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Isoliensinine induces apoptosis 
in triple-negative human breast 
cancer cells through ROS 
generation and p38 MAPK/JNK 
activation
Xiyu Zhang1, Xiyao Wang1, Tingting Wu1, Boxuan Li1, Tianqi Liu1, Rong Wang2, Qiao Liu1, 
Zhaojian Liu3, Yaoqin Gong1 & Changshun Shao1

Isoliensinine, liensinine and neferine are major bisbenzylisoquinoline alkaloids in the seed embryo 
of lotus (Nelumbo nucifera), and exhibit potential anti-cancer activity. Here, we explored the 
effects of these alkaloids on triple-negative breast cancer cells and found that among the three 
alkaloids isoliensinine possesses the most potent cytotoxic effect, primarily by inducing apoptosis. 
Interestingly, isoliensinine showed a much lower cytotoxicity against MCF-10A, a normal human 
breast epithelial cell line. Further studies showed that isoliensinine could significantly increase the 
production of reactive oxygen species (ROS) in triple-negative breast cancer cells, but not in MCF-
10A cells. The isoliensinine-induced apoptosis could be attenuated by radical oxygen scavenger 
N-acetyl cysteine, suggesting that the cytotoxic effect of isoliensinine on cancer cells is at least 
partially achieved by inducing oxidative stress. We found that both p38 MAPK and JNK signaling 
pathways were activated by isoliensinine treatment and contributed to the induction of apoptosis. 
Furthermore, inhibitors or specific siRNAs of p38 MAPK and JNK could attenuate apoptosis induced 
by isoliensinine. However, only the p38 inhibitor or p38-specific siRNA blocked the elevation of ROS 
in isoliensinine-treated cells. Our findings thus revealed a novel antitumor effect of isoliensinine on 
breast cancer cells and may have therapeutic implications.

Breast cancer is the most common cancer among women. Triple-negative breast cancers (TNBCs), lack-
ing estrogen receptor (ER), progesterone receptor, and ERBB2 (also known as HER-2/neu), are more 
aggressive and difficult to treat than other subtypes of breast cancers. TNBC accounts for 12 to 17% of 
breast cancer cases1. Although approximately 50% of patients with TNBC respond to conventional chem-
otherapies, including taxanes, anthracyclines, cyclophosphamide, and platinum salts2, these treatments 
are associated with serious side effects. Therefore, novel agents need to be developed for TNBC patients.

Natural compounds are a valuable source for new drug development. Some alkaloids isolated from 
plants have already been successfully developed into chemotherapeutic drugs, such as camptothecin 
(CPT)3 and vinblastine4. Isoliensinine and its analogues liensinine and neferine are the major bisbenzyli-
soquinoline alkaloids extracted from the seed embryo of lotus (Nelumbo nucifera Gaertn). In a previous 
study, we found that neferine inhibited proliferation of human osteosarcoma cells by inducing G1 cell 
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cycle arrest5. Neferine was also shown to induce ROS generation leading to apoptosis in HepG2 cells6. 
Additionally, neferine could reverse multidrug resistance of human gastric carcinoma cells7. Recently, 
isoliensinine and liensinine were also shown to exhibit potent cytotoxic effect towards cancer cells 
(including MCF-7 cells) and function as an enhancer of autophagy in apoptosis-defective cells8.

Oxidative stress is involved in a number of physiological and pathological processes, including can-
cer, neurodegenerative diseases, and arteriosclerosis. Reactive oxygen species are products of normal 
metabolism and xenobiotic exposure, and depending on their concentration, ROS can be beneficial or 
harmful to cells and tissues9. Accumulating evidence has suggested that cancer cells have higher ROS 
levels than normal cells and are more vulnerable when encountering further ROS insults induced by 
exogenous agents10. Excessive ROS can induce cell death including apoptosis, autophagy and necrosis11,12. 
Several studies have demonstrated that apoptotic cell death induced by ROS is mediated by p38 MAPK 
and JNK activation13–15.

Therefore, in the present study we assessed anti-cancer effects of isoliensinine, liensinine and neferine 
on triple-negative human breast cancer cells. Our data indicated that isoliensinine possesses the most 
potent anti-cancer activity among the three alkaloids. The level of apoptosis was significantly elevated 
in cancer cells treated with isoliensinine. Importantly, we demonstrated that the pro-apoptotic effect of 
isoliensinine was mediated by an increase in ROS production and the activation of p38 MAPK and JNK 
pathways.

