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Abstract

Based on large-scale human mobility data collected in San Francisco and Boston, the morning peak urban rail transit (URT)
ODs (origin-destination matrix) were estimated and the most vulnerable URT segments, those capable of causing the largest
service interruptions, were identified. In both URT networks, a few highly vulnerable segments were observed. For this small
group of vital segments, the impact of failure must be carefully evaluated. A bipartite URT usage network was developed
and used to determine the inherent connections between urban rail transits and their passengers’ travel demands.
Although passengers’ origins and destinations were easy to locate for a large number of URT segments, a few show very
complicated spatial distributions. Based on the bipartite URT usage network, a new layer of the understanding of a URT
segment’s vulnerability can be achieved by taking the difficulty of addressing the failure of a given segment into account.
Two proof-of-concept cases are described here: Possible transfer of passenger flow to the road network is here predicted in
the cases of failures of two representative URT segments in San Francisco.
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Introduction

Faced with the rapid expansion of private vehicle ownership

and use, which puts immense pressure on urban roads, transpor-

tation agencies in many cities have encouraged people to use

public transportation in various ways [1–7]. Most large cities offer

two types of public transportation. The first is urban rail transit

(URT), which is characterized by high speed and large capacity. It

usually forms the backbone of urban public transportation [8–13].

The other is conventional busing, which has considerable

flexibility with respect to route planning and low operating costs.

It extends the spatial coverage of public transportation services

and improves the URT’s fault tolerance by providing an

alternative during breakdowns or scheduled maintenance events

[8–10]. Urban rail transit can be considered the artery of modern

public transportation. It transports a huge number of people in

large cities, so its robustness and efficiency are of considerable

importance and have drawn widespread attention in various

scientific and engineering fields [8–12].

Using the statistical measures developed in complex network

theory, researchers have studied the topologies and dynamics of

urban rail transit networks [8–18]. Average path length, clustering

coefficients, robustness, efficiency, passenger flow, and temporal

evolution have been investigated to obtain deeper insights on how

to improve public transportation environments [8–13]. Studies

have shown that URT networks can have considerable efficiency

and involve very low initial construction costs. However, their

robustness can be low due to the lack of alternative paths between

two stations (attributed to the expense of building rail tracks) [10].

Fortunately, during a URT failure conventional buses can offer

URT passengers alternative routes along roads, markedly

improving the URT network’s fault tolerance. However, due to

the lack of reliable data and appropriate methodologies, the spatial

distributions of passengers’ origins and destinations for each URT

segment, which is crucial to coordinate operations between

conventional buses and URTs, remains poorly understood.

In this paper, human mobility data from San Francisco and

Boston were used to estimate morning peak travel demand and

pinpoint the vulnerable segments of the San Francisco and Boston

URT networks [19,20]. A bipartite network framework is here

proposed to predict the origins and destinations of passengers for

each URT segment. This allowed high-quality measurement of

the vulnerability of each URT segment. As a proof of concept of

the proposed bipartite network, suitable bus routes capable of

transporting URT passengers during the breakdown of two

representative URT segments were here identified.

Data and Methods

URT networks
Two URT systems are discussed in this paper. The San

Francisco Muni Metro consists of 71.5 miles of track and six light

rail lines and has an average weekday ridership of 173,500

passengers [21]. The Boston subway, called ‘‘the T,’’ is composed

of three rapid transit lines and two light rail lines with an average

weekday ridership of 628,400 passengers [22]. The coordinates of

each station were collected using Google Earth, and maps of the

URT networks were generated with nodes (123 in San Francisco,

122 in Boston) representing stations and links (254 in San

Francisco, 246 in Boston) representing URT segments (Fig. 1a &
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b). The morning peak (8:00–9:00 a.m.) travel time of each link was

estimated using official schedules [23,24]. Geographical centers of

the two URT networks were pinpointed and URT segments were

classified as either inbound or outbound segments (Fig. 1a & b).

Morning-peak URT ODs
Data regarding the daily commute in San Francisco were

provided by the U.S. Census Bureau [25]. The number of

commutes between each pair of city blocks was recorded (Fig. 1c).

