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Abstract: Over the past decades, research has escalated on the use of polylactic acid (PLA) as a
replacement for petroleum-based polymers. This is due to its valuable properties, such as renewability,
biodegradability, biocompatibility and good thermomechanical properties. Despite possessing
good mechanical properties comparable to conventional petroleum-based polymers, PLA suffers
from some shortcomings such as low thermal resistance, heat distortion temperature and rate of
crystallization, thus different fillers have been used to overcome these limitations. In the framework
of environmentally friendly processes and products, there has been growing interest on the use of
cellulose nanomaterials viz. cellulose nanocrystals (CNC) and nanofibers (CNF) as natural fillers for
PLA towards advanced applications other than short-term packaging and biomedical. Cellulosic
nanomaterials are renewable in nature, biodegradable, eco-friendly and they possess high strength
and stiffness. In the case of eco-friendly processes, various conventional processing techniques,
such as melt extrusion, melt-spinning, and compression molding, have been used to produce
PLA composites. This review addresses the critical factors in the manufacturing of PLA-cellulosic
nanomaterials by using conventional techniques and recent advances needed to promote and improve
the dispersion of the cellulosic nanomaterials. Different aspects, including morphology, mechanical
behavior and thermal properties, as well as comparisons of CNC- and CNF-reinforced PLA, are
also discussed.
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1. Introduction

Over the past decades, there has been a tremendous interest in the utilization of nano-sized
particles, such as layered silicates, carbon nanomaterials and metals, as suitable reinforcements of
different polymeric materials towards various advanced applications [1–3]. The presence of these
nano-sized particles significantly improves the resulting properties, i.e., thermal, mechanical and
barrier properties, at fairly low contents (<10 wt %) [1,2,4]. Due to the growing environmental
concerns, there has been considerable effort dedicated to the use of eco-friendly particles. Cellulose
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nanomaterials (CNMs), due to their abundant availability, renewability, biodegradability, high strength
and stiffness, are considered suitable replacements of abovementioned nano-sized particles [3,5,6].

CNMs include all nano-sized cellulose-based particles having various shapes, sizes and surface
chemistries and properties. CNMs can be extracted from different sources, namely woody/non-woody,
tunicates and algae, or generated by bacteria. Since the biosynthesis of these sources differs,
the resulting cellulose nanomaterials have different degrees of crystallinity, aspect ratios and
morphologies [7]. CNMs can be isolated either through mechanical treatment or acid hydrolysis, or the
combination of these processes, which will result in different morphologies and surface chemistries [4].
Nonetheless, CNMs exhibit high aspect ratio, Young’s modulus of ~114 GPa, and tensile strength
of ~6000 MPa that are comparable to the commonly used inorganic fillers, which are, however, not
biodegradable and renewable [4,7,8]. Thus, CNMs can be exploited as reinforcement of different
polymeric materials towards various applications.

Over the past couple of years, the reinforcement of biopolymers (e.g., polylactic acid (PLA),
poly(caprolactone) (PCL), poly(butylene adipate terephthalate) (PBAT), polyhydroxy alkanoates
(PHAs), etc.) has received tremendous interest as alternative substitution for petroleum-based polymers
towards a wide variety of applications because of the stringent environmental legislations [4,9–12] in place
in several countries. This is owing to their unique features, such as eco-friendliness, biocompatibility
and ease of processability. Moreover, biopolymers degrade into harmless constituent elements when
disposed-off after their intended usage. Among them, PLA merits special interest due to its outstanding
properties when compared to petroleum-based polymers (e.g., polypropylene and poly (ethylene
terephthalate)) and easy processability by film processing, injection molding and blow molding
techniques [9,10,13].

CNM-reinforced PLA qualify to be termed “green nanocomposites”, which is of significance with
regard to environmental issues since both PLA and CNMs are biodegradable and renewable [14,15].
Furthermore, the presence of the CNMs can result in improve mechanical, thermal and
thermo-mechanical properties of PLA to afford their application in various fields, e.g., packaging
and biomedical. It is recognized that CNMs are inherently hydrophilic, which in turn, leads to their
inhomogeneous dispersion in hydrophobic PLA, thus adversely affecting the resulting properties.
Research has escalated, however, in the functionalization of CNMs to overcome poor dispersion
and/or adhesion with PLA, and this aspect is discussed in this review. Moreover, this review gives
an overview on the preparation of PLA/CNMs nanocomposites by using thermoplastic processing
technique and their properties by highlighting the differences among cellulose nanomaterials, CNFs
and CNCs.

1.1. Polylactic Acid (PLA)

PLA is an aliphatic polyester biopolymer that can be derived from renewable sources, such as
corn, potato, molasses, tapioca, cane sugar, and rice [16]. From these renewable sources, lactic acid
is basically produced by a fermentation process and used as monomer to synthesized PLA through
different polymerization routes, viz. ring opening polymerization (ROP), polycondensation and other
direct methods (e.g., azeotropic dehydration and enzymatic polymerization) [4]. PLA is available in
the market with different molecular weights. ROP affords the production of high molecular weight
PLA when compared to polycondensation technique method of production. Thus, the two main
PLA industrial producers, i.e., NatureWorks LLC and Corbion, mostly use ROP. Other companies,
such as Cargill Dow Polymer LCC, Shimadzu Corp, Mitsui Chemicals, Musashino Co., also produce
PLA towards various commercial applications (e.g., packaging, textiles, pharmaceutical products and
biomedical devices) [4,11,13].

PLA has at least three stereoisomers, namely poly(L-lactide) (PLLA), Poly(D-lactide) and
poly(DL-lactide) (PDLLA), which result from the presence of two chiral carbon centers (Figure 1) [4,17].
Therefore, it is possible to produce isotactic L-PLA and D-PLA polymers as well as DL-PLA composed
of syndiotactically alternating D,L-copolymer or a stereo-block isotactic copolymer consist of L- and
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D-units (Figure 1) [16,17]. In this review, to avoid any confusion, PLA is used to describe all PLA-based
polymers. The properties of PLA are influenced by several factors, such as source, the component
isomers, the processing routes and molecular weights. It is mainly affected by stereochemistry and
thermal history, which also influence its crystallinity and, therefore, resulting properties. For instance,
when PLLA content is higher than 90%, it tends to be highly crystalline, while melting temperature
(Tm) and glass transition temperature (Tg) decrease on decreasing PLLA content. Table 1 presents the
main physical properties of PLA-based polymers [4,9,11,13,17].
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Table 1. Physical properties of PLA.

Polymer Elastic Modulus
(GPa)

Tensile Strength
(MPa)

Elongation at
Break (%) Tm (◦C) Tg (◦C)

Stereo complexed
polylactic acid (PLA) 8.6 0.88 30 220–230 65-72

Syndiotatic PLA - - - 151 34
Poly(L-lactide) PLLA 2.7–4.14 15.5–150 3.0–10 170–190 55–65

Poly(DL-lactide)
PDLLA 1.5–1.9 0.04–0.05 5–10 170–190 50–60

PLA possesses remarkable properties, which include biocompatibility, UV stability, clarity, and
luster. PLA has been exploited in various fields, such as packaging and biomedical with regard to its
biodegradability and biocompatibility. There are, however, some limitations that hinder its success,
such as slow crystallization, low glass transition and brittleness [4,10]. There has been a lot of effort
to modify PLA to overcome these limitations and match the end applications. Several modifications
such as blending with other polymers, copolymerizing with functional monomers, aminolysis, and
reinforcement with different fillers have been explored as suitable strategies. On the other hand, the
use of nanofillers, yielding so-called “nanocomposites materials”, merit special attention due to the
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capability of these particles to enhance mechanical, and thermo-mechanical properties as well as to
provide additional functionalities at fairly low contents, viz. below 10 wt %.

1.2. Cellulose Nanomaterials

Cellulose nanomaterials (CNMs) are considered as a suitable solution to replace commonly used
and expensive inorganic nanofillers because they are cheap, renewable and biodegradable. Moreover,
they possess unique valuable characteristics, such as high specific strength, moduli (100–200 GPa) and
specific surface area, as summarized in Table 2. CNMs can be extracted from different natural sources
(wood, non-woody and animal materials), by mechanical treatment and acid hydrolysis or combination
of the two. They can broadly be grouped into five categories, viz., cellulose nanofibers (CNF), cellulose
nanocrystals (CNCs), bacterial cellulose (BC), algal cellulose (AC), and tunicate cellulose depending
on the source and extraction method, as discussed below [3,7,18–23].

Table 2. Cellulose nanomaterials (CNMs) properties.

Cellulose
Source

Extraction
Process

Length
(nm)

Width
(nm)

Aspect
Ratio EA (GPa) ET (GPa) Refs.