Results
Isoliensinine selectively inhibits proliferation and colony formation of human breast cancer 
cells. Isoliensinine, liensinine and neferine are major bisbenzylisoquinoline alkaloids extracted from 
the seed embryo of Nelumbo nucifera Gaertn and their structures are depicted in Fig.  1A. These alka-
loids were previously shown to have potent cytotoxic effects on some human cancer cell lines5,6,8. We 
first investigated the inhibitory effects of isoliensinine, liensinine and neferine on the growth of human 
breast cancer cell line MDA-MB-231. MDA-MB-231 cells were treated with 1–40 μ M isoliensinine, lien-
sinine and neferine for 24, 48 and 72 h and were then subjected to cell viability assay. We observed that 
isoliensinine was most potent among the three alkaloids, while liensinine was the least toxic (Fig. 1B). 
Therefore, we focused on the anti-cancer property of isoliensinine in MDA-MB-231cells. The IC50 values 
of isoliensinine were estimated to be 108.1 μ M (24 h), 22.78 μ M (48 h) and 18.34 μ M (72 h) respectively.

Next, we examined the effect of isoliensinine on the growth of normal human breast epithelial cells 
MCF-10A and found that MCF-10A cells were less sensitive to isoliensinine than the MDA-MB-231 
cells (Fig. 1C). The IC50 values were estimated to be 151 μ M (24 h), 86.22 μ M (48 h) and 63.89 μ M (72 h) 
for MCF-10A cells (Fig. S1), while IC50 at 48 h was nearly four-fold higher than that for MDA-MB-231 
cells. The anti-proliferation effect of isoliensinine on MDA-MB-231 cells was confirmed by colony for-
mation assay. As shown in Fig.  1D, isoliensinine treatment for 48 h significantly reduced the number 
of colonies in a dose-dependent manner when compared with untreated cells. We also determined 
the anti-proliferation effect of isoliensinine on other human breast cancer cells, including TNBC cells 
MDA-MB-436 and MDA-MB-468, triple-positive breast cancer cells MCF-7. Isoliensinine treatment 
similarly markedly inhibited the colony formation of these breast cancer cells (Fig. 1E).

Isoliensinine induces cell cycle arrest at G1 phase. To determine whether the growth-inhibitory 
effect of isoliensinine was mediated by cell cycle arrest, cell cycle distribution in MDA-MB-231 cells was 
examined by flow cytometry. As shown in Fig. 2A,B, isoliensinine treatment for 48 h led to an increase in 
the proportion of cells at G1 phase and a reduction at G2 phase. The percentages of cells at G1 phase at 
48 h after the incubation with isoliensinine were increased to 56.53% (5 μ M), 57.71% (10 μ M) and 54.71% 
(20 μ M), from 46.12% in the control. Meanwhile, percentages of cells at G2 phase at 48 h were decreased 
to 12.57% (5 μ M), 9.33% (10 μ M) and 4.85% (20 μ M), from 14.63% in the control. Interestingly, while 
isoliensinine at 5 μ M resulted in a significant reduction of the cell population at S phase, to 30.9% from 
39.25% in the control, such an effect was not detected at 20 μ M. EdU incorporation assay confirmed that 
the percentages of cells at S phase declined in MDA-MB-231 cells treated by isoliensinine(Fig. 2C). To 
examine the underlying mechanism responsible for isoliensinine-induced G1 arrest, we next analyzed 
several proteins that are involved in the regulation of G1/S progression in MDA-MB-231 cells by Western 
blot analysis. The level of cyclin E was markedly decreased by isoliensinine in a dose-dependent manner 
(Fig. 2D). We previously reported that neferine-induced G1 arrest was mediated by up-regulation of p21 
in U2OS cells5. Therefore we examined the level of p21 in isoliensinine-treated MDA-MB-231 cells and 
found that the level of p21 was also increased in MDA-MB-231 cells after exposure to isoliensinine for 
48 h (Fig. 2D). These results suggested that isoliensinine may induce G1 cell cycle arrest through down-
regulation of cyclins and upregulation of p21.

Next, we determined the effect of isoliensinine on cell cycle distribution in MCF-10A cells. Unlike 
MDA-MB-231 cells, changes in cell cycle distribution were very marginal (Fig. 2E,F). Correspondingly, 
the level of p21 was not significantly increased (Fig. 2G).

