
fmed-09-1017371 November 30, 2022 Time: 13:42 # 1

TYPE Original Research
PUBLISHED 06 December 2022
DOI 10.3389/fmed.2022.1017371

OPEN ACCESS

EDITED BY

Giuliana Scarpati,
University of Salerno, Italy

REVIEWED BY

Felipe González-Seguel,
Universidad del Desarrollo, Chile
Ornella Piazza,
University of Salerno, Italy

*CORRESPONDENCE

Bijan Najafi
bijan.najafi@bcm.edu

†These authors have contributed
equally to this work and share first
authorship

SPECIALTY SECTION

This article was submitted to
Intensive Care Medicine
and Anesthesiology,
a section of the journal
Frontiers in Medicine

RECEIVED 11 August 2022
ACCEPTED 17 November 2022
PUBLISHED 06 December 2022

CITATION

Zulbaran-Rojas A, Mishra R,
Rodriguez N, Bara RO, Lee M,
Bagheri AB, Herlihy JP, Siddique M
and Najafi B (2022) Safety and efficacy
of electrical stimulation
for lower-extremity muscle weakness
in intensive care unit 2019 Novel
Coronavirus patients: A phase I
double-blinded randomized
controlled trial.
Front. Med. 9:1017371.
doi: 10.3389/fmed.2022.1017371

COPYRIGHT

© 2022 Zulbaran-Rojas, Mishra,
Rodriguez, Bara, Lee, Bagheri, Herlihy,
Siddique and Najafi. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Safety and efficacy of electrical
stimulation for lower-extremity
muscle weakness in intensive
care unit 2019 Novel
Coronavirus patients: A phase I
double-blinded randomized
controlled trial
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Naima Rodriguez1, Rasha O. Bara1, Myeounggon Lee1,
Amir Behzad Bagheri1, James P. Herlihy2,
Muhammad Siddique2 and Bijan Najafi1*
1Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular
Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of
Medicine, Houston, TX, United States, 2Department of Pulmonary Critical Care, Baylor College of
Medicine, Houston, TX, United States

Background: Intensive care unit (ICU) prolonged immobilization may lead

to lower-extremity muscle deconditioning among critically ill patients,

particularly more accentuated in those with 2019 Novel Coronavirus

(COVID-19) infection. Electrical stimulation (E-Stim) is known to improve

musculoskeletal outcomes. This phase I double-blinded randomized

controlled trial examined the safety and efficacy of lower-extremity E-Stim

to prevent muscle deconditioning.

Methods: Critically ill COVID-19 patients admitted to the ICU were randomly

assigned to control (CG) or intervention (IG) groups. Both groups received

daily E-Stim (1 h) for up to 14 days on both gastrocnemius muscles

(GNMs). The device was functional in the IG and non-functional in the

CG. Primary outcomes included ankle strength (Ankles) measured by an

ankle-dynamometer, and GNM endurance (GNMe) in response to E-Stim

assessed with surface electromyography (sEMG). Outcomes were measured

at baseline, 3 and 9 days.

Results: Thirty-two (IG = 16, CG = 16) lower extremities in 16 patients were

independently assessed. The mean time between ICU admission and E-Stim

therapy delivery was 1.8 ± 1.9 days (p = 0.29). At 3 days, the IG showed

an improvement compared to the CG with medium effect sizes for Ankles

(p = 0.06, Cohen’s d = 0.77) and GNMe (p = 0.06, d = 0.69). At 9 days, the

IG GNMe was significantly higher than the CG (p = 0.04, d = 0.97) with a

6.3% improvement from baseline (p = 0.029). E-Stim did not alter vital signs
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(i.e., heart/respiratory rate, blood saturation of oxygen), showed no adverse

events (i.e., pain, skin damage, discomfort), nor interfere with ICU standard of

care procedures (i.e., mechanical ventilation, prone rotation).

Conclusion: This study supports the safety and efficacy of early E-Stim therapy

to potentially prevent deterioration of lower-extremity muscle conditions in

critically ill COVID-19 patients recently admitted to the ICU. If confirmed in a

larger sample, E-Stim may be used as a practical adjunctive therapy.

Clinical trial registration: [https://clinicaltrials.gov/], identifier

[NCT04685213].