There are a total of 7,372 city blocks in San Francisco, and these

data offered detailed information regarding where people live and

work. The number of trips and daily home-to-work commute OD

(origin-destination matrix) were calculated for residents who live

and work in San Francisco. Commuting trips that started or ended

outside the city were not considered. This was because the rate of

usage of public transportation outside the city of San Francisco

was very low and because public transport between cities is

normally dominated by intercity rails.

Because daily commuting data for Boston were not available,

large-scale mobile phone data were here used to estimate the

home-work commute. In this scenario, each time a person uses his

or her phone, the time of the call is recorded and the coordinates

are estimated using a standard triangulation algorithm [26].

During the three-week observational period, more than 200,000

distinct locations were recorded (Fig. 1d). It was here assumed that

a mobile phone user’s home and work places were the locations

where the user was most likely to be found from 9:00 p.m. to 6:00

a.m. and from 9:00 a.m. to 5:00 p.m. The user’s commute was

here considered the trip from his or her home location to his or her

work location. Boston commuting OD was obtained by incorpo-

rating data covering all mobile phone users’ commutes. Due to the

data sampling bias introduced by the different penetration rates of

mobile phones in different census tracts, the OD was adjusted

using a down-scale exponent or an up-scale exponent E(i) to

render it more likely that the number of trips generated by a

census tract would be proportional to its population:

E(i)~Npop(i)=Nuser(i) ð1Þ

Here, Npop(i) and Nuser(i) are the total population and the

number of mobile phone users in census tract i. The number of

commuting trips Tij between locations i and j is calculated as

follows:

Tij~
XNi

n~1
Tij|E(i) ð2Þ

Here, Ni is the total number of users in census tract i. If the

destination of user n’s commuting trip is location j, Tij(n)~1,

otherwise Tij(n)~0.

People use different modes of transportation in their daily

commute. These include driving, public transportation, and

Figure 1. The URT network data and the human mobility data. (a) The black arrow points to the geographical center of the San Francisco URT
network. The URT segments with directions heading to the geographical center are here considered ‘‘inbound’’ segments, and the URT segments
with directions leaving away from the geographical center are considered ‘‘outbound’’ segments. (b) The geographic center and outbound segments
in the Boston URT network. (c) The blue polygons on the San Francisco map indicate the census tracts, and the light gray dots indicate the centers of
the city blocks. The San Francisco daily commuting OD data are recorded in a city-block resolution. (d) The blue polygons on the Boston map indicate
the census tracts, and the light gray dots indicate the locations of mobile phone users detected during the three-week observational period.
doi:10.1371/journal.pone.0080178.g001
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walking. Mode split data was here used to estimate the URT usage

rate (modes included driving alone, carpooling, public transpor-

tation, walking, working from home, and other) [27]. It was here

assumed that people who chose to walk were traveling distances

under 1 km. For trips starting from census tract i and covering a

distance larger than 1 km, public or private modes of transpor-

tation were assigned randomly according to the public transpor-

tation usage rate PUR(i) of that census tract (Fig. S1):

PUR(i)~
Np(i)

N(i)�Nh(i)�Nw(i)
ð3Þ

Here, Np(i) is the number of residents using public transportation

in census tract i, Nh(i) is the number of residents working from

home, Nw(i) is the number of residents who walk to work, and

N(i) is the total population in the census tract. URT trips were

extracted from the total number of trips involving public

transportation. All of these were assumed to have origins and

destinations within 500 meters of the URT stations. The origin

and destination of each URT trip was connected to their nearest

URT stations to generate the morning peak URT ODs. The San

Francisco and Boston morning-peak hourly URT ODs included

13,005 and 33,500 trips, respectively. These values were found to

be reasonably consistent with the average daily number of

passengers who pass through Muni Metro and the T (Greater

Boston subway system) [21,22].