Isoliensinine induces apoptosis through mitochondrial pathway. We next investigated 
whether isoliensinine could induce apoptosis in MDA-MB-231 cells. MDA-MB-231 cells were treated 
with 10–40 μ M isoliensinine for 48 h, and then apoptotic cells were determined by annexin V staining. 
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Figure 1. Effect of isoliensinine on growth in human breast cancer cells and normal human breast 
epithelial cells. A, chemical structures of isoliensinine, liensinine and neferine. B, MDA-MB-231 cells 
were treated with various concentrations of isoliensinine, liensinine or neferine for 24, 48 and 72 h. C, 
MDA-MB-231 and MCF-10A cells were exposed to isoliensinine (1–40 μ M) or vehicle control (0.1% 
DMSO) for 48 h. Cell viability was measured by CCK-8 assay. The experiments were performed in triplicate. 
Data presented as means ±  S.D. are representative of three independent experiments. *P <  0.05, #P <  0.01, 
when compared with control group. D,E, the colony formation assay was performed in MDA-MB-231, 
MDA-MB-436, MDA-MB-468 and MCF-7 cells. Breast cancer cells were plated on 6-well plate at a density 
of 1 ×  103 cells/well and treated with isoliensininie (1–20 μ M) for 48 h. Media were changed after 48 h of 
incubation. Colonies were observed until 2 weeks. The data shown here are from a representative experiment 
repeated three times with similar results. Data are presented as means ±  S.D. *P <  0.05, #P <  0.01, when 
compared with control group.
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Figure 2. Effect of isoliensinine on cell cycle distribution in MDA-MB-231 cells and normal human 
breast epithelial cells. A, isoliensinine induced G1 cell cycle arrest in MDA-MB-231 cells. MDA-MB-231 cells 
were treated with 5, 10 and 20 μ M isoliensinine for 48 h. 0.1% DMSO was used as control. The distribution of 
cell cycle was assessed by flow cytometry. B, the percentage of cells in each phase is shown as the mean ±  S.D. 
from three independent experiments. *P <  0.05, #P <  0.01, when compared with control group. C, EdU 
proliferation assay was performed 48 h after the incubation with 5–20 μ M isoliensinine in MDA-MB-231 
cells. Ratio of EdU positive cells is shown as the mean ±  S.D. from three independent experiments. *P <  0.05, 
when compared with control group. D, MDA-MB-231 cells were treated with isoliensinine (5–20 μ M) for 48 h. 
Whole cell lysates were analyzed by immunoblotting with antibodies specific for cyclin E and p21. β -actin 
was used as a loading control. E, effect of isoliensinine on cell cycle distribution in MCF-10A cells. MCF-10A 
cells were incubated with 5–20 μ M isoliensinine for 48 h. 0.1% DMSO was used as control. The distribution of 
cell cycle was assessed by flow cytometry. F, the percentage of cells in each phase is shown as the mean ±  S.D. 
from three independent experiments. G, MCF-10A cells were exposed to 5–20 μ M isoliensinine for 48 h. 
Whole cell lysates were analyzed by immunoblotting with antibodies specific for cyclin E and p21. β -actin was 
used as a loading control. All blots were performed under the same experimental conditions. Band intensities 
were quantified by ImageJ and normalized to β -actin. Data are expressed as a fold change relative to the 
control. The full-length blots are included in the supplementary information (Figure S3).
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Isoliensinine treatment for 48 h dose-dependently increased the percentages of apoptotic cells, from 3.5% 
in the control to 15.5% (20 μ M) and 29.9% (40 μ M) (Fig.  3A). When MDA-MB-231 cells were incu-
bated with 20 μ M isoliensinine for 24, 48 and 72 h, respectively, the percentages of apoptotic cells were 

Figure 3. Pro-apoptotic effect of isoliensinine on triple-negative breast cancer cells. A, MDA-MB-231 
cells were exposed to 10, 20, and 40 μ M isoliensinine for 48 h. 0.1% DMSO was used as control. Cells were 
processed by flow cytometry using Annexin V/PI staining. The percentage of Annexin V-positive population 
indicates apoptosis induction at every concentration of isoliensinine. Results shown are representative of 
three independent experiments. *P <  0.05, #P <  0.01, when compared with control group. B,C, expression 
modulation of apoptosis-related proteins by isoliensinine in MDA-MB-231 cells. Cells were treated with 
5–20 μ M isoliensinine for 48 h (B, dose-dependent study) and 20 μ M isoliensinine for 0, 24 and 48 h (C, 
time-dependent study). Cell lysates were prepared and subjected to western blotting for Bax, Bcl-2, cleaved 
caspase-3 and PARP-1. D, MDA-MB-436 and MDA-MB-468 cells were incubated with 20 μ M isoliensinine 
for 24 h. Cell lysates were prepared and analyzed by western blotting for cleaved PARP-1. β -actin was 
used as a loading control. Band intensities were quantified by ImageJ and normalized to β -actin. Data are 
expressed as a fold change relative to the control. The full-length blots are included in the supplementary 
information (Figure S4 and S5).
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increased to 17.8% (48 h), to 31.1% (72 h) (Fig. S2A), indicating a time-dependent pro-apoptotic effect 
of isoliensinine.