Tunicates H2SO4 100–300 5–10 1–150 150 ± 28.8 a - [24,25]
Green
algae

Hydrobromic
acid 390–580 10–25 50–100 - - [26]

Red algae H2SO4 240–350 2–13 35–60 - - [27]
Cotton - 100–150 10 20–70 105, 57 a - [28]
Wood H2SO4 50–300 2–8 20–50 110–200 a 11–57 a [24]

Bacteria H2SO4 100–1000 10–50 15–100 [24]
Bacteria Sonication - 35–90 78 ± 17 a [29]
Bacteria NaOH 114 c - [30]
Bacteria HC` 160–420 15–25 7–23 - - [31]

NFC Homogenization - - - 65b 10–20 b [32]
NFC TEMPO 1000 10–40 100–150 145.2 ± 3.3 a - [25]
MCC - - >2000 25 ± 4 c - [33]

a Atomic Force Microscopy (AFM); b High-Resolution Transmission Electron Microscopy (HR-TEM) micromechanics;
c Raman (EA elastic modulus in axial direction, and ET elastic modulus in transverse).

Cellulose nanofibers (CNF): Cellulose nanofibers, also known as either microfibrillated
cellulose (MFC) or cellulose microfibrils (CMF), are mostly obtained by mechanical treatment from
cellulose-based materials and are recognized by web-like structure that consists of crystalline and
amorphous domains [7,34]. CNFs have high tensile modulus, lightweight, surface activity and
biocompatibility, hence they have been used as filler in the composites field (packaging and paper
industry), a stabilizer in emulsions, a conducting sheet in electronics and a biomaterial in medical
application. Typically, extraction processes of CNFs include grinding, high-shear homogenization,
high-intensity ultrasonication and cryogenic crushing, followed by purification (e.g., pulping) [34,35].
These high-energy induced mechanical treatments, which are also time-consuming as a result of
repeated cycles, hinder their industrial use [35]. Again, prior treatments, such as chemical and/or
enzymatic treatment to reduce the energy and time consumption, result in a huge damage on the
crystalline phase of the fibrils, thus adversely affecting the mechanical properties. Nonetheless, these
drawbacks are overshadowed by the unique valuable properties of CNFs, such as high purity, high
specific strength, wettability, abundant availability, biocompatibility and surface-tunable structures,
which afford their various biomedical applications, especially in the development of scaffolds for
tissue engineering [34].

Bacterial cellulose (BNC): Beside plants being the main source of cellulose, different bacteria can
produce cellulose, as initially reported in 1988 by Brown, who identified the growth of unbranched
pellicle that has a chemically equivalent structure as plant cellulose [36]. Bacterial cellulose (BNC)
possesses unique features, such as high mechanical strength, crystallinity and purity, thus it is mostly
utilized as reinforcement material for polymeric networks to anchor onto therapeutic agents or maintain
the tensile shape-contour of scaffolds [37]. It is produced extracellularly by gram negative bacterial
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cultures (Gluconacetobacter, Acetobacter, Agrobacterium, Achromobacter, Aerobacter, Sarcina, Azobacter,
Rhizobium, Psuedomonas, Salmonella and Alcaligenes) in either synthetic or non-synthetic medium,
through oxidative fermentation [37]. Gluconacetobacter genus is the most efficient BNC producer with
high yields in liquid medium [36,37]. The limitations of bacterial cellulose are the production cost
(with about 30% overall cost belonging to the cost of fermentation medium), efficient process scale-up,
separation methods, purification methods and low yield [36–38].

Cellulose nanocrystals (CNC): Cellulose nanocrystals are rod-like crystalline particles isolated
from various natural sources via mineral acid hydrolysis. Depending on the extraction conditions
and cellulose raw material, nano-sized cellulose crystal of different dimensions (length = 100–1000 nm
and diameter = 4–25 nm) and crystallinities (55%–90%) can be obtained. Although sulfuric acid is
the most extensively used to afford the isolation of CNCs, other acids, such as phosphostungstic [39],
hydrobromic [40], and phosphoric [41] acids and organic acids (maleic [42], formic [43,44] and oxalic
acids) are also reported for such purpose.

Algal cellulose (AC): The extraction of cellulose from algae is considered as an environmental
bioremediation with regard to their excessive and unwanted blooming, which damages marine
ecosystem [34]. For instance, its growth can reduce the transparency of water, hence adversely
affect other species that grow deeper in the water due to lack of sunlight. There are three groups
of algae species and they are categorized according to their cell wall constituents: (i) Group 1 is
composed of native cellulose as the major component of the cell walls, which is usually highly
crystalline (e.g., Cladophorale and Siphonocladales orders); (ii) Group 2 consists of mercerized-like
cellulose (which is presumably a derivative of native cellulose) and has low degree of crystallinity
(e.g., Spongomorpha); and (iii) Group 3 includes heterogeneous algae, in which cellulose is not a
major component of the cell walls (e.g., Vaucheria and Spirogyra algae) [45]. The high degree of
crystallinity of algae is associated with the presence of thick cellulose microfibrils (width of 10–30 nm),
which may differ according to cellulose synthase complexes terminal complexes (TCs). It is recognized
that linear TCs produce Iα-rich cellulose, while rosette TCs produce Iβ-dominant cellulose; however,
a boundary between Iα-rich and Iβ-dominant may exist in certain algae species [45]. Nevertheless,
CNFs and cellulose nanocrystals extracted from either red or brown algae, have been reported in the
literature [26,27,34,45,46].

Tunicate cellulose: It is biosynthesized by cellulose synthesizing enzyme complexes in the
membrane of epidermis through different mechanisms [47]. It performs different functions in various
tunicate families and species, thus different structural diversities from one species to the next [47].
Similar to plants, tunicate cellulose aggregates in the form of microfibrils, are composed of nearly pure
cellulose Iβ allomorph. It has a very large aspect ratio, ranging between 1 and 150 (i.e., length = 100 nm
to several micrometers and cross-section = 5–10 nm) [48,49]. It also possesses high surface area
(150–170 m2/g), high crystallinity (95%), high tensile modulus and reactive surface via surface hydroxyl
groups, hence it has been used to improve the mechanical properties of composite materials [24,48–50].

2. Functionalization of Cellulose Nanomaterials

It is recognized that the surface properties of CNMs play a major role in the fiber–fiber bonding
within cellulose network and the interfacial adhesion between the fiber and the matrix, which in
turn, dictates the resulting properties of the nanocomposites. Considerable effort has been dedicated
to the optimization of fiber–matrix interface such that exceptional mechanical properties of single
CNM can be transferred to the macroscale properties of the bulk nanocomposites, and to obtaining
excellent distribution of the CNMs in the continuous polymer matrices. The hydrophilic nature
of CNMs fuels their combination with water-soluble polymers, followed by film casting as the
preferable preparation route. Surface modification, however, opens the door for the application
of CNM as reinforcement of various polymeric materials by using different processing methods,
especially classic thermo-processing techniques [51,52]. The surface modification of CNMs can be
categorized into three groups: (i) substitution of hydroxyl groups with small molecules (purple
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arrow); (ii) polymer surface modification by “graft to” strategy with different coupling agents;
and (iii) polymer surface modification by “graft onto” strategy with radical polymerization of ring
opening polymerization (ROP), atom transfer radical polymerization (ATRP) and single-electron
transfer living radical polymerization (green arrows) [53]. In the case of PLA-based nanocomposites,
several researchers have reported on the functionalization of CNMs to improve their dispersion
and interaction with PLA matrix. The functionalization of CNMs in the PLA system includes:
acetylation [54], salinization [55], silylation, glyoxalization, grafting of PCL [56], PLLA [57], PEG
or glycidyl methacrylate (GMA) [58,59] and the use of surfactant [60], as summarized in Table 3
and Figure 2. Depending on the type of functionalization, the properties of the resulting composites
are improved. Lin et al. [56] reported that the incorporation of PCL-grafted-CNC into PLA matrix
improved the tensile strength and elongation. They attributed this to the ability of rigid CNCs to
endure higher stress as well as the essential associations of the facile stress transfer to the CNC
mediated with grafted PCL chains.

The pre-treatment of the fibers for facilitating their extraction method (refinement step) can also
be employed as a strategy to functionalize the ensuing cellulose nanomaterials. For instance, TEMPO
oxidation pre-treatment of cellulose fibers introduces carboxylic groups at the surface of the cellulose
nanomaterials [61]. In another study, it is reported that carboxymethylation pre-treatment and prior
mechanical treatment result in carboxymethylated cellulose nanofibers (CNF) [62].

Table 3. Selected studies on surface modifications of CNMs for PLA composites.

Type Extraction Process and Source Functionalization Method Refs.

