerns regarding drug-related hypotension [10,99]. The NMDA receptor
antagonist memantine has also shown some promise in rat models of SS, although no current evidence
supports its therapeutic efficacy in humans [38].

5. Conclusions

The World Health Organization predicts that depression will be the second largest cause of death
and disability by 2020, yet up to 70% of patients either do not respond to or do not tolerate their prescribed
antidepressant therapy [100]. The solution to this problem likely lies in the pharmacoepigenetic tools
of the personalized medicine era [101]. These tools allow us to better understand an individual’s
transporter, enzyme, and receptor profile, and to tailor medication therapy (epidrugs) accordingly.
Epidrugs could, in theory, alter an individual’s epigenome to lessen the disease burden of depression
or to increase an individual’s tolerance to existing antidepressant therapies. This solution is not far
off, given that a battery of genes involved in the metabolism of antidepressants as well as the risk
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of drug-related adverse reactions is already being compiled [100,102]. Furthermore, the FDA has
already approved several genetically prescreened drugs in the field of psychiatry [103]. The continuing
development of these tools is likely to be our best defense to SS in the setting of a developing epidemic
of major depressive disorder in which the most commonly prescribed medications are also the ones
that are most likely to cause SS.
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