An imbalance between pro-apoptotic protein Bax and anti-apoptotic protein Bcl-2 would result in the 
release of cytochrome C from mitochondria, caspase-3 activation and subsequent apoptosis. Therefore, 
we next examined the levels of Bax and Bcl-2 by Western blot analysis in isoliensinine-treated cells. 
MDA-MB-231 cells were treated with isoliensinine (5–20 μ M) for 48 h, or were exposed to 20 μ M isolien-
sinine for various lengths of time. We found that isoliensinine down-regulated the expression level of 
Bcl-2 in a dose-dependent manner, reducing the Bcl-2/ Bax ratio to 0.89 (10 μ M), 0.67(20 μ M) compared 
to untreated cells (Fig. 3B).

Activation of caspase-3 and cleavage of PARP-1 are hallmarks of apoptosis. We therefore next 
examined the levels of cleaved caspase-3 and PARP-1 in MDA-MB-231 cells treated by isoliensinine. 
As shown in Fig.  3B,C, isoliensinine triggered the cleavage of caspase-3 and PARP-1 in a dose- and 
time-dependent manner. We also determined the pro-apoptotic effect of isoliensinine on MDA-MB-436 
and MDA-MB-468 cells. The cleavage of PARP-1 was markedly increased after cells were exposed to 
20 μ M isoliensinine for 24 h (Fig.  3D). But we detected no increased apoptosis in isoliensinine-treated 
MCF-7 cells  (Fig. S2B). Together, these data indicate that isoliensinine could efficiently induce apoptosis 
in triple-negative breast cancer cells.

Isoliensinine selectively increases ROS levels in cancer cells. Isoliensinine has been shown to 
possess an anti-oxidant property16. However, neferine, an analogue of isoliensinine, has been reported to 
exhibit either anti-oxidant or pro-oxidant activities6,17,18. To determine whether isoliensinine has any effect 
on ROS level in MDA-MB-231 cells, we used fluorescent probe (DCFH-DA) to monitor the intracellular 
ROS level in the presence or absence of isoliensinine. As shown in Fig.  4A, MDA-MB-231 cells that 
were treated with 5–20 μ M isoliensinine for 48 h had significantly higher ROS levels than control cells. 
ROS levels were found to be increased by 1.76 (5 μ M), 3.28 (10 μ M) and 4.02-folds (20 μ M) by isolien-
sinine over that in untreated cells. Isoliensinine at 20 μ M induced ROS generation in a time-dependent 
manner, with 1.82 and 4.02-fold increase over untreated control at 24 and 48 h respectively (Fig.  4B). 
Similar results were obtained in MDA-MB-436 and MDA-MB-468 cells (Fig. 4C,D). These results suggest 
that isoliensinine may increase ROS production in triple-negative breast cancer cells. In contrast to the 
remarkable induction of ROS by isoliensinine in MDA-MB-231, MDA-MB-436 and MDA-MB-468 cells, 
isoliensinine at 20 μ M for 48 h did not lead to ROS elevation in MCF-10A cells (Fig. 4E), suggesting that 
the induction of ROS by isoliensinine could be specific to cancer cells.

To determine whether the isoliensinine-induced apoptosis in triple-negative breast cancer cells is 
mediated by elevated ROS level, we examined apoptosis induced by isoliensinine in cells pretreated with 
ROS scavenger N-acetyl cysteine (NAC). MDA-MB-231 cells were pretreated with or without 10 mM 
NAC for 1 h, and were then subjected to isoliensinine for additional 48 h. As expected, pretreatment 
of cells with NAC caused a significant drop of ROS level in isoliensinine-treated MDA-MB-231 cells 
(Fig.  4F). Importantly, blocking ROS generation by NAC led to a remarkable decline in the levels of 
cleaved-caspase-3 and cleaved PARP-1 (Fig. 4G). These data suggest that isoliensinine-induced apopto-
sis in triple-negative breast cancer cells is likely to be mediated by increased ROS accumulation. Taken 
together, these results indicate that isoliensinine could selectively increase ROS accumulation and induce 
apoptosis in triple-negative breast cancer cells.

Isoliensinine activates p38 MAPK and JNK pathways. Many anticancer compounds induce ROS 
formation and activate MAPK signaling, and ultimately cause apoptosis in cancer cells19,20. In our pre-
vious study, we have shown that neferine could inhibit proliferation of human osteosarcoma cells and 
activate p38 MAPK and JNK pathways5. We next examined the phosphorylation (activation) status of 
the p38 MAPK and JNK proteins. MDA-MB-231cells were exposed to 20 μ M isoliensinine for various 
lengths of time (3 to 24 h) and the activations of the p38 MAPK and JNK pathways were evaluated 
by immunoblotting. The levels of phosphorylated p38 MAPK and JNK were gradually increased after 
the isoliensinie treatment (Fig.  5A). Meanwhile, the levels of cleaved caspase-3 and PARP-1 were ele-
vated in a time-dependent manner in MDA-MB-231 cells (Fig. 5A). In addition, MDA-MB-436 cells and 
MDA-MB-468 cells also showed activation of p38 MAPK and JNK in response to 20 μ M isoliensinine 
treatment for 24 h (Fig. 5B). These results suggested that p38 MAPK and JNK pathways might mediate 
isoliensinine-induced apoptosis.