CNCs Microcrystalline cellulose by acid
hydrolysis

PLLA grafting using surface-initiated ring
opening polymerization [57]

Microcrystalline cellulose by sulfuric acid
hydrolysis Glycidyl methacrylate (GMA) grafting [58]

Linter by sulfuric acid hydrolysis
PCL grafted via ring-opening
polymerization under microwave
irradiation

[56]

Scoured cotton by HC` hydrolysis One-pot Fischer esterification approach was
adopted to esterify CNCs with lactic acid [52]

Bamboo particles by sulfuric acid
hydrolysis

Salinization of CNCs by using
triethoxysilane (A-151) [55]

Cotton pulp by mild H2SO4

Carboxylation using potassium
permanganate and oxalic acid as oxidizing
and reducing agent, respectively

[63]

CNFs Microcrystalline cellulose was subjected to
high-speed homogenizer Acetylation using rice bran oil (RBO) [54]

Bamboo pulp pre-treated by
2,2,6,6-tetramethylpiperidine-1-oxy radical
(TEMPO)-mediated oxidation by using a
TEMPO/NaBr/NaClO system to facilitate
disintegration by using a high-pressure
homogenizer

Carboxylation of CNF via TEMPO
oxidation [61]

Titanate coupling agent was dissolved in
tetrahydrofuran (THF, 10 g) and introduced
into 15 wt % of MCC in (THF)

The hydroxyl groups react with the
monoalkoxy and neoalkoxy to form
monomolecular layer

[64]

Bleached pulp was homogenized with
30 passes at ~1000 bar and treated with
3-amino triethoxysilane (ATS)

Salinization using 3-amino triethoxysilane
(ATS) [65]
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3. Composites Preparation

Firstly, it is important to emphasize the hydrophilic nature of the cellulose nanomaterials due to the
presence of hydroxyl groups and this has been one of the difficulties in the promotion of their dispersion
in various polymeric materials, regardless of the preparation method. Cellulose nanomaterials
have strong attractive forces emanating from the surface hydroxyl groups (–OH) via hydrogen
bonding, thereby causing irreversible agglomeration, reorganization and co-crystallization. Chemical
modifications are applied to mask these hydroxyl groups to avoid their agglomeration. Since cellulose
nanomaterials are obtained in water suspension, solution casting has been a preferable preparation
route to avoid irreversible agglomeration during drying and to obtain reasonable dispersion states
in aqueous media and some organic solvents [51,54,55,66]. Moreover, this method is often employed
to prepare the master-batch when other processing techniques, such as extrusion are employed to
prepare PLA/CNM composites [67,68]. To overcome CNM–CNM interactions, considerable efforts
have been dedicated to improving the interfacial compatibility by surface functionalization of cellulose
nanomaterials or by using different compatibilizers to afford the use of other preparation routes,
such as melt compounding, as discussed below [52]. Table 4 summarizes selected studies, based on
thermoplastic processing techniques for the production of PLA/cellulose nanomaterials composites.
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Table 4. Selected studies, based on thermoplastic processing techniques of PLA/
cellulose nanocomposites.

Formulation Pre-Processing Method Processing
Method

Post-
Processing Highlights Refs.

PLA/PVAc-
GMA/CNC

67/30/3

Polymerization of PVAc by
using ammonium cerium (IV)

nitrate as initiator and
functional by grafting

Glycidyl methacrylate (GMA),
then mixed with CNC
suspension followed

by drying

Extrusion - Effective dispersion of
CNCs was achieved [69]

PLA/CNC-
g-PLLA

CNC-PLLA grafted by
surface-initiated ring opening

polymerization (SI-ROP)
of L-lactide

Extrusion -
Smooth and uniform surface
confirmed good dispersion

of CNC in the matrix
[57]

PLA/CNC - Melt spinning -
Surface roughness increased
with an increase in content

of cellulose nanocrystals
[70]

PLA/CNF - Melt-mixer Compression
molding

A morphological study with
SEM revealed a good
dispersion of CNFs as

confirmed by
well-distributed fiber “pull

outs” with no visible
aggregates

[71]

PLA/CNF Casein protein as
compatibilizer

Compression
molding -

The presence casein
significantly improved

interfacial adhesion
(compatibility)

[72]

PLA/CNC Esterified with hexanoic
and dodecanoic Melt spinning -

Hexanoic-treated CNC
exhibited highest draw ratio

due to improved
compatibility

[8]

3.1. Compression Molding

Compression molding is often applied to incorporate many cellulose nanomaterials, viz., up to
more than 70 wt % [73]. Several studies, based on the preparation of PLA/CNM nanocomposites,
have been reported in the literature [72–76]. In most cases, the cellulose nanomaterials are first dried to
form a thin paper film, followed by the inclusion of PLA and then compressed at a given pressure and
temperature. In other studies, the cellulose nanomaterials are mixed with PLA to obtain homogenous
mixtures, followed by the extraction of the solvent and then compression to form sheets [74]. Among
these studies, Robles et al. [75] prepared self-bonded composite made of cellulose nanofibers (CNF)
and PLA microfibrils, through melt compression molding. The authors mixed 3 wt% CNF suspension
with PLA fibrils (PLAF) by using homogenizer, followed by sonication to enhance the interaction
between the two. The mixture was then filtered to extract water and hot pressed with hydraulic press
at 110 ◦C, while the pressing cycle was performed as follows: 20 bar for 10 min after closing the press
plates, 30 bar for 1 min and then a curing step at a pressure of 150 bar for 5 min. The ratios between
CNF and PLAF were 100/0 (P1), 75/25 (P2), 50/50 (P3) and 0/100 (P4). They found that an increase
in PLAF content increased the opacity of the nanocomposites films as well as the formation of rough
porous material (Figure 3). A nanopaper composed of lactic acid-grafted-CNF is prepared with the aid
of compression molding in [76]. The modified nanopaper had smaller density (1.28 gm/cm3) when
compared to unmodified nanopaper (1.34 gm/cm3), which can be attributed to either the separated
phases of lactic acid and nanofibers or the porous structure of modified nanopaper, because of trapped
air. The latter leads to translucent papers when compared to the transparent unmodified papers.
Interestingly, the modified nanopaper absorbed 43% less moisture when compared to the unmodified
nanopaper. This can be ascribed to the presence of polymer (oligomer) masking hydroxyl groups
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(–OH), such that there are few –OH groups that are accessible on the surface of the CNFs. This was
confirmed by the amount of water absorbed by the modified nanopaper when soaked in water for
18 h, viz., 35% less than the unmodified samples.
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Figure 3. The first row presents optical microscopic images; the second row shows visual appearance;
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Copyright ©2018, Springer Nature).

Khakalo, Filpponen and Rojas [72] investigated the effect of casein protein as a potential dispersant
in composite films composed of cellulose nanofibers (CNFs) and PLA. The films were hot pressed in a
Carver Laboratory press at 80 ◦C and 1800 Pa for 2 h. Contact adhesion measurements confirmed the
effect of surface modification, where ~50% increase in work of adhesion between CNF and PLA was
obtained in the presence of casein.

3.2. Melt Compounding

Melt compounding serves as the most important polymer processing technique employed
today [77]. It serves as an essential integral technique to mix either composites or blends, based
on most synthetic polymers, such as PP and LDPE, towards different applications. In this case, the
materials pass through the melt compounder one or more times, before the final product is obtained.
This technique can be subdivided into two categories: (i) plain melt-mixer; and (ii) single/two-screw
extruder, as discussed below.

3.2.1. Melt Mixer

The plain melt mixer is often applied on a laboratory-scale to mix small portions for quick analysis;
however, extruders are available in pilot and industrial scales. In the case of melt mixer, the constituents
are fed into a bowl that has three independent heating zones and two counter-rotating blades for
mixing [78]. The advantages of this technique include small materials required, 40–70 g, exchanging
of the blades to afford precise mixing depending on the material, and controllable or programmable
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temperatures, time and shears (screw speed) to afford nearly finished product. Melt-mixers are
often used to establish whether the material used can be implemented in the most widely used
industrial melt-processing technique, such as extruders. Raquez et al. [79] studied the effect of surface
modification of CNCs and their usage as reinforcements of PLA. Different chemical modifications,
based on trialkoxysilanes, such as alkyl, amino and (meth)acryloxy were employed and mixed with
PLA by using ThermoHaakeMiniLabRheomex CTW5 mini extruder at 165 ◦C (100 rpm, 5 min).
The resulting unmodified samples were confirmed to be dark by direct visual observation, suggesting
that thermal degradation of the CNCs occurred during the processing step. In the case of the chemically
modified CNCs, the samples remained colorless, which confirmed that silane treatment can preserve
the integrity of CNCs by reducing its thermo-sensitivity and allows its implementation via extrusion.
Hong and Kim [78] prepared PLA/CNC composites by melt-mixing (Haake PolyDrive Rheomixer R
600 mixer equipped with a roller blades rotor rotating at 60 rpm), followed by compression molding
(Carver hydraulic hot press at 180 ◦C at a pressure of 1000 Psi for 6 min). Maleic anhydride-grafted PLA
was used as compatibilizer to improve the interfacial adhesion between PLA and CNCs. It was found
that the optimal processing conditions were: 5 + 10 min, at mixer setting temperature of 190 ◦C to
avoid the PLA and CNC degradation as well as incomplete dispersion of the filler. This was confirmed
by performing tensile experiments on the samples. It was found that the highest tensile strength was
exhibited by the composite prepared at 190 ◦C (5 + 10 min) when compared to 180 ◦C and 200 ◦C.
In the case of the mixing times, 5 + 10 min displayed high tensile strength when compared to 5 + 5 min
and 5 + 15 min. The low tensile strength was attributed to the incomplete mixing for the 5 + 5 min,
while thermal degradation of PLA was the main reason for the 5 + 15 min processing times. Other
biopolymers (e.g., polyhydroxybutyrate (PHB)) can also be utilized as carrier materials to improve the
dispersion of the cellulose nanomaterials [80]. Kiziltas et al. [80] prepared a master-batch by mixing
PHB and CNF suspension in a bowl mixer, then blended PLA during the second compounding step.
It was reported that CNFs were well distributed in the PLA + 5 wt % CNF with the PHB carrier system.
The interfacial adhesion between PLA and PHB was also enhanced in the presence of the CNFs, which
was associated with the changes in viscosity of the composite.

