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The emerging roles and functions of
circular RNAs and their generation
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Abstract

Circular RNAs (circRNAs) are closed long non-coding RNAs, in which the 5’ and 3’ termini are covalently linked by
back-splicing of exons from a single pre-mRNA. Emerging evidence indicates that circRNAs are broadly expressed in
mammalian cells and show cell type- or tissue-specific expression patterns. Importantly, circRNAs have been shown
to participate in regulating various biological processes. Functionally, circRNAs can influence cellular physiology
through various molecular mechanisms, such as serving as a decoy for microRNAs or RNA-binding proteins to
modulate gene expression or translation of regulatory proteins. The biogenesis of circRNAs is known to be tightly
regulated by cis- (intronic complementary sequences) and/or trans-factors (splicing factors) that constitute a cell-
and context-dependent regulatory layer in the control of gene expression. However, our understanding of the
regulation and function of circRNAs is still limited. In this review, we summarize the current progress in elucidating
the functional roles, mechanisms and biogenesis of circRNAs. We also discuss the relationship between regulation
and formation of circRNAs.
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Background
As most eukaryotic genes are interrupted by non-informa-
tional introns, nascent RNA transcripts typically undergo
splicing to remove introns, after which the exons are fused
colinearly to form mature linear RNA transcripts (Fig. 1).
Splicing is a highly regulated process, which may generate
multiple mature RNA isoforms from a given gene, and
these isoforms may exhibit different functions, cellular loca-
tions or regulatory roles [1]. Over 95% of human genes
have alternatively spliced isoforms [2], the expression of
which is determined by both trans-regulatory factors and
cis-regulatory elements, including splicing factors and their
binding motifs.
Circular RNAs (circRNAs) are generated by a specific

type of splicing called back-splicing, wherein the 5’
terminus of a pre-mRNA upstream exon is non-colinearly
spliced with the 3’ terminus of a downstream exon (Fig. 1).
CircRNAs are predominantly found in the cytoplasm, and
the lack of a 5’ cap and 3’ tail make the circular molecules

more resistant to RNase degradation compared to their lin-
ear cognates [3]. The existence of mammalian circRNAs
was first reported in 1979 by Hsu, who observed the
molecules in the cytoplasm of HeLa and other mammalian
cells by electron microscopy [4]. However, due to technical
limitations, only a few specific circRNAs were identified
throughout the next two decades, and the potential
functions of circRNAs remained unclear [5–9]. With the
development of next generation sequencing, alongside the
publication of complete genome sequences and the
advance of bioinformatics technology, researchers have
discovered that the expression of circRNAs in mammals is
often conserved across species, and shows tissue and cell
specificity. The expression level of some circRNAs can be
higher than the linear cognates [10–14].
Importantly, Memczak et al. and Hansen et al. first dem-

onstrated that the circular isoform of human antisense to
cerebellar degeneration-related protein 1 RNA (CDR1as) is
functional in neural development, and this striking observa-
tion launched the nascent field of circRNA research [15,
16]. The number of published circRNA studies has grown
exponentially in the following years, making circRNAs
some of the most notable molecules in RNA biology.
Several databases (e.g., circBase, circNet, Circ2Traits,
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exoRBase, and CSCD) have been created to curate cir-
cRNAs from different species and provide further informa-
tion about association with diseases, cellular locations and
other non-coding RNAs. The availability of this infor-
mation speeds up the exploration of circRNA functions
and underlying mechanisms by which circRNAs exert
functions [17–22].
Although most circRNAs are spliced from protein coding

pre-mRNAs, circRNAs are usually categorized as long
non-coding RNAs (lncRNAs). Similar to other lncRNAs,
circRNAs can serve as RNA or protein decoys to regulate
gene expression. The most well-known type of circRNA
interaction is with microRNAs (miRNAs). Individual cir-
cRNAs can harbor multiple miRNA binding sites to act as
a “sponge” and inhibit activity of one or multiple miRNAs.
CircRNAs also form complexes with proteins to regulate
the cell cycle [23] or translation [24], or to serve as intercel-
lular signaling molecules in released exosomes [25, 26].
Interestingly, some circRNAs may encode functional
peptides, as demonstrated in recent work showing that
circRNAs were able to be translated in vitro and in vivo
[27–30].
CircRNA formation competes with formation of linear