We then examined whether activation of p38 MAPK and JNK pathways was necessary for 
isoliensinine-induced apoptosis in MDA-MB-231 cells. Cells were first pretreated with p38 MAPK 
inhibitor SB203580 and JNK inhibitor SP600125, respectively, before they were treated by isoliensi-
nine for additional 24 h. Notably, SB203580 and SP600125 significantly reduced the levels of PARP-1 
cleavage induced by isoliensinine (Fig.  5C,D), indicating that SB203580 and SP600125 could protect 
MDA-MB-231 cells from isoliensinine-induced apoptosis. To confirm the role of p38 MAPK and JNK 
activation in isoliensinine-induced apoptosis, we depleted p38 MAPK and JNK, respectively, with siR-
NAs. As shown in Fig. 5E,F, isoliensinine-induced phosphorylation of p38 MAPK or JNK was subdued 
in p38 or JNK siRNA transfected cells compared with mock siRNA transfected cells. Meanwhile the 
levels of cleaved PARP-1 were also reduced. These results suggested that isoliensinine-induced apoptosis 
in triple-negative breast cancer cells was mediated by p38 MAPK and JNK pathways.
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Figure 4. The accumulation of ROS production is required for apoptosis induced by isoliensinine in 
triple-negative breast cancer cells. ROS generation was measured using oxidation sensitive fluorescent 
probe (DCFH-DA) by flow cytometry. A,B, MDA-MB-231 cells were treated with 5–20 μ M isoliensinine for 
48 h (A, dose-dependent study) and 20 μ M isoliensinine for 0, 6, 24 and 48 h (B, time-dependent study). C, 
MDA-MB-436 cells were incubated with 10–20 μ M isoliensinine for 24 h. D, MDA-MB-468 cells were treated 
with 10–20 μ M isoliensinine for 24 h. Data presented as means ±  S.D. are representative of three independent 
experiments. *P <  0.05, #P <  0.01, when compared with control group. E, isoliensinine did not increase 
ROS levels in normal cells MCF-10A. MCF-10A cells were treated with 20 μ M isoliensinine for 48 h, and 
ROS levels were mearsured by flow cytometry. Data presented as means ±  S.D. are representative of three 
independent experiments. F,G, MDA-MB-231 cells were pretreated with or without 10 mM NAC for 1 h, 
and then followed by 20 μ M isoliensinine for 48 h. F, isoliensinine induced ROS elevation and NAC could 
attenuate the increase of ROS levels. Data presented as means ±  S.D. are representative of three independent 
experiments. #P <  0.01, when compared with the indicated group. G, effect of isoliensinine on expression of 
apoptosis-related proteins in the absence or presence of NAC. Western blotting was performed for cleaved 
caspase-3 and PARP-1. β -actin was used as a loading control. Band intensities were quantified by ImageJ and 
normalized to β -actin. Data are expressed as a fold change relative to the control. The full-length blots are 
included in the supplementary information (Figure S6).
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Figure 5. p38 MAPK and JNK pathways mediate isoliensinine-induced apoptosis in triple-negative 
breast cancer cells. A, time course of p38 MAPK and JNK actvation. MDA-MB-231 cells were treated with 
20 μ M isoliensinine for various lengths of time. B, MDA-MB-436 and MDA-MB-468 cells were incubated 
with 20 μ M isoliensinine for 24 h. C,D, MDA-MB-231 cells were treated with 20 μ M isoliensinine alone 
or in combination with 10 μ M SB203580 (C) or 10 μ M SP600125 (D) for 24 h. Cell lysates were prepared 
and analyzed by western blotting for cleaved PARP-1. β -actin was used as a loading control. E, p38 siRNA 
rescued isoliensinine-induced apoptosis. MDA-MB-231 cells were transfected with mock siRNA or p38 
siRNA, and incubated with 20 μ M isoliensinine for 24 h. F, JNK siRNA blocked isoliensinine-induced 
apoptosis. MDA-MB-231 cells were transfected with mock siRNA or JNK siRNA, and treated with 
20 μ M isoliensinine for 24 h. Western blot analysis was performed using total cell lysates to examine the 
phosphorylation levels of p38 and JNK and cleaved caspase-3 and PARP-1 protein levels. β -actin was used 
as a loading control. For cleaved caspase-3 and cleaved PARP-1, band intensities were quantified by ImageJ 
and normalized to β -actin. For p-JNK1 and p-p38, band intensities were normalized to JNK1 and p38, 
respectively. Data are expressed as a fold change relative to the control. Data shown are representative of 
three independent experiments. The full-length blots are included in the supplementary information (Figure 
S7, S8 and S9).
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Role of p38 MAPK and JNK pathways in ROS induction by isoliensinine. Since isoliensinine 
induced ROS generation and activation of p38 MAPK and JNK, we next examined whether p38 MAPK 
and JNK are involved in isoliensinine-induced ROS generation in MDA-MB-231 cells. As shown in 
Fig. 6A, pretreatment with p38 MAPK inhibitor SB203580 or transfection with p38 specific siRNA could 
significantly attenuate the increase of ROS production by isoliensinine. However, inhibition of JNK by 
either pretreatment with inhibitor SP600125 or specific siRNA transfection did not significantly suppress 
isoliensinine-induced ROS generation (Fig. 6B). These results indicated that the activation of p38 MAPK, 
but not that of JNK, contributed to ROS generation induced by isoliensinine.