Results

Passenger flow in the URT networks
The impact of the failure of a given URT segment was found to

be closely correlated with its passenger flow. Based on the

morning-peak hourly URT ODs, passenger flows in both URT

networks can be estimated. In the present model, each passenger is

assumed to use the shortest path, which is also assumed to involve

the shortest travel time. The time cost with respect to waiting

metro vehicles and transfers was not considered for purposes of

simplicity. The shortest path for each URT trip was calculated

using the Dijkstra algorithm [28]. Trip travel time was found to

follow a double-Gaussian distribution in San Francisco with two

peaks around 5 min and 25 min, and it was found to follow a

Gaussian distribution in Boston with a typical time of roughly

10 min (Fig. 2).

Next, the passenger flow of each URT segment was measured

by counting the number of shortest paths passing through each

segment (Fig. 3a & b). Although 76% of the San Francisco URT

segments showed passenger flow V,1,000 p/h (passengers/hour),

the passenger flow of the busiest segment was found to reach

7,218 p/h. In San Francisco, passenger flow follows a power-law

distribution P(V )~437:4V�1:26, indicating that there may exist

some extremely popular URT segments with very large passenger

volumes (Fig. 3c). Similar heterogeneously distributed passenger

flows can be observed in the Boston URT network, where the

passenger flow was also found to follow a power-law distribution

P(V )~61:6V�0:96 in which the maximum volume reached

8,970 p/h (Fig. 3c). Asymmetric URT usage patterns were also

observed for inbound and outbound segments in both cities. In

San Francisco, outbound URT segments showed larger passenger

flows than inbound URT segments, but, in Boston, inbound

segments showed larger passenger flows than outbound segments.

The heterogeneously and asymmetrically distributed traffic flows

indicated that failure of a few highly vulnerable segments could

interrupt a large number of passengers.

In order to indicate the importance of the URT ODs to the

prediction of passenger flow, betweenness centrality bc, which only

quantifies the topological importance of a link, was also measured

for each URT segment [29–31]:

bc(v)~
Xsst(v)

sst

ð4Þ

where sst is the number of shortest paths from node s to node t
and sst(v) is the number of shortest paths passing through segment

v. Fig. 3d shows that the URT segments’ betweenness centrality

can be approximated by Gaussian distributions in both San

Francisco and Boston:

P(bc)~0:079e�((bc�0:052)=0:086)2 ðSan FranciscoÞ ð5Þ

P(bc)~0:11e�((bc�0:028)=0:063)2 ðBostonÞ ð6Þ

Unlike passenger flows (power-law distributions with fat tails),

typical values of betweenness centrality bc ,0.05 and bc ,0.03

can be found in the two URT networks, suggesting that the usage

of the URT networks is shaped by actual travel demands (URT

ODs). The Pearson correlation coefficient (PCC) between passen-

ger flow V and betweenness centrality bc can be measured for San

Francisco (PCC = 0.52) and Boston (PCC = 0.79), again confirming

that the URT ODs are necessary to estimate passenger flow

accurately (Fig. 3e).

Vulnerable segments within the URT networks
The passenger flows for the two URT networks were calculated

using the Dijkstra algorithm. Each URT segment’s vulnerability

could then be calculated by defining the trip failure rate f r, which

is here the relative number of trips that fail in the specific

segment’s break down. Measuring the trip failure rate f r for each

URT segment, produces a comprehensive picture of the locations

of the vulnerable parts of the URT networks. Roughly 67% of the

segments in the San Francisco URT network showed a trip failure

rate f rv0:02, but the trip failure rates f r for a small number

(2.8%) of high-volume segments were over 0.15 (Fig. 4a). The

Figure 2. Distribution of the trip travel time. In San Francisco, the
duration of a URT trip showed a double Gaussian distribution

P(T)~0:15e�((T�24:7)=10:2)2

z0:11e{((T�5:5)=6:4)2

(R2~0:99). In Boston,
the duration of a URT trip showed a Gaussian distribution

P(T)~0:14e�((T�13:1)=25:2)2

(R2~0:92).
doi:10.1371/journal.pone.0080178.g002
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highest trip failure rate in San Francisco was found to be f r~0:63,

meaning that 63% of the URT trips will be interrupted in the

failure of the segment. The trip failure rate f r of the San Francisco

URT network showed an exponential distribution P(f r)~

0:33e�25f r (Fig. 4b), showing a spatial distribution similar to that

of passenger flow except for the segments in the loops. Alternative

URT routes were observed when the segments in the loops broke

down. In this way, the trip failure rate for these segments was

equal to zero. However, the failure of these URT segments can

increase travel time through time-consuming detours. To quantify

this effect, the rate of increase in trip time, tr, of each URT

segment was defined as the relative amount of the increase in time

required for an average trip in the event of segment breakdown.