3.2.2. Extrusion Method

The extruder consists of three processing zones: (i) the feeding zone, where the material is
introduced into the barrel; (ii) the kneading zone; and (iii) the heating zone, in which high shears,
temperatures and pressures are achieved along with finished product texture, color, density and
functional properties. Variables such as screw speed, screw configuration, screw length-to-diameter
ratio (L/D), barrel temperature, feed rates and die shape/size can be programmed or controlled
to enable the fabrication of the final product. Bismark and co-workers [77] extruded PLA/CNCs
composites by functionalizing the CNCs to promote their dispersion. In this regard, a novel method,
based on temperature-induced phase separation (TIPS), were exploited to homogeneously disperse
the CNCs in PLA. Freeze-dried CNCs were added to 90 mL of 1.4-dioxane and homogenized at
20,000 rpm, followed by the addition of PLA into the mixture and then mixed overnight at 60 ◦C
under magnetic stirring. The mixture was then poured into a syringe, added drop-wise into a bath of
liquid nitrogen to induce phase separation and subsequently freeze-dried to yield porous microsphere
composites. The composite films were produced by feeding the desired fraction of CNCs into a
twin-screw micro-extruder and kept at a melt temperature of 180 ◦C and a rotational screw speed of
10 rpm. After the addition of microspheres, the screw speed was increased to 40 rpm for 30 min and
then extruded at a screw speed of 20 rpm, followed by pelletizing and compression molding into films.
CNCs were chemically modified by using acetic acid (CNC-2), hexanoic acid (CNC-6) and dodecanoic
acid (CNC-12). The surface modification of CNCs (i.e., CNC-6 and CNC-12) led to the enhancement
in the tensile modulus and tensile strength. Comparison between cellulosic particles sizes as well as
chemical modification, viz. 3-aminopropyl triethoxysilane silanized CNFs and dodecanoyl chloride
esterified CNCs), was studied by Robles et al. [65]. It was visually observed that the color of the
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composite samples are similar to that of the pellets obtained from the powdered fibers with different
fillers. The salinized samples showed yellowish color, while the esterified CNCs were brownish. It was
reported that the esterified CNCs had stronger interaction with the matrix than what was obtained
with the salinized CNFs.

Functionalization of the cellulose nanomaterials can affect their location, especially in polymer
blends. Elsewhere in the literature, the resultant functionalization of the CNCs by using akyl and PLA
chains to control their locations in the PLA/natural rubber (NR) blend [81]. CNC were grafted
with n-octadecyl isocynate (C18-g-CNC) and PLA (PLA-g-CNC) chains by in-situ ring opening
polymerization of L-lactide. Two methods were employed to prepare the blended nanocomposites,
viz. direction extrusion (CNC were lyophilized for 48 h to form a foam, which was pulverized to
obtain powder) or solvent casting combined with extrusion. It is reported that a combination of casting
and extrusion was necessary to prevent the degradation of the cellulose nanocrystals and to obtain
a good dispersion of the fillers. From the authors’ results, an increase in PLA-g-CNC concentration
led to a progressive reduction of the NR droplet size, while the opposite effect was observed for
C18-g-CNC. C18-g-CNC was located in the NR droplets, whereas PLA-g-CNC was located in the PLA
phase, thereby increasing the PLA viscosity and, hence, reducing the NR droplets size. Elsewhere,
a co-rotating twin-screw extruder with gravimetric feeder for neat PLA and a peristaltic pump for liquid
feeding of CNCs and a plasticizer (triethyl citrate) were used [82]. In this regard, atmospheric venting
at Zones 2 and 4 and vacuum-venting at the end of the extruder, were employed in order to evacuate
the vapor generated during processing. After pelletizing, the films were obtained from compression
molding and were cooled either in air (fast cooling) to avoid crystallization or inside the metal plates
(slow cooling) to allow crystallization to take place. It was reported that fast cooling resulted in more
transparent films when compared to slow cooling, which resulted in haze films. The slow cooled
material displayed the presence of spherulites, which are associated to the crystallization of the PLA,
hence the haziness of the films.

3.3. Melt Spinning

Firstly, it is important to emphasize that melt spinning is often employed with other processing
technique(s) to enable the production of nanocomposite. Extrusion is often applied to produce
nanocomposites pellets, which are further processed by employing melt filament technique to produce
nanocomposite fibers and the morphology of the fibers is found to depend on the content of the
CNMs and their functionalization as shown in Figure 4 [70]. Mathew and co-workers [70] prepared
microfiber nanocomposites by employing three steps: (i) preparation of master-batch; (ii) extrusion to
produce nanocomposite pellets; and (iii) melt-spinning of the pellets to produce the nanocomposite
fibers [70]. In their reports, an increase in the fiber diameter with the addition of CNCs from 91 µm to
92.5–94.6 µm was observed due to an increase in the viscosity of the fibers when CNCs were added to
the system, thereby leading to relatively low stretching of the fibers. They also observed that the surface
roughness increased with increasing content of CNCs because of their aggregation, which resulted
in the formation of clusters on the surface of the fibers. It was suggested that surface modification
of CNCs or the use of surfactant, can improve their dispersion. Blaker et al. [8] studied the effect of
the surface modification of the CNCs on the PLA melt-spun fibers. CNCs were chemically-modified,
via organic acid esterification, viz., solvent exchanging into pyridine from water through methanol
and then esterified with either hexanoic acid (C-6) or dodecanoic acid (C-12), in the presence of
p-toluenesulfonyl chloride. As expected, the addition of the CNCs increased the roughness of
the fibers and their diameters increased concomitantly with cellulose content due to an increase
in melt viscosity. C-6 modified CNC fibers displayed the highest draw ratio (46.7%) when compared
to 44.4% for neat PLA and 38.3% for C-12-modified CNCs-based fibers. This was attributed to
the improved compatibility observed between PLA and C-6 modified CNCs. PLA-grafted maleic
anhydride (PLA-g-MA) as compatibilizer for CNCs/microcrystalline cellulose (MCC) and PLA in
the fabrication of PLA composite fibers, was recently reported by Aouat et al. [83]. It was reported
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that small aggregations of CNCs were visible on the PLA/PLA-g-MA/CNC (1 wt %) surface, which
became more pronounced in PLA/PLA-g-MA/MCC (1 wt %). This was attributed to the CNCs having
higher aspect ratio and smaller size, which led to a stronger interaction with PLA than with MCC.
It was also found that at a filler content of 1 wt % and a draw ratio (DR) of 1.5, the average diameter of
the compatibilized PLA/CNC was 60 µm, while that of compatibilized PLA/MCC was 65 µm, which
was related to the size of the MCC. In general, the diameter of the fibers increased concomitantly with
the cellulose content, which can be related by a decrease in the spinning rate when higher filler contents
were used. Moreover, the compatibilized PLA/CNC with polyethylene glycol (PEG), as plasticizer,
exhibited the smallest fiber diameters, reaching a value (49 ± 8 µm) less than 10 µm when compared
to the neat PLA and this is due to the plasticizing effect of PEG, which tended to reduce the filament
viscosity. The melt-spinning of PLA, followed by coating with CNCs and polyvinyl acetate (PVAc) to
improve the hydrophilicity as well as to create a roughened surface for tissue engineering applications,
was reported by Hossain et al. [84]. This allowed the addition of higher CNCs loadings (>85 wt %) and
promoted adhesion between the CNCs and PLA through PVAc as a binder. Figure 5a shows schematic
the representation of the coating method employed by using a syringe needle. The surface roughness
of the fibers increased with an increase in the CNCs content in PVAc when compared to pure PLA
(Figure 5b). At higher CNCs loadings, i.e., 95 wt %, uneven attachment of CNCs on the fiber surface
was observed due to insufficient amount of PVAc binder present in the coating materials to provide
homogeneous coverage, leading to CNCs clustering. Cytocompatibility studies by using NIH-3T3
mouse fibroblast cells, cultured onto CNCs-coated PLA surface, exhibited better cell adhesion when
compared to PLA fibers.
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3.4. Other Methods

3.4.1. Three-Dimensional (3D) Printing

Additive manufacturing, also known as rapid prototyping or three-dimensional (3D) printing,
has received tremendous interest from different fields, such as construction, aerospace, healthcare and
many others [85]. This technique offers rapid fabrication of high-resolution, complex and reproducible
constructs, through a computer-aided design (CAD). Among other 3D printing techniques, fused
deposition modeling (FDM) by nozzle-deposition-based extrusion, employing different polymers,
e.g., acrylonitrile butadiene styrene, PLA, poly(ε-caprolactone) (PCL), polyvinyl alcohol (PVAc),
polymamides (nylon), etc., has shown a great potential.