cognates, indicating that the canonical spliceosome has
some involvement in back-splicing [31, 32]. Short intronic
repeats or Alu elements promote circRNA formation in
cis [33–35], whereas RNA binding proteins (e.g., splicing

factors) play important roles in regulating circRNA forma-
tion in trans [32, 36–38]. Despite many exciting advances
in circRNA biology, the number and identities of mole-
cules involved in circRNA biogenesis and how regulatory
networks control circRNA function remained largely un-
clear. In this review, we summarize the known functions
of circRNAs in mammalian cells and the mechanisms by
which circRNAs exert these functions. We also survey the
factors that regulate circRNA formation and discuss the
relationship between function and formation of circRNAs.

CircRNAs regulate cell proliferation
Accurate and precise control of the cell cycle is important
during normal cellular responses to environmental cues.
Dysregulation of the cell cycle in neural stem cells may
cause megalencephaly or microcephaly [39], while a lack of
cell cycle control in somatic cells can promote cancer pro-
gression [40]. A growing number of circRNAs have been
reported to regulate proliferation through effects on signal-
ing pathways, transcription factors and cell cycle check-
point regulators. Two major pathways that regulate cell
proliferation and are affected by circRNAs include MAPK/
ERK and PI3K/AKT. In the MAPK/ERK pathway, growth
factors (e.g., FGF) bind to receptor tyrosine kinases (e.g.,
FGFR), which then phosphorylate MAPK to activate ERK
and promote cell proliferation. CDR1as and circHIPK3
were shown to promote EGFR receptor expression in

Fig. 1 Back-splicing and canonical splicing of a single pre-mRNA. (a) The single pre-mRNA can be back-spliced with the 5’ terminus of upstream
exon 2 ligated to the 3′ terminus of downstream exon 3 to generate a circRNAs. (b) Otherwise, the exons of the pre-mRNA can be joined
colinearly by canonical splicing to form mRNAs or lncRNAs
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colorectal cancer (CRC) and esophageal squamous cell car-
cinoma (ESCC) [41, 42], while circWDR77 enhanced FGF2
ligand expression in vascular smooth muscle cells [43](Fig.
2a). In the PI3K/AKT pathway, ligands (e.g., insulin) bind
to receptor tyrosine kinases, which activate PI3K to phos-
phorylate AKTand promote cell proliferation. In hepatocel-
lular carcinoma (HCC) and glioblastoma, CDR1as and
circNT5E were found to promote cell proliferation by in-
creasing PI3K expression [44, 45] (Fig. 2b). CircRNAs also
regulate the WNT/β-catenin pathway to promote prolifera-
tion. For example, knockdown of circHIPK3 was shown to
decrease WNT2 ligand and FZD4 receptor expression,
which decreased the level of nuclear β-catenin and ham-
pered retinal endothelial cell proliferation [46]. Moreover,
circZFR potentiated β-catenin expression in HCC and pro-
moted proliferation [47] (Fig. 2c). In addition, circHIPK3
can promote proliferation in human cell lines, probably
through upregulation of IL6R expression [48]. Transcrip-
tion factors and cell cycle checkpoints are also found to be

targets of circRNA regulation. For instance, disruption of
circTCF25 and circRNA_100290 in cancer cells downregu-
lates CDK6 expression, affecting the proliferation of
bladder cancer and osteosarcoma cells [49, 50] (Fig. 2d).
Moreover, circRNA hsa_circ_0008039 is reported to
increase E2F3 expression, inducing S-phase transition and
promoting proliferation of breast cancer cells [51] (Fig. 2d).
On the other hand, circRNAs may also inhibit cell prolifer-
ation. Ectopic expression of circITCH and circZFR upregu-
lates PTEN expression, which inhibits proliferation of
bladder cancer and HCC cells [52, 53] (Fig. 2d). Further-
more, circITCH promotes ITCH and CBL expression,
which inhibits cell proliferation by downregulating the
WNT/β-catenin pathway [54, 55] (Fig. 2c). Similarly, hsa_-
circ_0002052 induces APC2 expression, which promotes
β-catenin degradation to inhibit osteosarcoma cells prolifer-
ation [56] (Fig. 2c). In another example, circFOXO3 is
shown to interact with and sequester P21 and CDK2 in the
cytoplasm, attenuating cell cycle progression [23] (Fig. 2d).