KEYWORDS

COVID-19, critically ill patients, lower extremity weakness, electrical stimulation,
intensive care unit

Introduction

Bed rest and immobilization are time-honored treatments
for managing trauma and acute or chronic illnesses. Problems
arising from this treatment modality can complicate a
primary disease, worsening the initial cause of admission
(1). For instance, critically ill patients who require prolonged
immobilization due to intensive care unit (ICU) stay often
suffer from muscle weakness (2). Particularly, this condition
may originate from neuro-myogenic disturbances in lower
extremities (3, 4) that, when immobilized, major pathways
involving inflammation, impaired oxygen delivery, and
hyperglycemia arise (5, 6). These consequences are highly
prevalent among hospitalized patients with 2019 Novel
Coronavirus (COVID-19) in need of intensive care (7, 8).
Particularly, this population receive concomitant standard
therapy of paralytics and glucocorticoids that leads to inhibition
of acetylcholine receptors in the neuromuscular junctions (9);
ultimately, causing deleterious effects on the musculoskeletal
metabolism (10).

Recent studies have explored the physiopathology of muscle
wasting in critically ill COVID-19 patients (11). Cytokine
storms, C-reactive protein, and pro-inflammatory molecules are
thought to be part of the biological mechanism (12). These
factors may induce endothelial damage and mitochondrial
autophagy leading to myofibrillar breakdown (13). In the
lower extremities, these consequences can contribute to muscle
atrophy, weakness, functional impairment, and persistent
symptoms that can last for up to 1 year following ICU discharge
(14). Eventually these symptoms can increase fall risk, lack
of independence, and quality of life deterioration (15, 16).
Therefore, there is a need to implement a practical solution to
prevent muscle deterioration of bedbound patients, particularly
those with severe COVID-19 infection.

Physical therapy (PT) greatly benefits neuromuscular
outcomes in patients with muscle deconditioning and weakness

(17). However, reduced personnel and resources can be a
limitation for ICU COVID-19 patients. Additionally, the rapid
loss of muscle mass within hours after ICU admission (5)
requires an immediate approach, making this condition time-
dependent. One practical solution is the use of electrical
stimulation (E-Stim) therapy. This modality prevents muscle
deconditioning (18), improves muscle strength, and restores
functionality in ICU patients (19). While it may be a suitable
treatment to facilitate the rehabilitation pathways for COVID-
19 patients (20), empirical evidence is needed (11). Today, this
technology has been demonstrated to improve muscle strength
in ICU COVID-19 patients (21). However, there is still a
lack of randomized studies (22) to confirm its efficacy. Thus,
it is unclear whether this adjunctive therapy prevents lower-
extremity muscle deconditioning in ICU COVID-19 patients.

This study examines the potential safety and efficacy of
lower-extremity E-Stim therapy to prevent lower-extremity
muscle deconditioning in ICU COVID-19 patients. We
hypothesized that patients receiving short-term E-Stim therapy
will show significant improvement in lower-extremity outcomes
[i.e., muscle endurance, ankle strength (Ankles), risk of fall]
compared to those who do not receive it.

Materials and methods

Study design and settings

Critically ill COVID-19 patients admitted to the ICU due
to acute respiratory failure at Baylor St. Luke’s Medical Center
(BSLMC, Houston, TX, USA) were recruited in a phase I
double-blinded randomized controlled trial. Recruitment was
performed from December 2020 to March 2021 by research
assistants (AZ-R and NR). The protocol of the study was
registered on clinicaltrials.gov, Identifier: NCT04685213. This
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study followed the Consolidated Standards of Reporting Trials
(CONSORT) guidelines for randomized clinical trials.

Participants

To be eligible, patients must have been admitted to
the ICU due to COVID-19 infection within 3 days prior
to initiating E-Stim therapy, received assisted ventilation
therapy, and indicated bed rest for at least 7 days. These
conditions were based on the judgment of clinical intensivist
investigators (MS and JPH). Patients were excluded if they
were medically paralyzed (i.e., rocuronium, cisatracurium) or
under vasopressor therapy (i.e., norepinephrine, epinephrine,
vasopressin) at the moment of enrollment; expected to be
discharged from critical care in the next 24 h; had below the
knee amputations or lower-extremity wounds; demand-type
cardiac pacemaker, implanted defibrillator, or other implanted
electronic devices; and any conditions that may interfere with

outcomes or increase the risk of the use E-Stim based on the
judgment of clinicians.

Intervention

Patients were randomized (ratio: 1:1) to either control (CG)
or intervention (IG) groups through a computer-generated
list followed by sequential allocation. Participants and care
providers were blinded to the group allocation. The IG received
E-Stim through two electrode adhesive pads (2 cm × 2 cm,
Conductive electrode pads, Avazzia Inc., Dallas, TX, USA)
placed on proximal gastrocnemius muscle (GNM) (23) and
Achilles tendon of each leg using a bio-electric stimulation
technology (BEST R©, Dallas, TX, USA) microcurrent platform
[Tennant Biomodulator device (R), Dallas, TX, USA, Figure 1]
for 1 h daily for up to 14 days. The CG was provided with
an identical but non-functional device (placebo) for the same
period. Therapy was delivered in supine position placing the