The rate of increase in trip time, tr, can approximated closely

using a power-law distribution P(tr)~0:00031t�1:24
r (Fig. 4c & d).

The maximum tr was observed at 0.26, meaning that average

travel time increases 26% when the segment in question breaks

down. This is a tremendous decrease in efficiency for the URT

network.

The exponentially distributed trip failure rate of the Boston

URT network, P(f r)~0:12e{14:7f r was determined here (Fig. 4e&

f). The trip failure rate was under 0.02 for 51.6% of the URT

segments. The largest trip failure rate was found to be f r~0:27,

indicating again that some segments are highly vulnerable

segments, whose breakdown would result in the failure of a large

number of trips.

Bipartite networks of URT usage
One important issue faced by transportation agencies during a

URT failure is acquiring information on the individuals affected

by it and on their origins and destinations. This information can

be extracted by generating a bipartite network of URT usage,

which pinpoints the major sources of passengers and the major

destinations of the individuals who use each URT segment.

Bipartite networks are a particular class of complex networks

whose nodes are divided into two sets, and connections are only

allowed between two nodes in different sets [32]. To generate the

bipartite network of URT usage, the URT segments can be

grouped into one set of nodes, and the census tracts that produce

and attract passengers can be grouped into the other set of nodes.

The most essential part of generating the bipartite URT usage

network is connecting the two sets of nodes. For each passenger,

the census tracts in which his or her home and workplace are

located must be pinpointed and the URT segments that he or she

uses must be predicted. For a URT segment, each passenger’s

home census tract is counted once if his or her trip passes through

the segment. By incorporating all passenger trips that pass through

the URT segment, the passenger flows contributed by each census

tract can be quantified and ranked (passenger source). To locate

the major sources of passenger flow, a URT segment’s major

sources of passengers (MPS) were here defined as the top ranked

census tracts from which 80% of its passenger flow originated.

Linking each URT segment (belonging to one set of nodes) to its

MPS (belonging to the other set of nodes), facilitated the

generation of the bipartite network of URT usage, where the

degree of a URT segment is the number of its MPS (NMPS ) and

the degree of a census tract is the number of segments for which it

serves as the MPS (Fig. 5a & b). Similarly, we define a URT

segment’s major passenger destinations (MPD) as the top ranked

census tracts that attract 80% of its passenger flow. The number of

Figure 3. Passenger flow in the URT networks. (a) In the San Francisco URT network, the colors indicate the passenger flow of URT segment V .

(b) Same as (a) but for the Boston URT network. (c) The passenger flow follows a power-law distribution P(V )~437:4V�1:26 (P(V )~61:6V�0:96) with

R2~0:99 (R2~0:95) in San Francisco (Boston). (d) In San Francisco, the betweenness centrality bc can be approximated by a Gaussian distribution

P(bc)~0:079e{((bc�0:052)=0:086)2

(R2~0:74). In Boston, the betweenness centrality bc can also be approximated by a Gaussian distribution

P(bc)~0:11e�((bc�0:028)=0:063)2

(R2~0:71). (e) Low correlations were observed between passenger flow Vand the betweenness centrality bc . The
topology of the Boston URT network was found to have a greater effect on shaping the passenger flow distribution than that of the San Francisco
URT network did (PCC = 0.79).
doi:10.1371/journal.pone.0080178.g003
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major passenger destinations is then denoted as NMPD. Connect-

ing each URT segment with its MPD we generate another

bipartite network of URT usage, which pin points the major

passenger destinations of each URT segment. As Fig. 5a & b

shows, we pinpoint the MPS and the MPD for the URT segments

with the highest trip failure rate f r in San Francisco and Boston.