Fig. 2 CircRNA regulates cell proliferation. CircRNA regulates cell proliferation through multiple factors, including (a) FGF2 and EGFR in MAPK/ERK
pathway, (b) PI3K in PI3K/AKT pathway, (c) WNT2, FZD4, ITCH, CBL, APC2, and β-catenin in WNT/β -catenin pathway, and (d) CDK6, E2F3, PTEN,
P21 and CDK2 that regulate cell cycle. CircRNAs promote or inhibit cells proliferation are labeled by black and red, respectively
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Together, these reports demonstrate that circRNAs can
regulate cell proliferation through a variety of different
mechanisms.

CircRNAs regulate epithelial-mesenchymal transition
(EMT) and cancer progression
EMT is highly regulated during development to ensure
correct localization of differentiated cells at the proper
times. The improper activation of EMT is frequently found
in the early stages of cancer progression and causes cancer
cell migration and invasion. EMT is mainly induced by
TGF-β family ligands, which stimulate the phosphorylation
and nuclear translocation of R-SMADs and co-SMADs to
activate SNAI, bHLH and ZEB transcription factors [57].
Accumulating evidence suggests that circRNAs contribute
to cancer progression by regulating the EMT process. cir-
cMYLK was found to act on the TGF-β signaling pathway
by increasing TRAF4 expression in PC-a cells to attenuate
degradation of the TGF-β receptor and promote EMT [58].
circRNA_0084043 also promoted EMT by upregulating
SNAI expression in melanoma cells [59]. Similarly, circIRA
K3, circNASP, circMAN2B2 and circSHKBP1 respectively
promoted FOXC1, FOXF1, FOXK1 and FOXP1 expres-
sion, all of which upregulated SNAI expression in cancer
cells [60–63]. CircRNAs have also been shown to inhibit
EMT. For example, circSMAD2 upregulated TRIM33,
which trapped SMAD4 to block the TGF-β signaling cas-
cade in HCC cells [64]. Additionally, disruption of circFOX
O3 decreased FOXO3 expression, which promoted EMT

in non-small-cell lung carcinoma (NSCLC) [65]. These re-
sults are summarized in Fig. 3.

CircRNAs regulate pluripotency and early lineage
differentiation
Pluripotent stem cells, including embryonic stem cells
(ESCs) and induced pluripotent stem cells (iPSCs), are able
to differentiate into many cell types in our body or in cul-
ture. In human ESCs and iPSCs, disruption of circBIRC6
and circCOROC1 negatively affects pluripotency mainten-
ance, whereas expression of circBIRC6 and circCORO1C
promotes pluripotency reprogramming of iPSCs. Further
exploration of the regulatory mechanisms reveals that
circBIRC6 inhibits the activity of miR-34a and miR-145,
preventing downregulation of pluripotency transcription
factors NANOG, OCT4 and SOX2 [36]. These results sug-
gest that circRNAs play roles in pluripotency maintenance
and differentiation. In line with this finding, a recent study
of global circRNA expression during human ESCs differen-
tiation showed that circRMST and circFIRRE are enriched
in differentiated hESCs, suggesting that certain circRNAs
are associated with ESC differentiation [66]. Further,
circRNAs are also involved in somatic stem cell differenti-
ation. For example, CDR1as is shown to regulate neural
development in zebrafish and osteoblastic differentiation of
periodontal ligament stem cells (PDLSC), while ectopic
expression of circFGFR4, circSVIL and circZNF609 induce
myoblast differentiation [15, 67–71]. Interestingly, circZN
F609 may also promote myoblast differentiation through
the actions of an encoded small peptide [27].