Because previous studies demonstrated that MAPK pathways could be activated by ROS21,22, we fur-
ther evaluated the effect of NAC on the activation of p38 MAPK and JNK induced by isoliensinine. As 
shown in Fig. 6C, the levels of activated p38 MAPK and JNK in response to isoliensinine could be par-
tially inhibited by NAC, suggesting that ROS also mediates the activation of p38 MAPK and JNK induced 
by isoliensinine. Taken together, these results indicated that p38 MAPK pathway and ROS generation 
may reinforce each other in driving apoptosis of MDA-MB-231 cells treated with isoliensinine.

Discussion
Isoliensinine and its analogue neferine and liensinine have been reported as potential anti-cancer agents 
in many cancer cells5,6,8. In this study we firstly evaluated the growth-inhibitory effects of isoliensinine, 
liensinine and neferine on MDA-MB-231 cells. Although isoliensinine, liensinine and neferine resemble 
each other in structure, these alkaloids exhibited different anti-proliferation effect on MDA-MB-231 cells. 
Isoliensinine possessed the most potent cytotoxic effect, and liensinine showed the least cytotoxicity. We 
found that isoliensinine could trigger a significant increase in apoptosis of triple-negative breast cancer 
cells in a p38 MAPK and JNK-dependent manner. Importantly, ROS level was selectively induced by 
isoliensinine in triple-negative breast cancer cells, but not in MCF-10A cells. The increased ROS pro-
duction mediated the pro-apoptotic effect of isoliensinine on cancer cells. These findings indicate that 
isoliensinine may possess selective cytotoxic effect on cancer cells.

Evidence has suggested that some natural compounds, such as curcumin23 and resveratrol24, behave 
either as anti-oxidant or pro-oxidant depending on the concentration applied and the target cells. Neferine, 
an analogue of isoliensinine, inhibited high glucose-induced apoptosis in endothelial cells by blocking 
ROS generation17. Neferine also could induce mitochondrial-mediated ROS generation in triggering 
apoptosis in HepG2 cells6. Isoliensinine showed a significant inhibitory effect on bleomycin-induced 
pulmonary fibrosis in mice, probably due to its anti-oxidant and anti-inflammatory activities16. Here, we 
found that while isoliensinine had a potent cytotoxic effect on breast cancer cells, it exhibited a minimal 
effect on normal human breast epithelial cells MCF-10A at low concentrations (Fig.  1C). Meanwhile, 
isoliensinine significantly increased ROS production in triple-negative breast cancer cells, but failed to 
do so in MCF-10A cells. ROS scavenger NAC could significantly attenuate apoptosis induced by isolien-
sinine in MDA-MB-231 cells. Cancer cells usually have higher ROS level than normal cells and are less 
tolerable to further ROS insults. Other natural product, piperlongumine, has been reported to selectively 
increase ROS levels and apoptotic cell death in cancer cells but not in normal cells19,25. Lanperisone was 
also shown to selectively kill K-ras mutant cells by inducing oxidative stress26. More study is needed to 
determine why isoliensinine selectively induces ROS in triple-negative breast cancer cells.

Known as stress activated protein kinases, p38 MAPK and JNK are activated by various stress stim-
uli. It has been widely established that activation of p38 MAPK and JNK plays a critical role in natural 
compounds-induced apoptosis9,21. Consistent with these reports, isoliensinine induced significant eleva-
tion in the phosphorylation of p38 MAPK and JNK in a time-dependent manner in triple-negative breast 
cancer cells. In addition, inhibition of p38 MAPK and JNK, by SB203580 and SP600125, respectively, 
reduced isoliensinine-induced cleavage of PARP-1. Depletion of p38 or JNK by siRNA produced similar 
results, suggesting that p38 MAPK and JNK were involved in isoliensinine-induced apoptosis. A num-
ber of studies reported that pro-apoptotic p38 MAPK and JNK were activated by ROS6,12,15,21. Indeed, 
we found that apoptosis and p38 MAPK and JNK activation induced by isoliensinine were significantly 
attenuated by NAC. On the other hand, SB203580 and p38 specific siRNA could also markedly reduce 
isoliensinine-induced ROS generation in MDA-MB-231 cells, which is consistent with the reports that 
ROS generation was mediated by activation of p38 MAPK13,14. Therefore, p38 MAPK pathway and ROS 
may augment each other during isoliensinine-induced apoptosis in triple-negative breast cancer cells. The 
mechanism by which isoliensinine activates p38 MAPK and increases ROS production in triple-negative 
breast cancer cells may bear some analogy to a recently described JNK-NADPH oxidase-ROS self-driven 
signal circuit in hepatic carcinoma cells22.