Murphy and Collins [64] investigated the fabrication of a novel MCC reinforced PLA, i.e., fully
degradable biocomposites for 3D printing applications. To achieve good dispersion of the MCC in
PLA, a two-step process was adopted: a PLA/MCC film casting, followed by an extrusion process.
They selected 1 and 3 wt % unmodified cellulose for printing by using a fusion deposition modeling of
a 3D printer. It was demonstrated that, by choosing biomedical scaffolds prototypes, it was possible to
produce constructs by using CAD software with a diameter of 15 mm and a height of 1 mm, having
porous structure achieved by selecting a 60% fill density in the FDM software. It is reported that, for
the use of plasticizer (polyethylene glycol) and the surface modification (silane coupling agent KH-550)
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of the cellulose, nanomaterials are essential to enable the 3D printable material [86]. In this study,
a combination of micro- and nano-cellulose was obtained by mechanical disintegration, followed by
solvent exchange in dichloromethane (DCM) to obtain their combination with PLA solution (in DCM)
and polyethylene glycol (PEG6000) solution (in DCM). The composite suspension obtained was then
dried and extruded into 3D printable wire rods, in which various types of objects were printed, such as
double-balls standing on a shelf, sticks, half baskets, buckets, and single balls (Figure 6a). The authors
reported that the composite composed of 30% cellulose, 65% PLA and 5% PEG600 had acceptable melt
flow rates for 3D printing. The resulting 3D printed product had valuable attributes, such as being
mechanically strong (elongation at break of 12%, tensile strength of 59.7 MPa and flexural strength of
50.7 MPa), lightweight and waterproof. The latter was justified by there being no significant weight
increase after soaking the ball in water for 24 h (Figure 6d).
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Figure 6. Photos of the 3D printed objects with the MNC/PLA composites: the MNC/PLA composite
3D printing wire rods (a); the 3D printed material subjected to planing and sawing (b); samples of
3D printed objects, including double-balls standing on the shelf, buckets, half-baskets, and sticks in
elongated and dumbbell shape that were used for the testing of mechanical properties (c); the 3D
printed solid ball floated on the water (d); and the 3D printed solid ball with 2 cm diameter (e).
Reprinted with permission from [86].
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3.4.2. Injection Molding

Injection molding, often employed for molding semi-finished samples, has also been used as
preparation method for PLA/CNM composite materials. Injection molding of PLA/phenylphosphonic
acid zinc (PPA-Zn) composite was carried out by injecting the samples into a pre-heated mold at
different mold temperatures (40, 80 and 95 ◦C) and holding times (10, 20, 30, 60 and 120 s) [87].
It was reported that, when samples were ejected from the mold at a holding time of 10 s, only
PLA/PPA-Zn/NFC composite could be obtained without distortion, while neat PLA and the
PLA/PPA-Zn and PLA/NFC composites were all deformed. This was attributed to the high rigidity
of PLA/PPA-Zn/NFC, when compared to other composites.

3.4.3. Solid State Drawing

Solid-state drawing can be regarded as post-treatment of the composite material. In this regard,
the composite is often prepared by melt compounding technique (e.g., extrusion, followed by melt
compression to form films) and the films obtained were cut into rectangular strips and then exposed
to uniaxial solid-state drawing by using a tensile tester, equipped with a temperature chamber
(Figure 7) [88,89]. It was recognized that the solid-state drawing, effectively orientated both the
polymer and the reinforcements and, hence, leading to a better organized molecular structure with
increased crystallinity, which, in turn, affected the mechanical and thermal properties of the resulting
composite products, depending on the draw temperature, draw speed, draw ratio and the amount
of reinforcement [89]. This process enabled the alignment of the macromolecular chains in the
perpendicular to the drawing direction to form a “shish-kebab” because of the crystallization induced
by deformation (Figure 7). Shish type crystallization orientates in parallel to the drawing direction
and the kebab type crystallization grows vertically on the surface (Figure 7) [88,89]. It was also
reported that, irrespective of the draw temperature or speed, the thickness of the nanocomposite tapes,
decreased after drawing [88].
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representing “shish-kebab” structure. Reprinted with permission from [88].
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4. Mechanical Properties

4.1. Cellulose Nanocrystals

Numerous researchers have investigated the reinforcement ability of cellulose nanomaterials for
PLA, as summarized in Table 5 [82]. Among all other factors, the preparation method, filler content,
and interaction between the filler and matrix were found to have important effects on the properties
of the resulting PLA/CNMs composite materials [90]. Oksman and co-workers [82] investigated
the effect of cooling on the mechanical properties of PLA/CNC nanocomposites, plasticized with
triethyl citrate. Extruded composites were compression-molded and then cooled, either in air (fast
cooling) to avoid crystallization or inside the metal plates (slow cooling) to allow crystallization.
The fast-cooled samples displayed yielding point, followed by strain softening and strain hardening,
indicating their ductile nature. The fast-cooled samples, however, did not show necking, but showed
stress whitening, indicating crazing. It was reported that the yield strength and Young’s modulus
of the fast-cooled samples improved by 316% (from 3.7 to 15.4 MPa) and by 267% (from 0.3 to
1.1 GPa), respectively, with the addition of only 1 wt % CNCs. On the other hand, the addition of
CNCs did not significantly affect the ultimate strength and the elongation at break for the fast-cooled
samples. In the case of the slow cooled samples, the ultimate strength increased by 26% (from 15.8
to 19.9 MPa) by the addition of CNCs. The Young’s modulus increased by 50% (from 0.6 to 0.9 GPa),
while the toughness (from 16 to 5.6 MJ/m3) and the elongation at break decreased (from 91% to
30%) in comparison with that of the plasticized PLA, due to their higher degree of the crystallinity,
as confirmed by DSC. Elsewhere, it was reported that coating melt-spun PLA with PVAc-CNCs did
not significantly influence the tensile properties [84]. PLA/PVAc, PLA65 wt %-CNCs20w/v-PVAc35
wt %, and PLA75 wt %-CNCs20w/v-PVAc25 wt % revealed 9%, 7% and 0.5% decreases and PLA85
wt %-CNCs 20w/v-PVAc15 wt % and PLA95 wt %-CNCs 20w/v-PVAc5 wt % exhibited 4% and 0.5%
increases in tensile strength when compared with the uncoated PLA fibers (tensile strength 207 MPa).
A significant improvement in the tensile modulus, however, for PLA65 wt %-CNCs20w/v-PVAc35
wt %, PLA75 wt %-CNCs20w/v-PVAc25 wt % and PLA85 wt %-CNCs20w/v-PVAc15 wt % fiber (33%,
43% and 45%, respectively) was observed when compared to the uncoated PLA fibers (tensile modulus
4.9 GPa) indicating the significant influence of CNCs (tensile modulus of 105 GPa) deposited on the
fiber surface.

In summary, the tensile modulus and tensile strength of CNC/PLA composites increase with
increase in the CNC content, however, at the expense of elongation at break [90]. However, the
surface modification of CNC or the use of a coupling agent improves the interaction between CNC
and PLA, which improves the stress transfer from the stiffer CNC to the polymer matrix, and this
enhances the elongation at break and the toughness of the resulting material. The use of low contents
of CNC, i.e., 1 wt % has no significant influence on the elongation at break (or toughness) and the
tensile strength of the PLA/CNC composite materials, but, in some instances, increases the Young’s
modulus [90]. It is worth mentioning that there is an optimal concentration of CNCs in PLA to
enhance the resulting mechanical properties, beyond which the converse prevails. This is generally
attributed to the interaction between adjacent CNCs to form strong network, resulting from the
hydrogen bonding, known as “percolation effect”. It is believed that such network is responsible for
significant improvements in the mechanical properties. Further increase in CNCs contents leads rather
to agglomeration, thereby resulting in local stress concentrations and reduced strain to failure, hence
adversely affecting the resulting mechanical properties [90].
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Table 5. Tensile properties of thermoplastic processed PLA/CNMs composites.