Fig. 3 CircRNA regulates EMT and cancer progression. CircRNA regulates EMT and cancer progression through multiple factors, including TRAF4,
TRIM33, SNAI, FOXC1, FOXF1, FOXK1, FOXO3 and FOXP1 in TGF- β pathway. CircRNAs promote or inhibit EMT are labeled by black and
red, respectively
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Other circRNA functions
CircRNAs have also been shown to also regulate unique
functions of specialized cells. For example, SRY is a
well-known sex determining gene for testis development,
which encodes both linear and circular RNAs [5, 72]. In
addition to being translated into SRY protein, the RNA
product of SRY may also serve as a sponge for miR-138
[15]. Another known example of circRNA function in spe-
cialized cells is β-cells in pancreatic islets, which produces
and secretes insulin. Both CDR1as and circHIPK3 were
found to promote insulin secretion from β-cells [73, 74]. In
the immune system, circZC3H4 and circHECTD1 can pro-
mote the activation of alveolar macrophages, which stimu-
lates fibroblast proliferation and migration [75, 76]. In the
nervous system, disruption of circHIPK2 and circHECTD1
inhibits astrocyte activation, which may be beneficial during
stroke recovery [77, 78]. Few circRNAs were reported to
regulate apoptosis. In two contrasting examples, hsa_-
circ_0043256 induces apoptosis by increasing ITCH in
NSCLC cells, but circGRB10 inhibits apoptosis by increas-
ing ERBB2 in nucleus pulposus (NP) cells [79, 80]. Finally,
circRNAs also play important roles in several human dis-
eases. It was previously reported that circANRIL interacts
with PES1 to regulate rRNA maturation and promotes the
development of atherosclerosis [81]. Additionally, circDLG
AP4 is found to relieve damage from ischemic stroke in
brain tissue [82]. The ectopic expression of circVMA21 de-
creases intervertebral disc degeneration of NP cells [83],
while circZNF609 regulates retinal neurodegeneration in
retinal ganglion cells and vascular dysfunction in endothe-
lial cells [84, 85].

The mechanisms of circRNA functions
CircRNAs as miRNA sponge
The most prominent function of circRNAs is its action as a
miRNA sponge to regulate target gene expression by inhi-
biting miRNA activity. One circRNA can regulate one or
multiple miRNAs through multiple miRNA binding sites in
the circular sequence. For example, the first identified func-
tional circRNA, human CDR1as, has 74 miR-7 binding
sites, 63 of which were found to be conserved in one other
species. CDR1as is shown to be enriched in neural tissues,
and knocking out CDR1as expression in mouse or zebra-
fish impairs midbrain development through miR-7 dysregu-
lation [15, 71, 86]. In human cells, knockdown of CDR1as
expression also dysregulates miR-7 expression and affects
insulin secretion, cell proliferation and the pathobiology of
myocardial infarction [42, 44, 70, 71, 73, 87–90]. The
testis-specific circular SRY controls sex determination in
mammals [5]. Circular SRY has 16 miR-138 binding sites
and was shown to interact with miR-138 and AGO2 in
HEK293 cells, suggesting that SRY acts as a miR-138
sponge [16]. circHIPK3 has 18 miRNA binding sites for
nine different miRNAs, among which the inhibition of

miR-124 activity promotes cell proliferation in HCC and
gallbladder cancer cells [48, 91, 92]. circHIPK3 also targets
miR-338-3p to regulate insulin secretion by β-cells [74]. It
is not surprising that circRNA has been shown to regulate
different downstream genes through different miRNAs. For
example, circITCH sequesters miR-214 and miR-22-3p to
promote ITCH and CBL expression, thereby regulating the
WNT/β-catenin pathway [54, 55]. circITCH also increases
PTEN and RASA1 expression (components of PI3K/AKT
and MAPKERK pathways) by targeting miR-17/224 and
miR-145, respectively [53, 93]. Interestingly, circRNA may
even target different miRNAs to exert opposite functions in
different cells. For example, circZFR targets miR-130a/107
to upregulate PTEN and inhibits gastric cancer cell prolif-
eration, but targets miR-1261/4302/3619 to promote HCC
proliferation [47, 52, 94, 95]. Many circRNAs have been
shown to function through sponging miRNAs, and we have
summarized the known instances in Table 1.

