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Propensity score methods are used to reduce the effects of observed confounding when using observational data
to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse
probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that
is equal to the inverse of the probability of receiving the treatment that was actually received. These weights are
then incorporated into the analyses to minimize the effects of observed confounding. Previous research has found
that these methods result in unbiased estimation when estimating the effect of treatment on survival outcomes.
However, conventional methods of variance estimation were shown to result in biased estimates of standard er-
ror. In this study, we conducted an extensive set of Monte Carlo simulations to examine different methods of var-
iance estimation when using a weighted Cox proportional hazards model to estimate the effect of treatment. We
considered three variance estimation methods: (i) a naïve model-based variance estimator; (ii) a robust
sandwich-type variance estimator; and (iii) a bootstrap variance estimator. We considered estimation of both
the average treatment effect and the average treatment effect in the treated. We found that the use of a bootstrap
estimator resulted in approximately correct estimates of standard errors and confidence intervals with the cor-
rect coverage rates. The other estimators resulted in biased estimates of standard errors and confidence intervals
with incorrect coverage rates. Our simulations were informed by a case study examining the effect of statin pre-
scribing on mortality. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

Keywords: propensity score; survival analysis; inverse probability of treatment weighting (IPTW); Monte Carlo
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1. Introduction

Observational studies are increasingly being used to estimate the effects of treatments, interventions and
exposures on outcomes. Confounding is an important issue in such studies as treated subjects often differ
systematically from control subjects in terms of baseline covariates that are prognostically important.
Statistical methods must be used to remove or minimize the effect of confounding due to measured
covariates so that valid inferences on treatment effects can be drawn from observational studies.

An important class of bias-reduction methods are those that are based on the propensity score [1]. The
propensity score is the probability of treatment assignment conditional on measured baseline covariates.
These methods are increasingly being used to reduce or minimize the confounding that occurs in obser-
vational studies. There are four ways of using the propensity score to reduce confounding: matching on
the propensity score, stratification on the propensity score, inverse probability of treatment weighting
(IPTW) using the propensity score and covariate adjustment using the propensity score [1–3]. These
methods are frequently used in the biomedical literature [4,5].

Survival or time-to-event outcomes occur frequently in the medical and epidemiological literature
[6]. Recent studies have examined the performance of different propensity score methods for estimat-

a Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
b Institute of Health Management, Policy and Evaluation, University of Toronto, Toronto, Ontario, Canada
cSchulich Heart Research Program, Sunnybrook Research Institute, Toronto, Canada
*Correspondence to: Peter Austin, Institute for Clinical Evaluative Sciences, G106, 2075 Bayview Avenue, Toronto, Ontario
M4N 3M5, Canada.

†E-mail: peter.austin@ices.on.ca
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which
permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no
modifications or adaptations are made.

© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 5642–5655

Research Article

Received: 9 March 2016, Accepted: 1 August 2016 Published online 22 August 2016 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.7084

5642

http://creativecommons.org/licenses/by-nc-nd/4.0/


ing the effect of treatment on survival outcomes [7,8]. In one study, it was shown that both matching
on the propensity score and IPTW using the propensity score resulted in unbiased estimation of mar-
ginal hazard ratios [8]. However, IPTW using the propensity score with the conventional variance
estimator resulted in biased estimation of standard errors and confidence intervals whose empirical
coverage rates differed from the advertised rates. Variance estimation when matching on the propen-
sity score [7,9–12] or when using IPTW with linear treatment effects [13] has received a moderate
degree of attention. However, little attention has been focused on variance estimation when using
IPTW with survival outcomes.

The objective of the current study was to examine variance estimation when using IPTW using the
propensity score to estimate the effect of treatment on survival or time-to-event outcomes when using
a Cox proportional hazards model. The paper is structured as follows: In Section 2, we briefly describe
different methods for variance estimation when using IPTW using the propensity score with survival
outcomes. In Section 3, we introduce a brief case study illustrating the application of these methods. In
Section 4, we describe an extensive series of Monte Carlo simulations that were performed to compare
the performance of different variance estimators. In Section 5, we report the results of these simulations.
Finally, in Section 6, we summarize our findings and place them in the context of the existing literature.