FIGURE 1

Study setup: electrical stimulation device, plugs and pads, and surface electromyography sensors. Participants received electrical stimulation
through electrode adhesive pads placed on both proximal and distal gastrocnemius muscles using a bio-electric stimulation technology R©

(BEST) micro-current platform (Tennant Biomodulator R©). Electrical stimulation (E-Stim) was active in the intervention group and non-functional
in the control group. Two surface electromyography (Delsys Trigno Wireless EMG System, MA, USA) sensors were placed on the proximal lateral
gastrocnemius of each lower extremity to evaluate muscular outcomes. Proximal medial gastrocnemius signal was also recorded, but not
included for analysis. sEMG, surface electromyogram; GNM, gastrocnemius muscle; E-Stim, electrical stimulation.
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head of the patient’s ICU bed between 30–45 degrees. In cases
of prone positioning, E-Stim therapy was delivered placing the
head of the patient’s ICU bed within 20◦ (24).

The E-Stim application was set at 50 V with an interactive
high voltage pulsed alternative current (HVPAC) in the shape of
an asymmetrical damped sinusoidal biphasic pulsed waveform
(25), which allows for muscle relaxation and avoids fatigue
during therapy (26). An intensity level from 50 to 250 V has
been previously FDA-cleared for the use of pain relief (25).
The pulse duration was between 400 and 1400 microseconds
(µs), and pulse frequency between 20 and 121 hertz (Hz). These
same intensity level and pulse characteristics were shown to
be harmless in a previously published clinical trial for lower-
extremity ischemic lesions (27). E-Stim was discontinued if
the patient presented rapid deterioration [i.e., arterial blood
oxygen desaturation < 93% under ventilation assistance,
hemodynamic instability, septic shock, thigh extracorporeal
membrane oxygenation (ECMO) placement, or generalized
gross edema] despite intensive care treatment. Intubation was
not an indication for E-Stim discontinuation.

Equipment for muscular assessment
and data analysis

Surface Electromyography (sEMG, Delsys Trigno Wireless
EMG System, MA, USA) was recorded bilaterally from the
proximal lateral GNM (Figure 1) according to the Surface
Electromyography for a Non-Invasive Assessment of Muscles
(SENIAM) guidelines (28). Prior to electrode placement, the
skin was cleaned with alcohol and prep gel (Nuprep, CO, USA)
to minimize impedance. The raw sEMG signal was recorded at
2,000 Hz and filtered using a 4th order Butterworth band-pass
filter with cutoff frequencies of 20 and 400 Hz (29, 30). The
filtered sEMG data was full-wave rectified and smoothed using
a moving average to estimate the sEMG linear envelope (29,
30). Furthermore, the area under the envelope was calculated
to estimate the integrated EMG (iEMG) to quantify the level
of muscular activity (31, 32). EMG analysis was performed
using custom-made software programmed in MATLAB (The
MathWorks Inc., Natick, MA, USA).

Efficacy outcomes

Lower-extremity muscle outcomes included voluntary and
involuntary contraction metrics. First, in a standardized supine
position (33), Ankles was determined by the average of three
5 s dorsiflexion maximum voluntary isometric contractions
(MVIC) per 30 s of relaxation in-between (Figure 2)
assessed with a dynamometer (RoMech Digital Hanging Scale).
Second, GNM endurance [GNMe, defined as sustained muscle
involuntary contraction (34)] in response to 5 min of E-Stim
therapy was assessed with iEMG analysis.

Lower-extremity perfusion outcomes included plantar tissue
oxygen saturation (SatO2), a surrogate of muscle oxygen
consumption in response to E-Stim (35). SatO2 was measured
using a validated Near Infra-red Spectroscopy (NIRS) camera
(Snapshot NIR, KENT Imaging Inc., Calgary, AB, Canada)
that detects an approximate value of real-time SatO2 level in
superficial tissue. SatO2 levels were examined in the metatarsal
area, including the five toes. Muscular and perfusion outcomes
of the lower extremity were assessed at baseline, 3 and 9 days.

Lower-extremity functional outcome was the likelihood of
falling assessment via Morse Fall Scale (MFS) (36). This scale is
a standardized assessment performed by hospitalists at BSLMC
that assesses functional aspects of the lower extremity such as
ambulatory aid, gait, and transferring, among other features
related to risk of falling. As the score increases, it indicates
proportionally worse outcomes (low risk < 24; moderate risk
25–44; high risk > 45). The functional outcome was collected
from the electronic medical records at baseline, and at the
time of ICU discharge (i.e., home, hospital floor, or patient
expiration) to assess overall impact of intervention on subjects.
Electronic medical records were also reviewed to differentiate
whether outcomes were associated with any demographic
characteristics or comorbidities.