Thermoplastic processed PLA/CNMs Tensile Properties

Formulation Surface
Functionalization

Processing
Method

Tensile
Strength (MPa)

Modulus
(GPa)

Elongation
(%) Refs.

PLA/CNC 98/2 Hexanoic acid Extrusion and
melt spinning 141 5.73 17.0 [8]

PLA/CNC 98/2 Dodecanoic acid Extrusion and
melt spinning 123 5.72 38.4 [8]

PLA/CNC 99/1

Dicumyl peroxide as a
radical initiator for

reactive grafting of PLA
chains onto CNCs

Extrusion 51 22.5 1.9 [91]

PLA/CNC 99/1 - Extrusion 56.2 1.3 6.4

[90]PLA/CNC 97/3 - Extrusion 56.2 1.4 5.5

PLA/CNC 95/5 - Extrusion 54.9 1.4 4.9

PLA/CNC 99/1 -
Solution casting +
extrusion + melt

spinning
52 2.5 13

[70]

PLA/CNC 97/3 -
Solution casting +
extrusion + melt

spinning
49 2.7 10

PLA/CNF 95/5 - Solvent casting +
Extrusion 71.2 3.6 2.7 [67]

PLA/CNF/glycerol
triacetate (GTA)

79/1/20
-

Peristaltic pump
feeding

(CNF+GTA) +
Extrusion

28.8 0.8 31.1 [92]

PLA/CNF 35/65 - Compression
molding 121 12.4 3.4

[93]
PLA/CNF 30/70 - Compression

molding 121 13.4 2.3

PLA/CNF 66/34 - Compression
molding 105 12.7 2.5

PLA/CNF 28/72 - Compression
molding 95 13.6 1.6

PLA/1 wt% CNF
1 wt% casein animal

protein as
compatibilizer

Compression
molding 78 6.3 5.3 [72]

4.2. Cellulose Nanofibers (CNF)

Several researchers have reported on the use of CNF to reinforce PLA [67,71,92,94–96]. In general,
the Young’s modulus and the tensile strength increased with increasing CNF content [67,71,94]. On the
other hand, the elongation at break (and hence the toughness), usually decrease with the CNF content.
Recent study by Ozcan and co-workers [71] used epoxidized soybean oil (ESO) as plasticizer to
compensate for the elongation at break in the presence of CNFs as the reinforcing phase. From their
results, the combination of CNF and ESO in PLA matrix led to a composite with tensile strength
similar to neat PLA, whereas the modulus increased with more than 20% over that of neat PLA.
However, the ductility and toughness were at least three-fold higher than those of neat PLA. Further
increase in CNF content to 20 and 30 wt %, however, did not exhibit any obvious improvement in
strength, modulus or strain when compared to the same samples without the addition of 5 wt % ESO.
This was ascribed to the CNF percolation, which became more dominant and allowed force transfer
to occur between the CNF and the polymer matrix, such that the effect of ESO became negligible.
The mechanical properties of such ternary systems depend on the type of plasticizer and its interaction
with the cellulose nanofibers. Elsewhere, it was reported that the addition of 1 wt% of CNF increased
the elongation at break and the work of fracture by 27% and 57%, respectively, when compared to
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PLA/glycerol triacetate (GTA, plasticizer), due to the plasticization of the nanofibers, together with
the slippery effect of the CNFs in the PLA matrix [92].

The preparation method and the fiber morphology/size play a significant influence on the
mechanical properties of the ensuing composite. These factors affect the interaction between the filler
and the matrix as well as the filler distribution, which greatly affects the stress transfer between the
stiff filler and the polymeric matrix. The effect of post-treatment (crystallization) on the mechanical
properties of the extruded composites were reported by Suryanegara, Nakagaito and Yano [95].
After compression molding, the samples were either immediately quenched in liquid nitrogen to
obtain a fully amorphous state (amorphous samples) or melt-crystallized on a hot press at 100 ◦C
for an hour to obtain a highly crystallized solid structure (crystallized samples). For amorphous
samples, the addition of 20 wt % NFC improved the modulus from 3.3 to 5.2 GPa and the tensile
strength from 58 to 70 MPa, while the strain at break reduced from 7% to 2%. This was attributed to
the stiff fibers when compared to the PLA in the case of modulus, whereas the increase of strength
was associated with good interfacial adhesion between the matrix and the fibers. Crystallization of
PLA increased the tensile modulus (from 3.3 to 4.0 GPa) and the strength (from 50.2 to 60.9 MPa),
while strain at break decreased from 7% to 3%. However, crystallized composite with 20 wt % NFC
improved the modulus from 5.2 to 5.7 GPa, whereas the strain at break and the tensile strength were
similar to those of the amorphous samples. This was attributed to the crystallization that occurred,
leading to the embrittlement of the PLA. Two different preparation methods (viz. solvent casting,
followed by kneading by using a twin rotary roller mixer (solvent method) and the addition of CNFs
suspension, directly into the melted PLA (direct method)) and the filler morphology were investigated
by Iwatake, Nogi and Yano [68]. In the case of the filler morphology, they compared three fillers, viz.
microfibrillated cellulose (MFC, from Daicel Chemical Industries, Tokyo, Japan), needle-leaf bleached
kraft pulp (NBKP) and refiner-treated NBKP (eight passes), as reinforcements for PLA. For the solvent
method, the Young’s modulus and tensile strength increased from 3.4 GPa and 56.2 MPa to 4.3 GPa and
66.0 MPa, respectively, with the addition of 5 wt % of MFC. On the other hand, the composites made
by direct mixing exhibited no improvement in Young’s modulus, whereas the yield strain was smaller
than that of pure PLA, resulting in the reduction of the tensile strength by 10%. This was attributed to
the difference in the dispersion of the fibers with solvent method, resulting in the uniform dispersion
of MFC, while many clusters were observed for composite made by the direct mixing. In the case of the
filler morphology, solvent method was used to prepare the composites. The pulp had smooth surface
with 30–50 µm in diameter, the refiner-treated pulp had a fibrillated surface with diameter similar
to the pulp and the MFC was completely disintegrated into nano to submicron wide fiber-forming
network. The incorporation of pulp (5 wt %) slightly increased the Young’s modulus, but reduced
the yield strain and strength by 30% and 15%, respectively. Refiner-treated pulp (5 wt %), however,
improved both the Young’s modulus and the yield strain, which resulted in strength increase by 10%,
while significant improvements in properties were exhibited by MFC (5 wt %)-reinforced PLA with
Young’s modulus reaching an increment of 25% (without a reduction in the yield strain) and strength
was improved by 20% when compared to neat PLA. This was associated with the formation of rigid
network, resulting from strong interaction between the adjacent cellulose fibers by hydrogen bonding
(percolation effect). MFC created a fine network even at low filler content (5 wt %), which restrained
polymer deformation. Elsewhere in the literature, it was reported that the surface modification of
CNFs with silane led to a yield strain increment of 25% when compared to pure polymer, due to the
strong interaction between the two components of the composite [65]. However, the increase in CNF
content led to a decrease in strain, because of the major role played in response to uniaxial stress by
CNFs, which generated more dislocations in the composite. However, at high filler concentrations,
the more agglomeration of the filler was observed, resulting in the deterioration of the tensile stress
transfer between the matrix and the filler, which can lead to a more brittle structure. The effect of
solid drawing at different drawing ratio, temperature and speed on the mechanical properties was
reported by Singh et al. [88]. The stress–strain behavior of the tapes drawn below the PLA glass
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transition temperature (Tg) (i.e., 35 ◦C), exhibited typical deformation behavior with elastic region,
followed by the yield and subsequent drop in strength with strain softening (Figure 8). The tapes
drawn in temperatures above Tg (40 ◦C) showed a decrease in the tensile strength and a weaker
strain softening, while the tapes drawn at higher temperatures (45 and 50 ◦C) displayed a rubber-like
behavior with a considerably lower strength, less prominent yield and strain softening, as shown in
Figure 8a,b. The difference in the strain softening was attributed to the fact that, during drawing, there
was the formation and growth of cavities at different draw temperatures. In the case of the speed of
drawing at 40 ◦C, the highest drawing speed (100 mm/min) led to a significantly increased yield stress
with pronounced strain softening and uniform drawing, while the lowest draw speed (10 mm/min)
resulted in rubber-like behavior and a non-uniform tape resulted, while the yield and strain softening
regions were less prominent. In short, the sample obtained from a draw ratio of 2.5, temperature of
40 ◦C and draw speed of 100 mm/min exhibited maximum Young’s modulus of 2.1 GPa and tensile
strength of 102 MPa, which were 50% and 100% higher than those of the undrawn sample, respectively
(Figure 8(c)). The sample obtained from a draw ratio of 2.0, temperature of 50 ◦C and draw speed
of 50 mm/min displayed the highest elongation at break and work at fracture, which were 26 and
60 times higher than those of the undrawn tape.
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Compression molding of stacked cellulose nanofibers sandwiched between PLA films was found
to have improved the mechanical properties of the resulting composite material [97]. The sandwich
composite composed of volume fraction (Vf) ~65 vol.%, resulted in increases in the elongation at break
from 1.6% to 6.2% and Young’s modulus from 3.9 to 9.5 GPa, while the tensile strength increased from
55 to 270 MPa when compared to the neat PLA [97]. Elsewhere, nanopaper-reinforced PLA composite
laminates reinforced with 10 × 5 g/m2 (Laminate 1, Vf = 39), 5 × 10 g/m2 (Laminate 2, Vf = 48),
2 × 25 g/m2 (Laminate 3, Vf = 50) and 1 × 50 g/m2 (Laminate 4, Vf = 53) were found to have excellent
reinforcing ability of PLA [98]. Tensile moduli of between 10.5 and 11.8 GPa and tensile strength of
between 95 and 111 MPa were obtained.