2. Using propensity score weighting to estimate the effect of treatment on survival
outcomes

We use the following notation throughout this section. Let Z denote an indicator variable denoting treat-
ment status (Z=1 for active treatment of interest vs. Z=0 for the control treatment), while e denotes the
propensity score. The propensity score is typically estimated using a logistic regression model in which
the binary indicator variable denoting treatment status is regressed on observed baseline covariates. Al-
ternatively, methods from the machine learning literature, such as random forests or generalized
boosting methods can be used [14–16]. Variable selection for the propensity score model has been con-
sidered elsewhere [17].

The inverse probability of treatment weights (IPTWs) are defined as wate ¼ Z
e þ 1�Z

1�e [13]. Thus, each
subject is weighted by the reciprocal of the probability of receiving the treatment that the subject actually
received. Weighting the sample using these weights results in a synthetic sample in which observed
baseline covariates are not confounded with treatment assignment. The use of these weights allows
one to estimate the average treatment effect (ATE). We refer to these weights as the conventional
IPTW-ATE weights. An alternative to the conventional IPTW-ATE weights are the stabilized IPTW-
ATE weights:wate;stab ¼ Pr Z ¼ 1ð Þ Ze þ Pr Z ¼ 0ð Þ 1�Z

1�e [18,19]. In defining the stabilized weights, the re-
ciprocal of the probability of receiving a given treatment is multiplied by the marginal probability of re-
ceiving the given treatment. Stabilized weights are intended to reduce variability due to instability in

estimation that can be induced by subjects with very large weights. Using weights equal to watt ¼ Z þ
e 1�Zð Þ
1�e allows one to estimate the average treatment effect in the treated (ATT) [20]. We refer to these
weights as IPTW-ATT weights. With these weights, treated subjects receive a weight of one, while
the control subjects receive a weight of the odds of receiving the active treatment. Thus, the population
of treated subjects serves as the reference population to which each of the treated and control populations
are standardized.

To estimate the effect of treatment on the hazard of the occurrence of the outcome, one can use a
weighted Cox regression model to regress survival on an indicator variable denoting treatment status
[8,21]. Three possible methods can be used to estimate the variance of the estimated treatment effect.
First, one could use the naïve model-based variance estimator from the maximum partial likelihood es-
timator for the Cox proportional hazards model. Second, one could use a robust sandwich-type variance
estimator of the type proposed by Lin [22]. The use of this estimator with IPTW regression models was
proposed by Joffe et al. [21]. A rationale for the use of a robust variance estimator is provided by Hernan
et al., who note that the use of weights induces a within-subject correlation in outcomes as observations
can have weights that are unequal to one another [23,24]. Xu et al. showed that the use of conventional
IPTW-ATE weights tended to result in a doubling of the number of subjects in the analytic sample [25].
The use of a robust variance estimator accounts for the lack of independence in replications of subjects
induced by weighting. The third approach to variance estimation is to use a bootstrap-based method to
estimate the variability of the estimated treatment effect. Of these three variance estimation methods, the
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use of a robust variance estimator appears to be the most frequent. However, the relative performance of
the three different methods is not known.

Statistical software code in R and SAS for fitting the weighted Cox regression model with robust stan-
dard errors is provided in the appendix.

3. Case study

We provide an empirical example to illustrate the application of the methods described in the previous
section.

3.1. Data and analyses

We used data from a previously published tutorial on the use of propensity score methods with survival
data [26,27]. The sample consisted of 9107 subjects patients discharged from hospital with acute myo-
cardial infarction (AMI) in Ontario, Canada. Data on patient characteristics were obtained by retrospec-
tive chart review by trained cardiovascular research nurses. These data were collected as part of the
Enhanced Feedback for Effective Cardiac Treatment Study [28].

The exposure of interest was whether the patient received a prescription for a statin lipid lowering
agent at hospital discharge. Three thousand and forty-nine subjects (33.5%) received a statin prescription
at hospital discharge. Patients were followed for up to eight years post-discharge. Patients who survived
to eight years post-discharge had their survival times treated as censored observations.