In summary, isoliensinine could efficiently induce apoptosis in triple-negative breast cancer cells. 
Its cytotoxic effect was achieved by inducing oxidative stress and by activating p38 and JNK pathways. 
Therefore, our findings suggest that isoliensinine may serve as a potential anti-cancer agent for TNBCs.

Methods
Cell cultures. Human breast cancer cells MDA-MB-231, MDA-MB-436, MDA-MB-468, MCF-7 
and normal human breast epithelial cells MCF-10A were obtained from the American Type Culture 
Collection (Manassas, VA). MDA-MB-231, MDA-MB-436, MDA-MB-468, MCF-7 cells were cultured 
in DMEM medium supplemented with 10% FBS (Gibco, Invitrogen), 100 U/ml penicillin and 100 μ g/ml 



www.nature.com/scientificreports/

1 0Scientific RepoRts | 5:12579 | DOi: 10.1038/srep12579

streptomycin. MCF-10A cells were grown in DMEM/F12 Medium (Gibco, Invitrogen), containing 5%  
horse serum (Gibco, Invitrogen), 20 ng/ml EGF, 0.5 mg/ml hydrocortisone, 100 ng/ml Cholera Toxin, 

Figure 6. Effect of p38 MAPK and JNK inhibition on isoliensinine-induced ROS generation. A,B, 
MDA-MB-231 cells were pretreated with inhibitors (10 μ M SB203580 or 10 μ M SP600125) for 1 h, or 
transfected with specific siRNAs, and then 20 μ M isoliensinine was added for additional 24 h. ROS 
production was measured using DCFH-DA by flow cytometry. Data presented as means ±  S.D. are 
representative of three independent experiments. *P <  0.05, #P <  0.01, when compared with the vehical 
control. C, cells were pretreated with 10 mM NAC for 1 h, and then followed by 20 μ M isoliensinine for 24 h. 
Cell lysates were prepared and subjected to western blotting for the phosphorylation levels of p38 and JNK. 
β -actin was used as a loading control. For p-JNK1 and p-p38, band intensities were normalized to JNK1 
and p38, respectively. Data are expressed as a fold change relative to the control. The full-length blots are 
included in the supplementary information (Figure S10).
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10 μ g/ml insulin, 100 U/ml penicillin and 100 μ g/ml streptomycin. All cells were cultured at 37 °C with 
5% CO2.

Reagents. Isoliensinine, liensinine and neferine (98% by HPLC, Tianhaoyuan Biotech Co., Ltd., 
Tianjin, China) were dissolved in DMSO (maximum concentration, 20 mg/ml), respectively. DMSO was 
also applied to controls. The antibodies against p21 (sc-6246), cyclin E (sc-25303), Bcl-2 (sc-7382), Bax 
(sc-7480), and β -actin (sc-69879) were acquired from Santa Cruz Biotechnology. The antibodies against 
Caspase-3 (9662), PARP-1 (9532), phospho-p38 MAPK (9215), p38 MAPK (9212), JNK1/2 (9258), and 
phospho-JNK1/2 (4668) were from Cell Signaling Technology. NAC, SB203580 and SP600125 were pur-
chased from Beyotime Institute of Biotechnology (China).

Cell proliferation assay. Cell proliferation was measured by the CCK-8 assay kit (Beyotime, China). 
Briefly, cells were seeded in 96-well culture plates the day before isoliensinine treatment. After incuba-
tion, 10 μ l of CCK-8 reagent was added to each well and the absorbance was measured at 450 nm 2 h 
later. All experiments were repeated at least three times.

Colony formation assay. Breast cancer cells were plated on 6-well plates at a density of 1 ×  103 cells/
well and treated with isoliensinine at different concentrations. Media were changed after 48 h of incu-
bation. Colonies were scored 2 weeks later. Colonies were fixed and stained with 0.1% crystal violet in 
10% ethanol and counted.