In summary, the Young’s modulus and the tensile strength increase with increasing CNFs content
due to the stiffness of the CNFs and the adhesion between the two components. The smaller size of the
fibers promote the interaction between PLA and CNFs and, thus, the mechanical properties. Similar to
CNCs, CNF has a percolation threshold, after which the mechanical properties cannot improve further.
This results from the formation of strong network via hydrogen bonding. The elongation at break often
decreases with an increase in the CNFs concentration. This is due to the stiffening effect of the CNF,
which can be compensated for by adding plasticizer. The interaction between plasticizer and CNFs,
however, has to be limited, such that it cannot promote slippage between fibers and, thus, adversely
affect the mechanical properties. Of all the melt compounding processing methods, compression
molding gives better mechanical properties with regards to higher content of cellulose materials that
can be incorporated.
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5. Dynamic Mechanical Properties

5.1. Cellulose Nanocrystals (CNC)

Dynamic mechanical analysis (DMA) can elucidate the reinforcing effect of the cellulose
nanomaterials by measuring the storage modulus as a function of temperature in both the glassy and
rubbery states. The interaction between PLA and cellulose nanomaterials as well cellulose nanomaterial
concentration was studied by Spinella et al. [52]. They found that the addition of modified CNCs led
to slight increments of the modulus in the glassy state (23 ◦C) and large increase was obtained in PLA’s
rubbery zone (70 ◦C). In the glassy state, unmodified CNC (HC`-CNCs), chemically modified CNCs,
viz., lactic acid (LA-CNCs) and acetate (AA-CNCs) storage moduli increased from 3300 ± 30 MPa to
4000 ± 25 MPa and 3676 ± 40 MPa, respectively. In the rubbery state, values of the storage modulus
increased from 146 ± 30 MPa to 265 ± 35 MPa and 550 ± 65 MPa for HC`-CNCs, AA-CNCs and
LA-CNCs-based composites, as shown in Figure 9. This was attributed to the inclusion of rigid filler
and the enhanced interfacial compatibility and adhesion between the modified fillers and PLA.
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Comparison of the storage modulus for PLA/CNC nanocomposites filled with 1 wt % of different
acid-derived CNCs were conducted by Dhar et al. [99]. The extracted CNC displayed different
morphologies and dimensions, which led to variable aspect ratio of: ~50, ~17, ~57 and ~24 for H2SO4,
HC`, H3PO4 and HNO3 hydrolyzed CNCs. The addition of phosphoric acid hydrolyzed CNC into PLA
significantly increased storage modulus (E’) values by 1.75 times when compared to 1.5 and 1.4 times
for the hydrochloric and sulfuric acid hydrolyzed CNC, with the least being 1.01 times for nitric acid
hydrolyzed CNC (all compared to neat PLA). This was attributed to stronger interfacial adhesion for
phosphoric acid hydrolyzed CNC with PLA because of substitution of –OH groups with phosphate
groups onto the CNCs, which led to the introduction of hydrophobic character along with the presence
of high degree of inter-molecular hydrogen bonding. Stronger interaction enhances the transfer of
elastic modulus of the CNC to the polymeric material effectively, thereby improving the storage
modulus of the nanocomposites. On the other hand, the high aspect ratio of CNC-H3PO4 compared
to other acid derived CNCs led to higher reinforcement efficiency at relatively low volume fractions
resulting in improved stress transfer from CNCs to the PLA matrix. It was found that an increase in
CNC loadings, i.e., from 1 to 3 wt %, drastically increased the complex modulus of the nanocomposites
because of an increase in the hydrogen bonding fraction (FH-CO) values (representing the degree of
the hydrogen bonding between the PLA matrix and the CNC). The increase in FH-CO values indicate
that the hydrogen bonding improved and better uniform distribution was achieved of CNC-H3PO4

in the PLA matrix. Weak intermolecular hydrogen bonding for CNC-HC` and low aspect ratio was
reported to result in a lower effective stress transfer and thus, a decrement in the complex modulus.
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However, the hydrophilicity of CNC-HNO3 and CNC-H2SO4 led to their irreversible agglomeration,
which affected the morphology and elastic modulus of the resulting nanocomposites. This study
indicates that a selection of appropriate hydrolyzing acids for the extraction of CNC has to be carefully
considered with regard to the desired characteristics, which could further affect the performance of the
nanocomposite materials. The reactive extrusion of PLA in the presence of dicumyl peroxide to afford
grafting of PLA chains onto CNCs and a formation of C–C bond was found to overcome the irreversible
agglomeration of H2SO4 acid hydrolyzed CNC, as reported by Dhar et al. [91]. This resulted in an
increase in the elastic modulus when 2 wt % of CNC was incorporated into the system due to the
formation of crosslinked structure and better interfacial adhesion with the polymer matrix. Elastic
moduli values were significantly higher for the reactively grafted CNC than the ungrafted PLA/CNC
composite over the whole temperature range, which justifies the formation of C–C bonds and hence,
resulting in the effective transfer of CNC modulus to the PLA matrix.

Surface topochemistry on the interaction between cellulose nanomaterials and PLA can be verified
by tanδ (the damping factor) from DMA analysis, since it is related the polymer chains relaxations [52].
For instance, when there is strong interaction between PLA and the filler, the following changes will
occur: (i) shifting in the peak maximum to higher temperatures; (ii) a decrease in the intensity at
the peak maximum; and (iii) broadening of the transition. Elsewhere, CNCs that were chemically
modified and included in lactate (LA-CNCs) and acetate (AA-CNCs) were compared with unmodified
HC`-CNCs to investigate the surface topochemistry on their interaction with PLA [52]. The authors
reported that at 5% HC`-CNCs, there was slight decrease (10%) in the tanδ peak and the peak
temperature (59–58 ◦C), hence confirming poor adhesion, whereas, for AA- and LA-CNCs, 38% and
64% decreases were recorded at 5% loading (Figure 10). However, the maxima for the tanδ peaks
for AA- and LA-CNCs were at 61 and 65 ◦C, indicating a stronger interaction between modified
CNCs and PLA. It is worth mentioning that the maximum tanδ peak is often recognized as the glass
transition of polymeric material. The maximum tanδ peak was found to decrease for the reactively
extruded PLA chains, grafted onto CNCs by using dicumyl peroxide as radical initiator, even though a
better interaction between CNC and PLA was achieved [91]. This was attributed to the crosslinked
PLA-g-CNC gels, undergoing heat shrinkage at Tg, which depends on the degree of branching.
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5.2. Cellulose Nanofibers

The presence CNF was found to enhance the elastic modulus of the composite material, regardless
of the surface functionalization of the CNF or the use of coupling agent/compatibilizer. This can be
related to the higher stiffness of the cellulose nanofibers when compared to neat PLA. Meng et al. [71]
reported that storage modulus of CNF increased (from 2680 MPa at 25 ◦C to 3079 MPa) with the
addition of 10 wt % of CNF. They further reported that, despite the presence of epoxidized soybean oil
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(ESO) as plasticizer, the storage moduli further increased with increase in the CNF content. The intensities
of the tanδ peaks were also decreased with increases in the CNF contents and the glass transition
temperatures increased due to the restriction of segmental chain mobility of the PLA matrix by CNFs.