For the purposes of this case study, we considered 10 baseline characteristics: age, systolic blood
pressure at admission, respiratory rate at admission, creatinine, history of previous cardiovascular revas-
cularization procedure (percutaneous coronary intervention or coronary artery bypass graft surgery), di-
abetes, current smoker, history of hyperlipidemia, history of dementia and history of a previous AMI.
The first four are continuous covariates while the last six are binary.

Statin exposure was regressed on the set of 10 baseline covariates using a logistic regression model.
All 10 covariates were statistically significantly associated with statin prescribing at hospital discharge
(P<0.032). The hazard of post-discharge mortality was regressed on the 10 covariates using a Cox pro-
portional hazards regression model. All 10 covariates were significantly associated with the hazard of
death (P<0.002). The corresponding odds ratios (for exposure) and hazard ratios (for death) are re-
ported in Table I.

The propensity score was estimated for each subject using the logistic regression model estimated
above. The three sets of weights described in Section 2 were calculated (conventional IPTW-ATE
weights, stabilized IPTW-ATE weights, IPTW-ATT weights). The effect of statin prescribing on the
hazard of post-discharge mortality was estimated using a weighted Cox proportional hazards model.
The three different variance estimators described above were used to construct 95% confidence intervals
for the effect of treatment on the hazard of mortality.

When using bootstrapping, 200 bootstrap samples were drawn from the study sample [29] (Efron and
Tibshirani suggest that 200 bootstrap samples are generally sufficient for estimating a standard error
(page 52)). In each bootstrap sample, the propensity score was estimated by regressing treatment status

Table I. Odds ratios and hazard ratios for treatment selection and mortality.

Variable Odds ratio for statin prescribing
(95% CI)

Hazard ratio for death
(95% CI)

Age (per year increase) 0.980 (0.976, 0.984) 1.075 (1.071, 1.078)
Systolic blood pressure (per mmHg increase) 1.002 (1.001, 1.004) 0.996 (0.995, 0.997)
Respiratory rate (per breath per minute) 0.985 (0.975, 0.995) 1.036 (1.031, 1.041)
Creatinine (per μmol/L) 0.999 (0.998, 1.000) 1.003 (1.003, 1.003)
Previous revascularization 1.323 (1.117, 1.568) 1.201 (1.074, 1.343)
Diabetes 0.849 (0.758, 0.951) 1.766 (1.647, 1.893)
Current smoker 0.875 (0.783, 0.977) 1.247 (1.149, 1.355)
Hyperlipidemia 5.307 (4.804, 5.863) 0.850 (0.785, 0.92)
Dementia 0.488 (0.331, 0.72) 1.727 (1.508, 1.978)
Previous AMI 1.196 (1.056, 1.354) 1.424 (1.321, 1.534)
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on the 10 baseline covariates using a logistic regression model. The hazard of death was regressed on an
indicator variable denoting treatment status using a weighted Cox model fit to the bootstrap sample. This
was done for the three different sets of weights. The standard deviation of the estimated log-hazard ratios
(i.e., the estimated regression coefficient for the treatment status indicator) across the 200 bootstrap sam-
ples was used as the bootstrap estimate of the standard error of the estimated regression coefficient ob-
tained in the original analytic sample. Ninety-five percent confidence intervals were constructed by as
β^±1:96�Se

�
β^
�
, where β^denotes the estimated effect in the original analytic sample, and Se

�
β^
�
denotes

the estimated standard error of the estimated treatment effect (obtained using either the naïve variance
estimator, the robust sandwich-type variance estimator, or bootstrapping).

3.2. Results

The nine estimated hazard ratios with associated 95% confidence intervals (three different sets of
weights × three methods for variance estimation) are reported in Table II. Several observations warrant
comment. First, the estimates of the ATE are further from the null than are the estimates of the ATT
(hazard ratios of 0.76 vs. 0.90). An interpretation of this result is that the effect of statin prescribing
on mortality is stronger in the entire AMI population than it is in those AMI patients who ultimately re-
ceived a statin at hospital discharge. Second, when estimating the ATE, variance estimates were substan-
tially smaller when a naïve variance estimator was used compared to when a robust variance estimator or
a bootstrap estimator was used. Third, differences between the robust variance estimator and the boot-
strap estimator were negligible. Fourth, when estimating the ATE, the choice of weight (IPTW-ATE
weight vs. the stabilized ATE weight) had essentially no impact upon the estimate of the point estimate
of statin efficacy.