Safety and feasibility outcomes

Safety outcomes included monitoring of vital signs (i.e.,
heart/respiratory rate, blood pressure, blood saturation of
oxygen), and study-related adverse events (i.e., pain, skin
damage, discomfort, non-compliance). Feasibility outcomes
included average of patient E-Stim therapy completion,
average of measured outcomes at each time point (i.e., 3 and
9 days) excluding non-study-related adverse events (i.e., death,
intubation, deep vein thrombosis, rapid deterioration) (37,
38). Acceptability outcomes included interference with
ongoing COVID-19 standard of care procedures (i.e.,
mechanical ventilation, prone rotation, PT, other clinical
trials), and interaction with the ICU staff (i.e., nurses,
respiratory and occupational therapists, nutritional specialists,
machinery technicians).

Sample size justification and power
analysis

The sample size was estimated based on a Najafi et al. study
(39), in which the effectiveness of daily lower-extremity E-Stim
demonstrated a significant improvement in motor performance
(Cohen effect size, d = 1.35). To observe the benefit of functional
E-Stim (IG) to prevent or improve lower-extremity muscle
outcomes compared to non-functional (CG), we conducted a
power analysis following a (1) Conservative effect size (Cohen’s
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FIGURE 2

A typical case comparison between a maximum voluntary contraction and involuntary contraction of the gastrocnemius muscle assessed via
surface electromyogram. (A) Three 5–10 s dorsiflexion maximum voluntary contractions. (B) Three 5–10 s intervals of electrical stimulation set
at 50 V. Both panels having a 5–10 s relaxation period between contractions.

d = 0.6); (2) 80% generated power; (3) Alpha of 5%; (4) two
number of groups; and (5) two repeated measurements, utilizing
G ∗Power software (version of 3.1.6) (40). Each lower extremity
was considered as an independent sample due to the variability
in muscular and vascular status (41, 42).

Statistical analysis

Shapiro–Wilk test (p > 0.05) was used to assess the
normality of the data. Independent t-test was used for group
comparison at baseline on normally distributed continuous
demographics, clinical data, and sEMG parameters. Mann–
Whitney U test was used if the assumption of normal
distribution was not satisfied. For categorical variables, Chi-
square test was used to compare between-group differences
at baseline. The effect size for baseline continuous and
categorical data were measured using Cohen’s d and Cramer’s
V, respectively. Values ranging from 0.20 to 0.49 indicate small
effects, and values between 0.50 and 0.79 indicate medium
effects. Values ranging from 0.80 to 1.29 indicate large effects,
and values above 1.30 indicate very large effects. Generalized
estimating equations (GEE) was used to test the main effect
of group (two levels: CG and IG), time [two levels: baseline,
3/9 days (muscle and perfusion outcomes), or discharge time
(MFS Score)], and their interaction on the outcome measures.
For all tests, an alpha level of < 0.05 was considered statistically
significant. All calculations were made using IBM SPSS Statistics
27 (IBM, IL, USA).

Ethical consideration

This study was approved by the local Institutional Review
Board (IRB) at Baylor College of Medicine (Houston, TX,
USA) in accordance with the Declaration of Helsinki (approval

number H-47781). All participants read and signed the IRB-
approved informed consent forms before initiating assessments
or data collection. If the participant was cognitively impaired,
consenting was performed via telephone call with a legal
representative. The informed consent was obtained from all
participants and/or their legal guardians.

Results

Clinical characteristics

The progress through the phases of screening, allocation,
follow-up, and data analysis is shown in Figure 3. The vast
majority of patients were excluded from initial screening due to
anticipated discharge from critical care within 24 h. Nineteen
participants satisfied the inclusion and exclusion criteria. From
these, three were withdrawn due to rapid deterioration before
the mid-point (3 days), leaving a total of 16 participants
(Age = 64.8 ± 9.5, p = 0.43, d = 0.40) for analysis. Therefore,
eight participants (n = 16 lower extremities) were allocated
to the CG and eight participants (n = 16 lower extremities)
to the IG. Baseline characteristics showed the IG group had
significantly higher fasting glucose (p < 0.01, d = 1.767)
than the CG. All other baseline characteristics were not
significantly different between the groups (Table 1). The mean
time between ICU admission and delivery of E-Stim therapy was
1.8 ± 1.9 days (p = 0.61, d = 0.25). At the study enrollment,
the mean body SatO2 (SpO2) was 80.53 ± 13.38% (p = 0.27,
d = 0.56) in the complete cohort with all the participants
(100%) undergoing corticosteroid therapy. Limited or null
mobility persisted for a mean of 3.3 ± 3.5 days (p = 0.54,
d = 0.38) and after 7.5 ± 5.7 days (p = 0.93, d = 0.05), 68.7%
(p = 0.59, V = 0.13) of the participants began vigorous activity
involvement (i.e., physical/occupational therapy, standing up,
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FIGURE 3

Consort flow diagram. N, number of patients. n, number of lower extremities. ECMO, extracorporeal membrane oxygenation. First time
point = 3 days. Second time point = 9 days.

walking to chair). All others (31.3%) remained immobile during
their ICU stay.