CircRNAs as protein decoys
In addition to interacting with miRNAs, circRNAs can
serve as protein decoys to influence cellular functions. For
example, circFOXO3 is shown to trap CDK2/p21 and
HIF-a/ID1 in the cytoplasm, which blocks cell cycle pro-
gression and induces cell senescence, respectively [23, 96].
circFOXO3 also promotes the interaction between MDM2
and P53, which decreases the P53 protein level and induces
apoptosis [97]. In breast cancer cells, circDNMT1 activates
autophagy by promoting P53 and AUF1 nuclear transloca-
tion [98]. In vascular tissue, circANRIL sequesters PES1 to
impair rRNA maturation, resulting in apoptosis [81]. In
glioblastoma multiforme cells, circSMARCA5 inhibited mi-
gration by stimulating splicing factor SRSF1 to modulate
expression of the SRSF3 isoform [99]. In breast cancer cells,
circMTO1 sequesters TRAF4, preventing Eg5 activation
and decreasing cell viability [100]. In primary cardiomyo-
cytes, circAmotl1 interacts with PDK1 and AKT1, which
induced the phosphorylation and nuclear translocation of
AKT1, reducing apoptosis to promote cardiac repair [101].
In HeLa cells, circPABPN1 recruits HuR to suppress its
interaction with PABPN1 mRNA, which led to reduced
PABPN1 translation [24]. These protein decoy functions of
circRNAs are summarized in Table 2.

Translatable circRNAs
Although circRNAs are considered to be lncRNAs with
low protein coding potential, it has been shown that cir-
cRNAs containing an internal ribosome entry site (IRES)
or N6-methyladenosine modification and can be translated
into peptides in vitro and in vivo [28, 102–105]. Notably,
many circRNAs contain the start codon of cognate mRNAs
associated with ribosomes [29]. These findings indicate that
circRNAs are sometimes able to be translated. Pamudurti
et al. further shows that endogenous circMbl3 produces a
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detectable protein product in fly head by targeted mass
spectrometry analysis of Mbl immunoprecipitate [29]. Im-
portantly, Legnini et al. demonstrates that circZNF609 reg-
ulates myogenesis and can be translated into peptides,
suggesting that circZNF609 may exert its function through
protein expression [27]. Unfortunately, the phenotype
could not be unequivocally linked to protein products
because the re-expression of circZNF609 by plasmids or
naked RNA induces a non-specific block of myoblast
proliferation. In addition, Zhang et al. finds that circular
lncRNA-PINT can be translated into a small peptide to
suppress glioblastoma cell proliferation; this action is medi-
ated by trapping of PAF1c to inhibit translational elong-
ation of oncogenes [30]. Moreover, some specific circRNAs
are found to be associated with translating ribosomes in
mammalian cells [29], which is highly suggestive that these
circRNAs produce functional peptides.

The biogenesis of CircRNAs
CircRNAs are generated by back-splicing, wherein the
3′ terminus of a downstream exon is ligated to the 5′
terminus of an upstream exon. Similar to canonical
splicing, back-splicing of circRNAs is tightly regulated
by cis-elements (i.e., DNA sequences) and trans-factors
(i.e., RNA binding proteins). Generally, most circRNAs
contain two or three exons without intron segregation,
while those circRNAs that contain only one exon typic-
ally exhibit a longer than average exon length [35].
Nevertheless, analysis of circular exon sequences and
circular exon replacement assays both suggest that
there are no specific exonic sequences that control cir-
cRNA formation [32]. On the other hand, the flanking
introns of circRNAs are usually longer than average
and enriched with complementary repeats [12, 35, 106].
Capel et al. are the first to show that complementary
intronic sequences (CIS) flanked the circular SRY gene
in mouse, suggesting that CIS may mediate the forma-
tion of this circRNA [5]. Further studies indicated that
CIS are enriched in flanking introns of circRNAs from
various species, including mouse, pig, C. elegans and