4. Monte Carlo simulations—methods

We used an extensive series of Monte Carlo simulations to examine the performance of different vari-
ance estimators when using IPTW with survival outcomes. We based our simulations on the empirical
analyses conducted in the previous section so that our simulations would reflect the empirical data on
which the case study was based.

We simulated data for a setting in which there were 10 baseline covariates (X1�X10). The first four
were continuous while the last six were binary (to reflect the setting of the case study). Using the data
from the case study, we standardized the four continuous covariates so that they had mean zero and unit
variance. We estimated the Pearson variance–covariance matrix of the 10 baseline covariates. We sim-
ulated 10 baseline covariates for each subject from a multivariate normal distribution with mean vector
equal to zero and with variance–covariance matrix equal to that estimated above. Each of the last six
simulated covariates was used to create a binary variable with a prevalence equal to that of one of the
binary covariates in the case study. This was done by determining whether the simulated normally dis-
tributed variable lay above or below a specified quantile of the given normal distribution.

Table II. Estimated treatment effects, variance estimates and 95% confidence intervals from case study.

Estimation method Estimated log-hazard ratio (standard
error)

Estimated hazard ratio (95%
CI)

Estimates of the ATE
IPTW weights – naïve variance estimate �0.2729 (0.0248) 0.76 (0.73, 0.80)
IPTW weights – robust variance estimate �0.2729 (0.0436) 0.76 (0.70, 0.83)
IPTW weights – bootstrap variance estimate �0.2729 (0.0425) 0.76 (0.70, 0.83)
Stabilized weights – naïve variance estimate �0.2722 (0.0378) 0.76 (0.71, 0.82)
Stabilized weights – robust variance
estimate

�0.2722 (0.0435) 0.76 (0.70, 0.83)

Stabilized weights – bootstrap variance
estimate

�0.2722 (0.0459) 0.76 (0.70, 0.83)

Estimates of the ATT
Naïve variance estimation �0.1082 (0.0463) 0.90 (0.82, 0.98)
Robust variance estimation �0.1082 (0.0461) 0.90 (0.82, 0.98)
Bootstrap variance estimation �0.1082 (0.0488) 0.90 (0.82, 0.99)
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As in the case study, we assumed that each of the 10 simulated baseline covariates influenced treat-
ment assignment. For each subject, the probability of treatment selection was determined from the fol-
lowing logistic model: logit(pi) =α0,treat +α1x1 +α2x2 +α3x3 +α4x4 +α5x5 +α6x6 +α7x7 +α8x8 +α9x9
+α10x10. A bisection approach, as described in previous publications, was used to determine the inter-
cept of the treatment-selection model (α0,treat) so that the proportion of subjects in the simulated sample
that were treated was fixed at the desired proportion [8]. The regression coefficients (α1,…,α10) were set
to the values estimated using the logistic regression model in the case study (with the modification that
the continuous variables had been standardized to mean zero and unit variance). For each subject, treat-
ment status was generated from a Bernoulli distribution with subject-specific parameter: Z~Be(pi).

We then generated a time-to-event outcome for each subject using a data-generating process for time-
to-event outcomes described by Bender et al. [30]. For each subject, the linear predictor was defined as

LP ¼ βtreatZ þ β1x1 þ β2x2 þ β3x3 þ β4x4 þ β5x5 þ β6x6 þ β7x7 þ β8x8 þ β9x9 þ β10x10:

As in the case study, the 10 baseline covariates all affected the hazard of the outcome. The regression
coefficients (β1,…,β10) were set to the values estimated in the case study (with the modification that the
continuous variables had been standardized to mean zero and unit variance). The value of the log-hazard
ratio for the treatment indicator (βtreat) was allowed to vary in the Monte Carlo simulations. For each
subject, we generated a random number from a standard uniform distribution: u~U(0,1). An event time

was generated for each subject as follows: �log uð Þ
λeLP

� �1=η

. We set λ and η to be equal to 0.00002 and 2, re-

spectively, as was done in previous studies [8,31].
The use of this data-generating process results in a conditional treatment effect, with a conditional

hazard ratio of exp(βtreat). However, IPTW using the propensity score estimates the marginal or
population-average effect. To determine the true marginal hazard ratio (this was necessary to permit es-
timation of empirical coverage rates of estimated confidence intervals), we generated a very large dataset
consisting of 1 000 000 subjects using the methods described in the previous paragraphs with one impor-
tant modification. For each subject, we simulated two outcomes: the two potential outcomes under the
treatment and control conditions. Thus, we simulated an outcome for each subject under the assumption
that they were treated. We then simulated an outcome for each subject under the assumption that they
were under the control condition. Then in the dataset consisting of both outcomes for each subject,
we regressed the hazard of the outcome on the indicator variable denoting treatment status. The esti-
mated log-hazard ratio will serve as the true marginal ATE. We then repeated the above regression anal-
ysis, restricting the analysis sample to those subjects who were ultimately assigned to the treatment in
the large simulated population. The estimated log-hazard ratio will serve as the true marginal ATT.

We allowed the following factors to vary in our Monte Carlo simulations: the percentage of subjects
that were treated (5%, 10%, 20%, 30%, 40%, and 50%) and the true conditional hazard ratio (1, 2, 3, 4,
and 5). We thus examined 30 scenarios (6 treatment prevalences ×5 conditional hazard ratios). In each
scenario, we simulated 1000 datasets, each consisting of 1000 subjects.

Within each simulated dataset we did the following: We estimated the propensity score using a logis-
tic regression model to regress treatment status on the 10 baseline covariates. In each of the 1000 sim-
ulated datasets for each scenario, we estimated the log-hazard ratio and its standard error using the
methods described in Section 2. Thus, we used three different sets of weights: the conventional
IPTW-ATE weights, the stabilized IPTW-ATE, and the IPTW-ATT weights. We used three different
variance estimators: the naïve model-based estimates, the robust sandwich-type variance estimators,
and a bootstrap estimate based on 200 bootstrap samples. Let θ^i and γ̂i denote the estimated log-hazard
ratio and its estimated standard error, respectively, obtained from the ith simulated dataset using a given
method. The estimated 95% confidence interval for the estimated log-hazard ratio was computed as
θ^i±1:96�γ̂i.

We examined the accuracy of variance estimation three different ways. First, we examined the accu-
racy with which the estimated standard error of the estimated log-hazard ratio estimated the sampling
variability of the estimated log-hazard ratio. To do so, we compared two quantities. We determined

the mean standard error of the log-hazard ratio across the 1000 iterations: γ̄̂¼ 1
1;000 ∑

1;000

i¼1

γ̂i . We also

determined the standard deviation of the estimated log-hazard ratios across the 1000 simulated datasets:
sd θ^i

� �
. The first quantity estimates the mean standard error, while the second quantity is the empirical
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estimate of the sampling variability of the log-hazard ratio. We then determined the ratio of these two

quantities:
γ̄̂

sd θ^ið Þ. If the ratio equals one, then the estimated standard error of the log-hazard ratio is cor-

rectly estimating the sampling variability of the estimated log-hazard ratio. Second, we determined the
proportion of estimated 95% confidence intervals that covered the true log-hazard ratio across the
1000 iterations of each scenario. Third, we determined the mean length of the estimated 95% confidence
intervals across the 1000 iterations of each scenario.

5. Monte Carlo simulations—results

The results of the Monte Carlo simulations are reported in Figures 1 through 6. The first three figures
summarize results for estimation of the ATE, while the last three figures summarize results for the esti-
mation of the ATT. Each figure consists of six panels, with one panel for each of the true conditional
hazard ratios used in the data-generating process.