Efficacy outcomes and longitudinal
analysis

At 3 days, the IG showed a non-significant improvement
compared to the CG with medium effect sizes for Ankles

(p = 0.06, d = 0.77, Figure 4A) and GNMe (p = 0.06,
d = 0.69, Figure 4B), whereas the CG showed a non-
significant deterioration for GNMe in comparison to baseline
(−3.9%, p = 0.08). At 9 days, the IG showed a significant
improvement compared to the CG with large effect size for
GNMe (p = 0.04, d = 0.97, Figure 4C). In comparison to
baseline, the IG’s GNMe showed a significant improvement
(+6.3%, p = 0.029). Lower-extremity oxygen consumption
(SatO2) values remained stable between and within groups
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TABLE 1 Demographic and clinical characteristics.

Intervention group
(N = 8, n = 16)

Control group
(N = 8, n = 16)

P-value Effect size

Baseline characteristics

Female, no. 5 (62.5) 2 (25) 0.31 2.28

Male 3 (37.5) 6 (75)

Age, years 66.75 ± 9.81 62.88 ± 9.51 0.43 0.40

Ethnicity, no.

Caucasian 1 (6.25) 1 (12.5) 0.31 0.26

African American 5 (31.3) 2 (25)

Hispanic 9 (56.3) 5 (62.5)

Asian 1 (6.25) 0 (0)

BMI, kg/m2 28.49 ± 7.17 32.45 ± 8.04 0.31 0.52

Diabetes mellitus, no. 3 (37.5) 6 (75) 0.13 0.37

Hypertension 5 (62.5) 6 (75) 0.59 0.13

Hyperlipidemia 4 (50) 2 (25) 0.30 0.25

Acute kidney injury 1 (12.5) 1 (12.5) 1.00 0.00

Chronic kidney disease 1 (12.5) 2 (25) 0.52 0.16

Coronary artery disease 1 (12.5) 1 (12.5) 1.00 0.00

Anemia 8 (100) 6 (75) 0.13 0.37

Pneumonia 7 (87.5) 8 (100) 0.30 0.25

biPAP/CPAP use 3 (37.5) 4 (50) 0.31 0.25

Vapotherm use 3 (37.5) 5 (62.5) 0.31 0.25

Hypercoagulable state 7 (87.5) 6 (75) 0.52 0.16

Immunosuppressed status 3 (37.5) 4 (50) 0.61 0.12

Time between admission and E-Stim therapy, days 2.13 ± 1.25 1.63 ± 2.45 0.61 0.25

Total E-Stim therapy duration, days 7.00 ± 3.02 8.75 ± 3.45 0.29 0.53

Physical therapy no. 5 (62.5) 6 (75) 0.59 0.13

Deceased after study end-point, no. 4 (50%) 5 (62.5) 0.61 0.12

Laboratory values

SpO2, % 78.75 ± 16.35 82.57 ± 9.82 0.27 0.56

Hb, g/Dl 11.20 ± 2.34 12.56 ± 2.37 0.26 0.57

Platelets, K/CU MM 253.00 ± 94.80 247.50 ± 146.55 0.93 0.04

WBC, K/µL 13.01 ± 3.91 9.36 ± 3.23 0.06 1.01

Glucose, mg/Dl 104.88 ± 28.08 167.38 ± 41.39 < 0.01 1.76

Creatinine, mg/Dl 1.92 ± 1.21 1.58 ± 1.23 0.58 0.27

D-dimer, MG/L FEU 4.15 ± 5.42 4.32 ± 7.11 0.96 0.02

Ferritin, ng/Ml 1360.38 ± 1345.60 2303.31 ± 1707.55 0.29 0.60

Fibrinogen, mg/Dl 528.21 ± 237.50 521.02 ± 264.60 0.95 0.02

Lactase dehydrogenase, mg/Dl 579.43 ± 138.17 907.67 ± 660.90 0.22 0.71

N, number of patients; n, number of extremities. Values are presented as mean ± standard deviation or n (%); BMI, body max index; biPAP, bi-level positive airway pressure; CPAP,
continuous positive airway pressure; SpO2, body oxygen saturation without ventilatory assistance; Hb, hemoglobin; WBC, white blood cells. Immunosuppressed status included patients
with renal or lung transplant, cancer, or autoimmune disease. The effect sizes were calculated by Cohen’s d (continuous) and Cramer’s V (categorical), respectively.

through time (p > 0.05, Table 2). At the time of ICU discharge,
the IG showed a significant improvement compared to the
CG with small effect size for MFS score (p = 0.05, d = 0.36,
Figure 4D). In comparison to baseline, the IG’s MFS score
showed a significant improvement (−12.7%, p = 0.05), opposite
to the CG, which showed a significant worsening score (48.1%,
p = 0.04). All other parameter comparison are shown in
Table 2.