Drosophila [32, 106–108]. Importantly, deletion of CIS
adjacent to Laccase2 exon 2 abolishes circular laccase2
expression in Drosophila [38]. Furthermore, the
primate-specific Alu repetitive elements, have been im-
plicated in the biogenesis of some circRNAs. Jeck et al.
first demonstrates that Alu repetitive elements are
enriched in the flanking introns of human circRNAs
[12], and Zhang et al. extends this observation, con-
firming that the pairing between Alu repetitive ele-
ments with reverse orientation regulates the expression
of linear and circular isoforms [35, 109].
With regard to trans-factors in circRNA formation,

Ashwal-Fluss et al. showed that the Mbl binding sites
on flanking introns are necessary for circMbl forma-
tion; furthermore, ectopic expression of Mbl enhances
circMbl expression, suggesting that the splicing factor
was involved in circRNA biogenesis [32]. Conn et al.
further demonstrates that the disruption of splicing
factor QKI or its binding sites on flanking introns
attenuates circRNA formation during EMT, and
Errichelli et al. find that disruption of splicing factor
FUS in mouse motor neurons affects circRNA expres-
sion [110]. Our group also show that splicing factor
ESRP1 can promote circRNA expression through
intronic binding sites flanking circBIRC6 in human
ESCs [36]. In addition to promoting circRNA biogen-
esis, splicing factors have also been shown to repress
circRNA formation. For example, disruption of SR fam-
ily members SRSF1/6/11 or hnRNP family member
Hrb27C enhances circular laccase2 expression in Dros-
ophila [38]. In addition, double-stranded RNA binding
proteins, such as ILF3 (NF90/NF110) or DHX9, also
have been shown to regulate circRNA formation. Dis-
ruption of ILF3 (NF90/NF110) downregulates circRNA
expression, while disruption of DHX9 upregulates cir-
cRNA expression in human cells [111, 112]. The bind-
ing of ILF3 (NF90/NF110) is shown to stabilize CIS
pairs, while the binding of DHX9 recruits ADAR1 to
disrupt the pairing of Alu repetitive elements through
A to I editing.

Table 2 CircRNAs that function as protein decoys

CircRNA Biological functions Interacting protein Cell type Ref

circFOXO3 Inhibits cell cycle progression
Cardiac senescence
Induces apoptosis

P21, CDK2
ID-1, E2F1, FAK, HIF1α
MDM2, P53

Non-cancer cells
Heart tissue
Non-cancer cells

[96, 97, 129]

circANRIL rRNA maturation PES1 Vascular tissue [81]

circHECTD1 Macrophage activation ZC3H12A Macrophage [76]

circDNMT1 Promotes proliferation P53, AUF1 Breast cancer cells [98]

circSMARCA5 Tumor suppressor SRSF1 Glioblastoma [99]

circMTO1 Inhibits proliferation TRAF4 Breast cancer cells [100]

circAMOTL1 Promotes cell survival PDK1, AKT1 Cardiomyocytes [101]

circPABPN1 Suppresses PABPN1 translation HuR HeLa [24]
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Conclusion
In this review, we survey the known functions of cir-
cRNAs in cell proliferation, EMT, development and other
cellular processes. We also summarize the mechanisms by
which circRNAs function, including RNA and protein in-
teractions, and we describe the regulatory elements that
are known to be involved in circRNA formation. Despite
the broad range of findings regarding circRNA functions
and regulation, many questions remain to be resolved. For
example, how circRNAs are degraded in the cell and how
degradation works in conjunction with biogenesis to re-
spond to dynamic cellular states is an important territory
that awaits further exploration. Some researchers have
suggested that exocytosis may be an important pathway
for circRNA clearance [113], but the selective enrichment
of circRNAs in exosomes from different cell types argues
against to this model [26]. Although the expression of
circRNAs has been studied in the context of many human
diseases, our understanding of the different roles in
normal physiology and the disease conditions is limited
for the vast majority of identified circRNAs. Finally,
improvements in technology to detect circRNAs at a
single-cell level and methods to efficiently manipulate cir-
cRNAs without affecting linear cognates will be key for
gaining further insights into the functions of circRNAs
and the mechanisms underpinning their regulatory roles.
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