5.1. Estimation of the ATE

The ratio of the mean estimated standard error to the empirical standard deviation of the sampling dis-
tribution of the log-hazard ratio is reported in Figure 1. In general, the bootstrap variance estimator re-
sulted in a ratio that was approximately equal to one, indicating that the bootstrap estimator correctly

Figure 1. Ratio of mean estimated standard error to empirical standard deviation of sampling distribution: ATE.
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approximated the standard deviation of the empirical sampling distribution of the log-hazard ratio. This
was true regardless of whether the conventional IPTW-ATE or the stabilized IPTW-ATE weights were
used. The naïve variance estimator with the conventional IPTW-ATE weights tended to substantially
under-estimate the standard deviation of the sampling distribution of the log-hazard ratio. The remaining
estimators tended to over-estimate the sampling variability, particularly when the prevalence of treat-
ment was above 25%. It is important to note that, in general, the robust variance estimator over-
estimated the sampling variability of the log-hazard ratio, regardless of which set of weights was used.

The empirical coverage rates of the estimated 95% confidence intervals are reported in Figure 2. Due
to our use of 1000 iterations within each scenario, any empirical coverage rate that exceeded 0.9635 or
that was less than 0.9365 would be statistically significantly different from the nominal rate of 0.95
based on a standard normal-theory test. Horizontal lines denoting these thresholds, along with the nom-
inal rate of 0.95 have been superimposed on each panel. The use of the naïve variance estimator with the
conventional IPTW-ATE weights resulted in estimated 95% confidence intervals whose empirical cov-
erage rates were substantially lower than the nominal level. The two bootstrap estimators (using conven-
tional IPTW-ATE weights or the stabilized IPTW-ATE weights) tended to result in estimates with
approximately correct coverage rates. The remaining three methods (robust estimator with conventional
IPTW-ATE weights, naïve estimator with stabilized IPTW-ATE weights, robust estimator with stabi-
lized IPTW-ATE weights) frequently resulted in confidence intervals whose empirical coverage rates
exceeded the nominal level.

Figure 2. Empirical coverage rates of estimated 95% confidence intervals: ATE.

P. C. AUSTIN

© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 5642–5655

5648



Because of the equivalence between confidence intervals covering a given value and hypothesis test-
ing, the scenario in which the true hazard ratio was equal to one permits us to examine the type I error
rate. The empirical type I error rate is equal to the proportion of estimated confidence that exclude the
true value. In examining the upper left panel of Figure 2, one can see that the two bootstrap-based esti-
mators tended to have approximately correct type I error rates, while the other four methods tended to
have incorrect type I error rates. In particular, the use of conventional IPTW-ATE weights with a naïve
variance estimator tended to result in substantially inflated type I error rates. The other three methods
tended to result in type I error rates that were lower than the expected rate of 5%.

The mean length of estimated 95% confidence intervals are reported in Figure 3. As was to be ex-
pected, based on the results reported above, the use of naïve variance estimator with the conventional
IPTW-ATE weights resulted in the narrowest confidence intervals. Among the remaining five estima-
tors, the two bootstrap estimators (with the conventional IPTW-ATE weights or with the stabilized
IPTW-ATE weights) tended to result in the narrowest 95% confidence intervals.

5.2. Estimation of the ATT

The degree to which the estimated standard error correctly approximated the standard deviation of the
empirical sampling distribution of the log-hazard ratio is reported in Figure 4. The use of the bootstrap

Figure 3. Mean length of estimated 95% confidence intervals: ATE.
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estimator tended to result in estimates of standard error that closely approximated the standard deviation
of the empirical sampling distribution (Figure 4). In contrast to this, the naïve variance estimator and the
robust variance estimator tended to result in inaccurate estimation of the standard error. Importantly, the
robust variance estimator systematically over-estimated the sampling variability of the estimated log-
hazard ratio. The use of the bootstrap estimator tended to result in estimated 95% confidence intervals
with approximately correct coverage rates (Figure 5). The use of the other two variance estimators
tended to result in 95% confidence intervals whose coverage rates differed from the nominal level. In
examining the upper left panel of Figure 5, one observes that the bootstrap estimator tended to have
an approximately correct type I error rate, while the other two methods tended to have incorrect type
I error rates. Finally, the use of the bootstrap estimator tended to result in the narrowest 95% confidence
intervals (Figure 6).