Safety and feasibility outcomes

Electrical stimulation therapy did not alter vital signs
nor result in adverse events during the study period. The
device did not interfere with the ongoing standard of care
procedures for COVID-19 ICU patients, nor cause a burden
to the ICU staff. Protocol delivery showed 14/16 patients
(87.5%, n = 28 lower extremities) were able to complete
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TABLE 2 Outcome comparison across time between both groups.

Outcomes CG (n = 16) Time effect
P-value

1% IG
(n = 16)

Time effect
P-value

1% Time × group P-value
(Cohen’s d)

3 days

Ankles , kg Baseline 2.5 ± 1.2 0.15 −8 2.7 ± 1.7 0.26 42 0.06 (0.77)

3 days 2.1 ± 0.7 3.0 ± 1.6

GNMe , iEMG Baseline 327 ± 12 0.08 −3.9 331 ± 10 0.37 1.8 0.06 (0.69)

3 days 314 ± 27 338 ± 36

Plantar SatO2, % Baseline 64.9 ± 9.6 0.13 4.6 68.9 ± 6.2 0.33 2.7 0.7 (0.14)

3 days 67.9 ± 8.0 71.3 ± 6.7

9 days

GNMe , iEMG Baseline 327 ± 12 0.52 −1.5 331 ± 10 0.029 6.3 0.04 (0.97)

9 days 323 ± 18 352 ± 37

Plantar SatO2, % Baseline 64.9 ± 9.6 0.92 0.4 68.9 ± 6.2 0.89 0.3 0.86 (0.06)

9 days 67.2 ± 9.5 69.2 ± 8.9

Discharge

MFS score Baseline 31.2 ± 7.4 0.04 48.1 43.7 ± 17 0.05 −12.7 0.05 (0.36)

Discharge 46.2 ± 11.8 39.3 ± 11

N, number of patients; n, number of extremities; kg, kilograms; iEMG, integrated electromyography unit. Values are presented as mean ± standard deviation Values of time effect are
presented as p-values from generalized estimating equation models. Ankles , ankle strength; GNMe , gastrocnemius muscle endurance; SatO2, tissue oxygen saturation; MFS, Morse Fall
Risk Scale; MFS high score is proportional to severity; discharge time = 18.00 ± 10.19 days.

FIGURE 4

Comparison of outcomes within and between groups through time. Ankles, ankle strength; kg, kilograms; GNMe, gastrocnemius muscle
endurance; iEMG, integrated electromyography unit; MFS, Morse Fall Risk Scale. (A) Comparison of Ankles, and (B) GNMe within and between
groups at 3 days from baseline. (C) Comparison of GNMe within and between groups at 9 days from baseline. (D) Comparison of MFS within
and between groups at the time of intensive care unit (ICU) discharge (18.00 ± 10.19 days) from baseline; severity is proportional to high score.
P-value and Cohen’s d effect size are noted from time group interaction at each determined time point.

E-Stim therapy during the established study period (9 days).
At the first time point (3 days), the average of measured
outcomes from independent lower-extremity voluntary metrics
(Ankles) data excluding non-study-related adverse events (i.e.,
rapid deterioration = 6) was 100% (n = 26/26 samples), and

the average for involuntary metrics (muscle endurance and
SatO2) was 100% (32/32 samples). At the second time point
(9 days), the average of measured outcomes from independent
lower-extremity voluntary metrics (Ankles) data excluding
non-study-related adverse events (i.e., intubation = 10, early
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discharge = 2, death = 2, deep vein thrombosis = 1) was
94.1% (16/17 samples), and the average for involuntary metrics
(muscle endurance and SatO2) excluding non-study-related
adverse events (i.e., intubated = 4, early discharge = 2, death = 2)
was 91.6% (22/24 samples). Data for MFS functional assessment
at the time of ICU discharge (18.0 ± 10.2 days, p = 0.81, d = 0.11)
was collected in 100% (32/32 samples) of the participants.