The sources and destinations of the passengers who are most

severely affected by failure of the indicated segments can be

located easily using the bipartite networks of URT usage.

Next, the number of major passenger sources and the number

of major passenger destinations was determined for each URT

segment. Two groups of URT segments with NMPS*5 and

NMPS*10 can be identified in San Francisco (Fig. 5c & e). Nearly

90% of the URT segments have fewer than 12 major sources of

passengers, suggesting that sources of passengers can be located

easily. The largest NMPS observed in San Francisco was only 17,

which was much smaller than the maximum number of major

passenger destinations (NMPD~36). This suggested that employ-

ees at many workplaces are concentrated in relatively few

residential areas (Fig. 5f). The Boston URT segments can be

classified into two groups using their NMPD. These two groups of

segments showed NMPD*4 and NMPD*24, respectively (Fig. 5h).

Boston showed a larger maximum NMPS than San Francisco, 54,

but it had a smaller maximum NMPD, 32. This suggested that

employees at many residential areas are concentrated in relatively

few work places (Fig. 5d &g). This difference could be caused by

differences in land use patterns in these two cities [1].

A new aspect to the measurement of the vulnerability of
URT segments

Given that NMPS and NMPD can characterize a URT segment’s

role in a URT network and illustrate its association with passenger

diversity, a new quality in the understanding of URT segments’

vulnerability can be achieved by combining f r with NMPS and

NMPD. The URT segments with large NMPS and NMPD values

have more widely distributed sources of passengers and possible

destinations, so breakdowns of these segments will pose more

substantial challenges to transportation agencies. If two URT

Figure 4. Vulnerable URT segments in the URT networks. (a) In the San Francisco URT network, the color of each URT segment represents the
relative number of failed trips f r. (b) The trip failure rate f r can be approximated using an exponential distribution P(f r)~0:33e�25f r (R2~0:74) in San
Francisco. (c) The color of a San Francisco URT segment represents its trip time increasing rate tr . Only the segments in the loops subject to trip time

increase. A maximal tr~0:26 is observed. (d) The rate of increase of trip time showed a power-law distribution P(tr)~0:00031t�1:24
r (R2~0:99). (e) In

the Boston URT network, the color of each URT segment represents the relative number of failed trips f r. (f) The trip failure rate f r can be

approximated by an exponential distribution P(f r)~0:12e�14:7f r (R2~0:86) in Boston.
doi:10.1371/journal.pone.0080178.g004
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segments have the same trip failure rate, f r, then failure of the one

with the larger NMPS or NMPD value will involve the interruption

of a more complicated passenger flows, increasing the difficulty of

offering appropriate bus routes.

The URT segments were grouped according to their f r, NMPS

and NMPD values. URT segments with f rƒ0:05 and f rw0:05
were here defined as minimally vulnerable segments and highly

vulnerable segments, respectively. URT segments with NMPSƒ10
(NMPDƒ10) and NMPSw10 (NMPDw10) were defined as low-

NMPS (NMPD) segments and high-NMPS (NMPD) segments. In

both URT networks, the number of major sources of passengers,

NMPS , and the number of major passenger destinations, NMPD,

were found to be minimally correlated with the trip failure rate f r.

The URT segments can be classified into four groups according to

their f r and NMPS (Fig. S2a & b). Red symbols represent the

segments with high f r and high NMPS , blue symbols represent

segments with high f r and low NMPS , green symbols

represent segments with low f r and high NMPS , and gray symbols

represent segments with low f r and low NMPS . Similarly, URT

segments can be classified into four groups according to their f r

and NMPD values (Fig. S2c and d). The spatial distributions of the

eight groups of URT segments are depicted in Fig. S3. The

segments shown in red are the most vulnerable, which here means

that failure of these segments would have the highest impact and

that these events would be the most difficult to handle. Segments

shown in blue are also vulnerable in that failure would have a high

impact, but the difficulty of responding to these events would be

much less pronounced. Incorporating the proposed parameters

NMPS and NMPD into the estimation of a URT segment’s

vulnerability allows the difficulty of handling these failure events to

be taken into account.