6. Discussion

We conducted an extensive series of Monte Carlo simulations to examine the performance of different
variance estimators when using IPTW with the propensity score to estimate the effect of treatment on
survival outcomes. We briefly summarize our findings and place them in the context of the existing lit-
erature. We found that, when estimating either the ATE or the ATT, a bootstrap-based estimator accu-
rately estimated the sampling variability of the log-hazard ratio and tended to result in estimated

Figure 4. Ratio of mean estimated standard error to empirical standard of sampling distribution: ATT.
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confidence intervals that had approximately correct coverage rates. In contrast to this, the use of a robust
variance estimator tended to result in estimated standard errors that were biased upwards, regardless of
which set of weights was used. Furthermore, the use of naïve variance estimator with the conventional
IPTW-ATE weights resulted in estimates of standard error that were biased downwards. Finally, the
bootstrap estimators tended to have an approximately correct type I error rates, while the other methods
tended to have incorrect type I error rates.

Based on the observations from our Monte Carlo simulations, we would encourage analysts always to
use the bootstrap estimate of the standard error rather than using the naïve or robust variance estimator
provided by statistical software packages. The naïve variance estimator with the conventional IPTW
weights resulted in substantial bias in estimating the standard error across all simulation settings. Simi-
larly, the robust variance estimator (with either the conventional IPTW weights or the stabilized weights)
tended to result in greater bias compared to the use of the bootstrap. In some settings, the use of a naïve
variance estimator with the stabilized weights resulted in estimates of standard error that were within
10% of the true standard deviation of the sampling distribution. This tended to occur when the hazard
ratio was large (hazard ratio of 4 or 5) and the prevalence of treatment was moderate (0.2 to 0.5). How-
ever, even in these scenarios, it was preferable to use the bootstrap estimator. For these reasons, we rec-
ommend that the bootstrap estimator be used in all settings.

Our findings regarding the use of the naïve variance estimator when using the IPTW-ATE weights
were not surprising. As noted above, Hernan et al. note that weighting induces a within-subject correla-
tion in outcomes in the weighted sample [23]. Thus, the assumption of independence required by the

Figure 5. Empirical coverage rates of estimated 95% confidence intervals: ATT.
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maximum partial likelihood estimator is violated. In our simulation settings, ignoring the weighting in-
duced an artificial inflation in the sample size which results in an artificially low estimate of the standard
error of the estimated log-hazard ratio. Thus, across all scenarios, we observed that the mean estimated
standard error was substantially smaller than the empirical standard deviation of the sampling distribu-
tion of the estimated log-hazard ratios.

Methods for variance estimation when using propensity score methods have received only minor at-
tention in the methodological literature. In the context of propensity score matching, studies using
Monte Carlo simulations have found that variance estimation needs to account for the matched nature
of the sample and that naïve estimates of variance are inappropriate [7,8,10,11]. When using
propensity-score matching with replacement, Abadie and Imbens found that the use of bootstrapping
to estimate standard errors was inappropriate [9]. However, when matching on the propensity score with-
out replacement, Austin and Small found that bootstrapping performed well [12]. When using IPTW
with the propensity score to estimate linear treatment effects (i.e. differences in means or differences
in proportions), Lunceford and Davidian derived formal variance estimators [13]. When fitting a regres-
sion model in a sample weighted using the IPTW weights, Joffe et al. recommended using a robust var-
iance estimator [21]. The current study is, to the best of our knowledge, the first to comprehensively
examine variance estimation when using IPTW to estimate the effect of treatment on survival outcomes.
In a literature review reported in a recent article describing diagnostics for use with IPTW, it was ob-
served that the frequency with which IPTW is being used is increasing rapidly over time [32]. Given

Figure 6. Mean length of estimated 95% confidence intervals: ATT.
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the increasing popularity of IPTW-based methods and the frequency with which survival outcomes oc-
cur in the medical literature [6], the results described in the current study will likely be of interest to a
wide body of researchers and applied analysts.