Discussion

This study examined the safety and efficacy of lower-
extremity E-Stim adjunctive therapy to prevent muscle
deconditioning. Our main goal was to determine whether
this system can improve musculoskeletal outcomes at the
earliest application from ICU admission. Results suggest
that patients undergoing active E-Stim to the GNM had an
improvement in Ankles and muscle endurance after 3 days
compared to those that utilized sham devices. Comparison
at 9 days showed there was significantly higher muscle
endurance in patients undergoing active stimulation compared
to those that did not. We believe these findings are due to the
prompt activation of muscle fibers which may deaccelerate
the rapid atrophy, myofilament damage, protein synthesis,
and wasting found within the first week of ICU length of
stay (43). E-Stim induces non-selective recruitment and
activation of both type I and type II muscle fibers which
conform the GNM (44), ultimately enhancing strength and
cross-sectional area (45) in immobilized patients (46). Despite
wide evidence which supports the feasibility and safety of
E-Stim in the ICU setting (47, 48), further exploration is
needed to confirm its efficacy at improving lower-extremity
musculoskeletal outcomes, particularly in patients with severe
hypoxia (i.e., ICU COVID-19).

Electrical stimulation is known to excite motor units that
are used for greater levels of force production (49), aiding
lower-extremity muscle strength preservation for voluntary
activation (50). In a recent prospective cohort study in (n = 5)
ICU COVID-19 patients, Righetti et al. stated daily E-Stim
to the quadricep muscles in mechanical ventilated patients is
feasible at improving strength at 5 and 8 days per interrupted
sedation assessment (21). Similar non-COVID population
studies utilizing E-Stim to the peroneus longus (n = 24)
(51) and anterior tibialis (n = 11) (52) found a significant
improvement in ankle dorsiflexion strength. Moreover, a
randomized control trial (RCT) (53) delivering E-Stim to the
GNM of ICU patients (n = 36) showed an improvement in
strength at 9 days. The present RCT in ICU COVID-19 patients
undergoing active E-Stim to the GNM showed an improvement
in ankle dorsiflexion strength compared to controls with a
medium effect size (p = 0.06, d = 0.77, Figure 4A) after
3 days of starting therapy. Unfortunately, results at 9 days
were limited due to the high morbimortality status (i.e., deep

vein thrombosis, intubation, death) impeding patients from
performing voluntary tests, and limiting further assessment
post-sedation.

2019 Novel Coronavirus reviews have also claimed E-Stim
therapy may improve muscle endurance (18); however, evidence
is supported by different types of immobilized populations (54).
Hence, Veldman et al. suggested that E-Stim may result in a
fast-to-slow muscle fiber type transition, which could potentially
enhance endurance in patients with severe weakness unable
to perform voluntary contractions (i.e., cardiorespiratory,
critically illness) (55). However, due to the challenging objective
assessment of muscle endurance in patients with severe illness,
these outcomes were functionally assessed (i.e., waking distance
movement) after recovery. In our study, we assessed real-time
muscle endurance in the ICU setting utilizing electromyography
(56). This test is optimal for assessment of muscle endurance
and weakness as it offers a way to study the myoelectric features
of neuromuscular activation associated with E-Stim (57). That
said, the present study showed the IG had a higher improvement
in GNMe with medium effect size at 3 days (p = 0.06, d = 0.69,
Figure 4B) than the CG, yet a significant improvement with
a large effect size at 9 days (p = 0.04, d = 0.97, Figure 4C)
by increasing 6.3% (p = 0.029) from baseline (Table 2). This
was especially noteworthy since all patients had null mobility
over the first ∼3 days from ICU admission, avoiding any
confounding effect of physical or nutritional therapy. This
suggest that daily E-Stim may gradually improve GNMe in ICU
COVID-19 patients.

Multiple studies (58) have suggested applying E-Stim
therapy immediately after ICU admission to prevent lower-
extremity neuromuscular damage in ICU patients (59–61). The
physiology behind this suggestion relies on the fact that early
introduction to E-Stim can ensure early activation/contraction
of the motor unit (15). This is important because there is
an abrupt decline in amplitude of nerve action potential and
motor depolarization within 24 h from ICU admission (62).
In ICU COVID-19 patients, there is an additional degenerative
transformation and shrinkage of skeletal muscle due to
sarcopenia, oxidative stress, and hyper-catabolism induced by
cytokine storms and malnutrition (11, 63). In the present study,
E-Stim was provided within ∼1.8 days from ICU admission;
thus, an early involuntary contraction of motor units may have
led the IG muscle outcomes to improve as early as 3 days.
However, we believe therapy should be provided for prolonged
periods, even after ICU discharge. Further studies are needed
to explore musculoskeletal outcomes with the continuous use of
E-Stim after hospital discharge.