In addition to the eight groups of URT segments classified by

their f r, NMPS and NMPD, two clusters of nodes naturally

appeared in the upper and lower arcs (Fig. S2). These two clusters

were found to correspond to the inbound and outbound URT

segments, respectively. This clustering pattern can be explained by

the two components that determine a URT segment’s NMPS and

NMPD: topological location and the passenger flow. In the URT

networks studied here, the routes passing through an outbound

segment can originate from stations in several URT lines (due to

transfers) but they usually end at stations in one line. In contrast,

the sources of trips passing through an inbound segment are

usually limited to one URT line, but their destinations may fall

along many lines. In this way, in the URT networks studied here,

the inbound segments tended to show larger NMPD values, and the

outbound segments usually showed larger NMPS values. However,

it is not necessarily the case that an inbound segment always has

larger NMPD than an outbound segment or that an outbound

segment always has larger NMPS than an inbound segment. URT

segments with high f r values tended to have larger NMPS and

Figure 5. Locating major passenger sources (MPS) and major passenger destination (MPD). (a) In the San Francisco URT network, the
census tracts in yellow, orange, and red indicate the MPS passenger production values of the most vulnerable segment. The census tracts shown in
shades of blue represent the segments’ MPD passenger attraction values. Black links indicate the connections between each selected URT segment
and its MPS. (b) In the Boston URT network, the census tracts in yellow, orange, and red indicate the MPS values of the most vulnerable segment. The
census tracts shown in shades of blue represent the segments’ MPD values. Black links indicate the connections between each selected URT segment
and its MPS. (c) The color of each segment represents its number of MPS (NMPS). (d) The color of each segment represents its number of MPS (NMPS).
(e) The distribution of the number of major sources of passengers NMPS in San Francisco. (f) The distribution of the number of major passenger
destinations NMPD in San Francisco. (g) The distribution of the number of major sources of passengers NMPS in Boston. (h) The distribution of the
number of major passenger destinations NMPD in Boston.
doi:10.1371/journal.pone.0080178.g005
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NMPD values, producing the clustering patterns shown in Fig. S2.

In conclusion, the NMPS and NMPD of a URT segment depend

not only on its topological location but also on its passenger flow,

which is closely correlated with the trip failure rate f r.

Proof of concept use of the bipartite network of URT
usage

The importance of the bipartite URT usage network also relies

on its ability to facilitate the sharing of information between

different transportation systems. As a proof-of-concept, the URT

segment stretching from Market Street and Buchanan Street to

Market Street and South Van Ness Avenue, which has the highest

trip failure rate f r of any segment evaluated in the present work,

may serve as an example. The transfer of passenger flow to the

San Francisco road network in the event of a breakdown of this

URT segment can be calculated. Passenger origins and destina-

tions were extracted for URT trips starting at any of this segment’s

major sources of passengers. By connecting each origin and

destination to its nearest road intersection, the shortest paths for

each selected trip in the road network were determined [33,34].

The numbers of passengers transferred to the road network ranged

from 0 to 2,100. Three major routes of passenger flows are

depicted in Fig. 6a. The roads along the major routes include

Market Street, Lincoln Way, and the Bayshore Freeway. Buses

14X, 6, 31, and a few others have services in these road sand can

provide alternative paths for passengers whose trips are interrupt-

ed by the failure of the URT segments in question (Fig. 6c).

Another example involves an actual disconnection of the San

Francisco URT segment from Duboce Avenue and Noe Street to

Church Street and Duboce Avenue, which is reported by the

Municipal Transportation Agency as ‘‘Church and Duboce Track

and Street Improvement Project.’’ Possible transfers of passenger

flow to the road network during this maintenance project can be

calculated (Fig. 6b). Laguna Honda Boulevard (highlighted in red)

is here predicted to see the most intensive use during this period.

Buses 44 and 43 have service on this road (Fig. 6c). The

distributions of the possible passenger flows induced in the road

network show different patterns in upper two examples (Fig. 6d),

suggesting that different strategies need to be implemented in

dealing with the emergent events taking place in the two URT

segments. In conclusion, the bipartite network of URT usage can

offer a feasible modeling framework for conducting effective

counter measures against possible failures in URT networks.