A paper by Xu et al. is particularly relevant to the current study [25]. They used Monte Carlo simu-
lations to compare three estimation methods (conventional IPTW-ATE weights with a naïve variance
estimator vs. stabilized IPTW-ATE weights with a naïve variance estimator vs. conventional IPTW-
ATE weights with a robust variance estimator) when using a logistic regression model to estimate the
effect of treatment on a binary outcome. Their primary focus was on two issues: the size of the weighted
sample and type I error rates. They found that the use of conventional IPTW-ATE weights tended to re-
sult in a weighted sample that was approximately double the size of the unweighted sample, while the
use of stabilized IPTW-ATE weights tended to result in a weighted sample that was approximately
the same size as the unweighted sample. Consequently, the use of conventional IPTW-ATE weights
with a naïve variance estimator resulted in inflated type I error rates. However, the use of stabilized
IPTW-ATE weights with a naïve variance estimator tended to result in approximately correct type I error
rates. Finally, they found that the use of stabilized IPTW-ATE weights with a robust variance estimator
resulted in type I error below lower than the advertised rate of 5%. Their finding that the use of conven-
tional IPTW-ATE weights with a naïve variance estimator resulted in inflated type I error rates is similar
to our finding that this estimator resulted in variance estimates that were too small (Figure 1) and that
type I error rates were substantially inflated (top left pane of Figure 2). However, we also found that
the use of stabilized IPTW-ATE weights with a naïve variance estimator tended to result in biased esti-
mation of variance, although to a lesser degree than was observed for the conventional IPTW-ATE
weights. These differences may be attributable to differences in the nature of the outcome (binary vs.
time-to-event) or the simulation design (their simulation design used either a single binary covariate
or a binary covariate and a continuous covariate while our design used 10 baseline covariates that were
a mixture of continuous and dichotomous).

A potential explanation for the sub-optimal performance of the robust variance estimator is provided
by a study by Williamson et al. that examined variance reduction in randomized trials by using IPTW
using the propensity score [33]. When considering continuous or binary outcomes, they derived a var-
iance estimator for the appropriate measure of effect (difference of means for continuous outcomes; risk
difference, relative risk and odds ratio for binary outcomes) that accounted for the fact that the weights
had been estimated, rather than known with certainty. As mentioned above, Hernan et al. noted that
weighting induced a within-subject correlation in outcomes and that the use of robust variance estimator
was encouraged to address lack of independence in the weighted sample [23]. However, while the robust
variance estimator accounts for the lack of independence, it does not account for the fact that the propen-
sity score was estimated rather than known with certainty. In contrast to this, the use of bootstrapping
implicitly accounts for the estimation of the propensity score as the propensity score is estimated within
each bootstrap sample. Thus, the bootstrap estimate of the standard error incorporates sampling variabil-
ity in the estimated propensity score. Unfortunately, the variance estimators proposed by Williamson
et al. have not been extended to the case of survival outcomes. In subsequent research it would be im-
portant to extend the variance estimator of Williamson et al. for use with a weighted Cox regression
model and to compare its performance to that of the methods considered in the current study. We suspect
that its performance would be similar to that of bootstrapping, as both methods account for the estima-
tion of the propensity score. However, such a derivation is beyond the scope of the current study.

We began our analyses by conducting empirical analyses using patients discharged from hospital with
a diagnosis of AMI. In this case study, we observed that the estimated standard error obtained using the
naïve variance estimator with the conventional IPTW-ATE weights was substantially smaller than those
obtained using either the robust variance estimator or the bootstrap estimator. This observation reflects
one of the findings of the subsequent Monte Carlo simulations in which we found that the naïve variance
estimator with the conventional IPTW-ATE weights resulted in substantial under-estimation of the true
sampling variability. While the case study was intended to illustrate the application of the different
methods, it also served a secondary purpose. The analysis of the case study data provided parameter es-
timates that informed the design of the subsequent Monte Carlo simulations. Thus, the simulated data
reflected the data used in the case study, leading the simulations to reflect a realistic clinical scenario.
As such, our simulations were similar to the plasmode simulations described by Franklin et al. [34].

In summary, the current study was motivated by prior research that observed that the use of a robust
sandwich-type variance estimator when using IPTW to estimate the effect of treatment on survival out-
comes resulted in biased estimates of standard errors and confidence intervals with incorrect coverage
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rates [8]. Based on the results of the current study, we recommend that the bootstrap be used to estimate
standard errors and confidence intervals when fitting a Cox proportional hazards model in a sample
weighted using the IPTW.
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