Another consequence of immobile status, loss of voluntary
contraction, and weakness acquired from the ICU is physical
function impairment (64–66). A recent systematic review
about post-ICU syndrome (67) reported significant functional
disability due to lower-extremity problems during the first
year following critical illness. The present study utilized the
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MFS (36) that evaluates ambulatory aid, gait, and transferring,
among other functional aspects. Despite some patients losing
consciousness during the study period (N = 6) and high-risk
morbimortality, E-Stim was safely and continuously delivered in
87.5% (n = 28 lower extremities) of the cohort for a 9 days period
without interfering with the responsibilities of the hospital staff.
The short-time therapy effect was reflected in the significantly
lower likelihood of falling in the IG compared to the CG
(p = 0.05, Figure 4D) at the time of ICU discharge. Nonetheless,
a longer follow-up period with larger sample sizes targeting
functional objective measurements is warranted to assess limb
functionality in critically ill COVID-19 patients undergoing
E-Stim therapy.

Under E-Stim therapy, oxygen consumption of the lower
extremity increases to supply energy to the lower-extremity
muscles and thus maintain isometric muscle contraction
(35, 68). At hypoxic levels, glycogen substitutes oxygen for
energy supplementation via the anaerobic metabolism pathway
(69) that, when depleted, may result in muscle fatigue and
subsequent injury (70). Although no study has explored the
effect of E-Stim on the tissue perfusion in the lower extremities
of ICU COVID-19 patients (71), Gerovasili et al. examined
it the thenar muscle of (n = 29) ICU patients. With a
provoked vascular occlusion, they found that mean SatO2
assessed with Near Infra-red Spectroscopy (NIRS) did not differ
before and after E-Stim therapy. With the severe hypoxia and
blood oxyhemoglobin disassociation that critically ill COVID-
19 patients present (72), one could expect this population may
be more susceptible to muscle perfusion deterioration after
undergoing stress (73). In the present RCT, the IG’s lower-
extremity distal perfusion showed a similar pattern to the CG
by remaining stable during the study period, meaning that daily
E-Stim did not alter the level of muscle oxygen consumption in
patients with severe hypoxia. However, studies evaluating SatO2
before and after 1 h E-Stim are needed to explore the real-time
effects of COVID-19 in lower-extremity muscle perfusion.

We acknowledge the main limitation of this study is the
small sample size, which may be underpowered for some
of the outcomes. However, from the feasibility standpoint,
we successfully collected all outcomes (i.e., Ankles, muscle
endurance, and muscle perfusion), excluding those who
underwent non-study-related adverse events, in 100% of the
available samples at the 3 days time point, and 91.6% at the
9 days time point. Based on the observed effect sizes (d = 0.69–
0.77, Table 2) at the 3 days time point, the available 26 samples
(lower extremities) resulted in a generated power in range of
92–96% for Ankles, whereas for muscle endurance, the available
32 samples (lower extremities) resulted in a generated power
in range of 97–99%. At the 9 days time point, the generated
power for muscle endurance was greater than 80% (available
samples = 22, d = 0.97, Table 2). However, the power was
insufficient for Ankles (less than 80%) because of the reduced
available samples (n = 15) in patients with deep vein thrombosis,

intubation, or death due to COVID-19; thus, were not reported.
This study was preventative; therefore, patient selection focused
on those at high risk of muscle deconditioning but not
clinically diagnosed with established guidelines for myopathy or
neuropathy. COVID-19 variants were not reported. Creatinine
phosphokinase, serum lactate, nor blood indicators for muscle
damage were measured. SatO2 was not directly measured from
the GNM. There were no other muscles stimulated or assessed.
The duration of follow-up was short due to the high mortality
rate in this particular population. Despite these limitations,
the observed medium effects for benefit of E-Stim, ease of
administration without overwhelming the nursing staff, and
high acceptability encourage future studies to confirm the
observed effects in preventing muscle deconditioning among
clinically ill patients who require prolonged bed rest.

Conclusion

Our study supports the safety and efficacy of E-Stim in the
ICU setting to prevent deterioration of lower-extremity muscle
weakness in critically ill COVID-19 patients. This adjunctive
therapy may provide a potential benefit for gastrocnemius
muscle endurance and Ankles, thus, possibly aid on the
prevention of functional sequelae in critically ill bedbound
patients or those with similar characteristics of severe hypoxia
or low SpO2. This is also true given the fact the benefit was
observed in those intubated patients who continued to receive
E-Stim therapy during their hospital length of stay. The benefits
of E-Stim rely on the rapid involvement of therapy at the time
of ICU admission. However, E-Stim does not replace PT, but
rather enhances gastrocnemius muscle endurance and Ankles

as an adjunctive treatment. Moreover, a portable and practical
system that is easy to use does not interfere with the daily duties
of the ICU staff. In addition, E-Stim did not alter vital signs or
lower-extremity oxygen consumption, nor did it show adverse
events during the study period. Further studies with larger
sample sizes and longer follow-ups are warranted to examine
the effectiveness of E-Stim to prevent muscle deconditioning in
critically ill COVID-19 patients.
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