Cell cycle analysis. Cell cycle analysis was performed as previously described27. After being treated 
with isoliensinine for the indicated times, the adherent cells were washed once with PBS, trypsinized, 
and collected by centrifugation at 400 ×  g for 5 min. The cells (106 cells per sample) were fixed in 4 ml 
of cold 70% ethanol at –20 °C overnight. After centrifugation at 1000 ×  g for 10 min, cell pellets were 
incubated with 0.5 ml of PBS containing 100 μ g/ml RNase (Invitrogen) and 5 μ g/ml propidium iodide 
(Sigma-Aldrich) at room temperature for 30 min. Cell cycle distribution was analyzed by measuring 
DNA content using flow cytometry.

Edu proliferation assay. MDA-MB-231 cells plated in 96-well plate were treated with isoliensi-
nine at the indicated concentrations for 48 h, cell proliferation was detected using the incorporation 
of 5-ethynyl-2′ -deoxyuridine (EdU) with the EdU cell proliferation assay kit (Guangzhou RiboBio Co., 
Ltd. Guangzhou, China). Briefly, the cells were incubated with 50 μ M EdU for 2 h before fixation, per-
meabilization and EdU staining according to the manufacturer’s protocol. The nuclei were stained with 
Hoechst33342. The proportion of EdU positive cells was determined by fluorescence microscopy.

Annexin V apoptosis assay. Apoptotic cells were identified by Annexin V/Dead Cell Apoptosis Kit 
(Invitrogen). Briefly, MDA-MB-231 cells were treated with different concentrations of isoliensinine for 
48 h and with 20 μ M isoliensinine for 24, 48 and 72 h. Thereafter, cells were harvested and washed twice 
with ice-cold PBS. Cells were resuspended in annexin-binding buffer and incubated at room temperature 
for 15 mins in the dark after 5 μ l Annexin V-FITC and 1 μ l PI additions. FITC fluorescence was analyzed 
by flow cytometry.

Measurement of ROS. ROS generation was measured using oxidation sensitive fluorescent probe 
(DCFH-DA) according to the manufacturer’s protocols (Beyotime, China). Breast cancer cells were 
treated with isoliensinine in the absence or presence of NAC, SB203580 and SP600125 for the indicated 
times. MCF-10A cells were exposed to 20 μ M isoliensinine for 48 h. After the incubation, the cells were 
harvested and then stained with 10 μ M DCFH-DA probe at 37 °C for 20 min. Cells were washed three 
times with PBS, and the induction of ROS was examined by flow cytometry. In all experiments, 20,000 
viable cells were analyzed.

RNA interference. All small interfering RNAs (siRNAs) were purchased from GenePharma 
Co. (Shanghai GenePharmaCo., China). The siRNA targeting human alpha p38 MAPK 
(5′ -GGGCAGAUCUGAACAACAU-3′ )and beta p38 MAPK(5′ -GAGCGACGAGCACGUUCAA-3′ ) 
were applied as a mixture at a total final concentration of 80 nM. The siRNA targeting human JNK1 
(5′ -GCCCAGUAAUAUAGUAGUA-3′ ) and JNK2 (5′ -GUUGCAGUCAAGAAACUAA-3′ ) were used as 
a mixture at a total final concentration of 80 nM. A non-silencing scramble RNA duplex was used as 
the negative control (5′ -UUCUCCGAACGUGUCACGU-3′ ). MDA-MB-231 cells were transfected with 
siRNAs using Lipofectamine2000 (Invitrogen, CA) as described previously5. Briefly, 2 ×  105 MDA-MB-231 
cells were seeded in 60 mm dishes in antibiotic-free medium. The next day, siRNAs were introduced 
into the cells using lipofectamine2000 transfection reagent according to the manufacturer’s protocols. 
MDA-MB-231 cells were replated in 60 mm dishes at a concentration of 8 ×  104 cells/ml 24 h after trans-
fection. After the incubation in medium containing isoliensinine for the indicated time, cells were then 
harvested for immunoblotting.
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Western blotting. Cells were harvested and lysed on ice for 20 min in lysis buffer (Beyotime, China). 
The protein concentration was determined by the BCA assay kit (Beyotime, China). 30–50 μ g protein 
samples were separated by SDS-PAGE (6–12%) and electro-transferred onto PVDF membrane. The 
membrane was blocked with 5% skim milk and incubated with specific primary antibodies at 4 °C for 
overnight. Proteins of interest were detected with appropriate horseradish peroxidase-conjugated second-
ary antibodies and developed using ECL kit (Thermo). The protein levels were normalized by β -actin.

Statistical analysis. All data were expressed as mean ±  standard derivation (SD) of three inde-
pendent experiments. A statistical significance test was performed with analysis of variance followed by 
one-way ANOVA test for experiments consisting of more than three groups. Student’s t test was used to 
analyze all other data, with P <  0.05 considered as the level of significance.
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