Oksman and co-workers prepared PLA/CNFs by extracting CNFs from kenaf pulp, by mechanical
grinding, followed by solvent exchange to acetone to enable the preparation of a master-batch, based
on PLA and CNF in acetone and chloroform (9:1) to avoid the re-aggregation of the CNFs, during
extrusion process [67]. The storage modulus was significantly higher for all composites than the
neat PLA and the improvement was most significant at 5 wt % of CNF, due to CNF entanglement.
The improvement was more pronounced at 70 ◦C, where the storage modulus reached a value of
2.5 GPa for PLA-CNF (5 wt %) when compared to 100 MPa for pure PLA. Such improvements,
after the relaxation, forming a “plateau”, was related to the entanglement of the fibers, especially
at higher content of CNF. The tanδ peak also shifted to higher temperature with increased in CNF
content of 5% CNF-based composite, reaching 76 ◦C when compared to 70 ◦C for neat polymer matrix.
Furthermore, tanδ peak intensity decreased with increase in CNF concentration when compared
to the neat PLA, indicating the fact that very few polymer chains were involved in this transition.
The increase in storage moduli and the shifting of tanδ was attributed to physical interaction between
the polymer and the CNF reinforcement that restricted the segmental mobility of polymer chains
in the vicinity of the nano-reinforcements. Crystallization of samples prepared by hot-pressing the
composites for 1 h resulted in a storage modulus of ~1 GPa at 120 ◦C, indicating that the combination
of NFC reinforcement and the crystallization of PLA contributed to better heat resistance of the
composite, thereby showing its potential in applications for products that may be exposed to high
temperatures [95]. The constant storage modulus above the glass transition temperate of PLA, i.e.,
from 70 ◦C to 120 ◦C, was reported by Iwatake, Nogi, and Yano [68]. In this regard, 10 wt % of CNF
in PLA matrix exhibited such constant storage modulus, independent of the softening of PLA due to
the cellulose fiber network that was interconnected by hydrogen bonds, thereby resisting the applied
stress, regardless of the softening of PLA.

In summary, the presence of both CNF and CNC in PLA increases the storage modulus of the
resulting composite materials. The higher reinforcing effect is observed at a concentration at which the
CNMs can form a rigid network, resulting from the interaction between these cellulosic particles, via
hydrogen bonding and this is dependent on the aspect ratio of the CNMs. This restricts the segmental
mobility of PLA chains and, thus, the tanδ peak shifts to higher temperatures or its intensity decreases.
The strong interaction between the filler and PLA improves the reinforcing effect of CNMs, especially
at higher temperatures above the glass transition temperature of the PLA. The preparation method is
significant to achieve better dispersion as well as the envisaged CNM reinforcing potential.

6. Thermal Properties

Thermal stability of the materials is one of most important aspects, especially when considering
the heat involved during their preparation, when employing thermoplastic processing techniques.
In general, in the presence of cellulose, nanomaterials were found to decrease the thermal stability
of the resulting composite materials [63,86]. Depending on the processing technique, the material
thermal stability has to withstand or show no thermal degradation below the desired processing
temperature. For instance, Wang et al. [86] reported that the PLA-cellulose nanomaterial prepared
had no weight loss below 260 ◦C, which afforded their applications in the 3D printing environment.
The chemical modification of the cellulose nanomaterials can also improve the thermal stability of the
resulting composite materials due to the strong interaction, which allows the polymer to be protected
from heat. Elsewhere, it was reported that the reduction in the thermal stability was found to be
less pronounced for the chemically modified materials, which was attributed to a strong interaction
and adhesion [52]. On the other hand, the cellulose nanomaterials extraction process can influence
the thermal properties of the resulting composite material due to the presence of the functional
groups introduced by these treatments. A detailed study on the effect of the CNC fabricated by using
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different acids (i.e., hydrochloric, nitric, phosphoric and sulfuric acid) on the thermal behavior of
the PLA was carried out by Monika, Dhar and Katiyar [100]. Freeze-dried CNC extracted by H2SO4,
H3PO4, HNO3 and HC`, were added to PLA matrix (labeled PLA-H2SO4-CNC, PLA-H3PO4-CNC,
PLA-HNO3-CNC and PLA-HC`-CNC, respectively) and melt-mixed by using a micro-twin-extruder
at 180 ◦C and a screw speed of 50 rpm. The thermal stability followed the order: PLA-HNO3-CNC
> PLA-H3PO4-CNC > PLA-HC`-CNC > PLA-H2SO4-CNC (Figure 11). The lowest thermal stability
of H2SO4 hydrolyzed CNC-based composites was related to the presence of sulfate groups (
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onto the CNC that may have catalytic effect on the nanocomposite chain of PLA, thereby leading to
increased thermal decomposition rate. The improved thermal stability on other acids was ascribed to
the stable bond formation between the carbon and substituted anion (for example, the bond strength
C-N > C-P) or the thermal behavior of the substituted anion (for example, thermal stability
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4−) on the CNC surface. The results clearly indicate that the thermal behavior of the composites
can be influenced by the extraction method or hydrolyzing acid employed. Similar observations
were reported in another study by Katiyar and co-workers [99]. In this study, it was found that
the thermal stability of PLA/CNC nanocomposites followed the same order: PLA-HNO3-CNC >
PLA-H3PO4-CNC > PLA-HC`-CNC > PLA-H2SO4-CNC. It was concluded that the thermal properties
for the polymer-CNC nanocomposites fabricated were dependent on the inherent thermal properties of
the different acid-derivatized CNCs. To resolve the issue of thermal stability of CNC extracted by using
H2SO4 acid hydrolysis, the improvement of the interaction between CNCs and PLA allows the PLA
matrix to encapsulate CNC-H2SO4, such that the thermal stability can be improved. Dhar et al. [91]
grafted PLA chains onto CNC surface, although there was C–C bond formation in the presence of
dicumyl peroxide (DCP), as a radical initiator. It was reported that grafting PLA onto CNCs in the
presence of DCP through reactive extrusion led to an improvement in thermal stability by ~12 ◦C and
~5 ◦C for onset degradation temperature (Tonset) and the temperature at which 50% (T50%) mass
loss was observed, respectively. This was attributed to the formation of PLA encapsulated CNCs
during reactive extrusion, which masks sulfate and hydroxyl groups of CNCs, thereby delaying their
degradation process. However, the formation of C–C bond between PLA and CNCs led to enhanced
thermal stability since higher activation energy is required to break such bridged linkages.
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from [100].
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7. Future Remarks and Conclusions

Thermoplastic processing of PLA/CNMs has a promising potential for large-scale production
of green composites towards various applications, which include packaging and biomedical fields.
The utilization of CNMs, viz. CNCs and CNFs, as fillers renders efficient and attractive route to
improve the properties of PLA, while preserving the biological and environmental advantages, i.e.,
biodegradability, cytocompatibility, compostability and renewability associated with PLA matrix.

Based on this review work, several conclusions on the preparation and properties of PLA/CNMs
composite can be made:

Different factors, such as functionalization of cellulose nanomaterials and processing techniques
to produce PLA/cellulose nanomaterials composites (viz., compression molding, melt compounding,
melt spinning, injection molding and solid-state drawing) play a significant role in the overall
properties of the PLA/CNMs composites. The preparation method, filler content and type, and
interaction between the filler and matrix have paramount effects on the properties of the resulting
PLA/CNMs composite materials. Functionalized PLA nanocellulose composites show better
properties than their unmodified counterparts due to improved dispersion and interaction with
PLA matrix. The filler content has an optimal concentration in the PLA matrix for the purpose of
enhancing the resulting properties of the nanocomposites, after which the opposite trend prevails.

Compression molding enables an opportunity to incorporate large quantities of CNMs and
again provides sufficient time for CNM filler–filler interaction, which enhances the overall composite
properties when compared to other thermoplastic processing techniques. Secondary processing
techniques, such as solid drawing and 3D-printing, further open doors for PLA composites
for advanced applications. The presence of the CNMs enhances the mechanical, thermal and
thermomechanical characteristics of the resulting PLA composites, which can allow their applications
in various fields. The extraction process of CNMs plays a major role in the ensuing composite
properties, since it controls their surface groups, hence the interaction with PLA. Furthermore, the
improvement of the interfacial interaction between PLA and CNMs is important to achieve the
desired properties. The use of other functionalization routes, such as employing biopolymers, e.g.,
PHB, serves as promising route not only to facilitate interaction between PLA and CNMs, but their
contribution in improving the toughness of the composites, while preserving the biological and
environmental properties.

The possibility of choosing between CNF and CNC allows these nanomaterials to have a bright
future, making the filler not only feasible to produce composite with the desired overall properties,
but to reduce the overall price of the resulting composites. The CNFs serve as fillers of choice since it
is easier to extract when compared to CNCs, but they still suffer the same drawback when it comes
to dispersability and compatibility. Moreover, the filler–filler interaction of both fillers to form an
inter-network via hydrogen bonding still controls the mechanical properties enhancement of the
resulting composite products.

In the future, the use of green compatibilizers to improve the dispersion and interfacial adhesion
of PLA and CNMs would further enhance their performance. The development of an advanced single
suitable and effective method to incorporate CNMs into PLA without losing the CNMs dispersed
state (as in solution casting) is essential. Moreover, the addition of a second nanofiller can serve as an
alternative route to promote interfacial adhesion and the overall properties, and to offer the resulting
composites new opportunities with additional functionality.
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