Discussion

Estimation of the morning peak commuting ODs was used to

locate the vulnerable segments in the San Francisco and Boston

URT networks. The unevenly distributed vulnerability of the two

networks suggests that special care must be taken for those highly

vulnerable segments. By incorporating the proposed new mea-

sures, NMPS and NMPD, into the estimation of vulnerability, not

only was the impact of a URT segment’s failure captured but the

Figure 6. Alternative routes in the road network. (a) The color of a road segment represents the potential passenger flows transferring to it
when the URT segment from Market St. and Buchanan St. to Market St. and South Van Ness Ave. fails. (b) Same as (a) but for an actual disconnection
of the URT segment from Duboce Ave. and Noe St. to Church St. and Duboce Ave. during a maintenance project in San Francisco. (c) The potential
alternative bus routes when the URT segment from Market St. and Buchanan St. to Market St. and South Van Ness Ave. breaks down (red lines) and
the potential alternative bus routes that were available during the maintenance project (blue lines). (d) The distribution of passenger flow indicates
different patterns of travel demand put on the San Francisco road network.
doi:10.1371/journal.pone.0080178.g006
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issues related to addressing difficulty were taken into account. In

this way, a new layer of the vulnerability of URT segments was

here described. The proposed bipartite network of URT usage

offers a useful modeling framework that can be used to locate the

origins and destinations of passengers who use the most vulnerable

segments of the network and to address emergencies by providing

alternative services. More dedicated and detailed data, such as the

subway card data, which would include information regarding

where people enter and exit the URT, could be included in the

current modeling framework, which would render it more

accurate. A framework that could be used to predict transfers of

passenger flow from the URT network to the road network during

failure of two representative URT segments is here proposed. This

may provide insight into the optimization of the reliability and

efficiency of multi-layer public transportation systems [35,36].

Information sharing techniques can be used to transfer messages

between different layers of a public transportation system. This

would improve the system and so encourage more people to use

public transportation.

Supporting Information

Figure S1 Public transportation usage rates in San Francisco

and Boston. The mode split data were collected using TransCAD

[27]. The numbers of residents using different modes of

transportation (driving alone, carpooling, public transportation,

walking, working from home, and other) were recorded for each

census tract.

(TIF)

Figure S2 Correlations among f r, NMPS, and NMPD. (a) Four

groups of URT segments were classified according to their f r and

NMPS values. Red symbols represent the highly vulnerable

segments (f rw0:05) which also showed large numbers of major

passenger sources NMPSw10. Blue symbols represent URT

segments with high f r and low NMPS values, green symbols

represent those with low f r and high NMPS values, and gray

symbols represent those with low f r and low NMPS values. Circles

represent the inbound URT segments, and triangles represent

outbound URT segments. (b) The same classification system and

symbols were used for Boston. (c) Red symbols represent URT

segments with high f r and high NMPD values, Blue symbols

represent URT segments with high f r and low NMPD values,

green symbols represent those with low f r and high NMPD values,

and gray symbols represent those with low f r and low NMPD

values. (d) See (c).

(TIF)

Figure S3 Spatial distributions of the eight groups of URT

segments defined by f r, NMPS, and NMPD. (a) Spatial distribution

of the four groups of San Francisco URT segments classified using

to their f r and NMPDvalues. (b) The spatial distributions of the

four groups of San Francisco URT segments were classified

according to their f r and NMPD values. (c) Spatial distribution of

the four groups of Boston URT segments classified using to their

f rand NMPS values. (d) The spatial distributions of the four groups

of Boston URT segments were classified according to their f r and

NMPD values.

(TIF)
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16. Barthélemy M (2011) Spatial networks. Physics Reports 499: 1–101.

17. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science

286: 509–512.
18. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev.

Mod. Phys. 74: 47–96.

19. Brockmann D, Hufnagel L, Geisel T (2006) The scaling laws of human travel.

Nature 439: 462–465.
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