
W576–W579 Nucleic Acids Research, 2015, Vol. 43, Web Server issue Published online 29 April 2015
doi: 10.1093/nar/gkv402

NGL Viewer: a web application for molecular
visualization
Alexander S. Rose* and Peter W. Hildebrand

Institut für Medizinische Physik und Biophysik, AG ProteInformatics, Charité–Universitätsmedizin Berlin, Charitéplatz
1, 10117 Berlin, Germany

Received March 05, 2015; Revised April 11, 2015; Accepted April 15, 2015

ABSTRACT

The NGL Viewer (http://proteinformatics.charite.de/
ngl) is a web application for the visualization of
macromolecular structures. By fully adopting capa-
bilities of modern web browsers, such as WebGL,
for molecular graphics, the viewer can interactively
display large molecular complexes and is also unaf-
fected by the retirement of third-party plug-ins like
Flash and Java Applets. Generally, the web appli-
cation offers comprehensive molecular visualization
through a graphical user interface so that life sci-
entists can easily access and profit from available
structural data. It supports common structural file-
formats (e.g. PDB, mmCIF) and a variety of molecu-
lar representations (e.g. ‘cartoon, spacefill, licorice’).
Moreover, the viewer can be embedded in other web
sites to provide specialized visualizations of entries
in structural databases or results of structure-related
calculations.

INTRODUCTION

Visualizing 3D molecular structures of biopolymers has be-
come a common task in the life sciences (1,2). The depic-
tion of, for instance, ligand-binding pockets or other de-
tails in macromolecular assemblies helps to elucidate the
relationship between protein structure and function. The
web in turn has long been a platform for providing access
to 3D structural data itself and also to visualizations of it.
Ongoing advances in web browser software facilitate this
trend and allow the creation of rich visualization applica-
tions. Specifically, integration of browser-based visualiza-
tions simplifies access to results of structure-related calcu-
lations from web tools (3,4) and allows for quick depiction
of entries in online structural databases (5–7). Hence, web
browsers are extensively used for the visualization of molec-
ular structures.

Until recently web browsers could not display 3D content
without additional plug-ins. Therefore, programs like ‘Jmol’
(8) or the ‘OpenAstexViewer’ (9) needed to be embedded as

Java Applets within a web page. However, the rise of the web
as a platform for applications has resulted in more and more
capabilities being added to the web browsers themselves.
These include the HTML5 feature set and tremendous per-
formance gains of JavaScript, the programming language
available within web browsers. Eventually, this progress al-
lowed the compilation of ‘Jmol’ into a pure JavaScript
version called ‘JSmol’ (10), demonstrating the feasibility
of browser-based molecular graphics without recourse to
third-party plug-ins like Flash or Java Applets. In addition
to molecular graphics, ‘JSmol’ provides the same features
as ‘Jmol’, including user-scripts and sessions.

Another feature modern web browsers have is access to
dedicated graphics hardware through the WebGL applica-
tion programming interface (API). For desktop programs,
shifting calculations to the graphics processor unit (GPU)
has greatly improved rendering performance and quality
(11). So by using the new capabilities of web browsers it
is possible to provide hardware-accelerated graphics while
coping with the increasing retirement of plug-ins. Some li-
braries have already been developed which leverage We-
bGL and can be embedded in web pages to provide molec-
ular visualizations. Notable libraries include ‘pv’, as used
in the SWISS-MODEL server (12), and ‘3Dmol.js’ (13).
They provide developers with an API for the creation
of molecular visualizations. Further, the ‘GLmol’-based
(tinyurl.com/glmol) ‘iview’ employs GPU acceleration and
provides an interface for viewing protein–ligand complexes
(14).

Note that while WebGL is widely adopted by web
browsers, there are still installations in which WebGL is not
available, either due to missing software updates or older,
unsupported hardware. To enable molecular graphics for
these, ‘JSmol’ is an option, as it neither relies on WebGL
for rendering nor requires a plug-in.

Here we introduce the ‘NGL Viewer’, which provides a
rich graphical user interface (GUI) for customization of
molecular scenes in addition to a developer API for embed-
ding and controlling the viewer. Leveraging the features of
modern web browsers, the ‘NGL Viewer’ can supply fast,
hardware-accelerated molecular graphics and brings a fa-
miliar GUI to the web. The web application offers general-

*To whom correspondence should be addressed. Tel: +49 030 450524170; Fax: +49 030 450524952; Email: alexander.rose@charite.de

C© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://proteinformatics.charite.de/ngl


Nucleic Acids Research, 2015, Vol. 43, Web Server issue W577

Figure 1. Gallery of molecular visualizations showing various representations of differently sized macromolecules. (A) Structure of the Noro virus capsid
(PDB entry 1IHM) that forms the outer shell of the virus, colored by chainindex. The front of the capsid is clipped away and depicted inside the virus
capsid is, for size comparison, the structure of a conserved retroviral RNA packaging element from the Moloney murine leukemia virus (PDB entry 2LIF).
(B) System of a peptide derived from the C-terminus of ‘transducin’ (blue cartoon) surrounded by a box of water molecules (spacefill representation) in
preparation for a molecular dynamics simulation. (C) Structure of a mammalian 80S ‘ribosome’ (PDB entry 4UJD) colored by chainindex. (D) Structure
of light-activated ‘rhodopsin’ in complex with a peptide derived from the C-terminus of ‘transducin’ (PDB entry 3PQR), colored by residueindex. (E)
HIV-1 capsid structure (PDB entry 3J3Y) showing the backbone colored by chainindex. (F) Example usage of the rope representation (solid tube) to
display the protein fold in a more abstract way as compared to the cartoon representation (translucent). The structure shown is that of ‘crambin’ (PDB
entry 1CRN) colored by secondary structure with magenta alpha-helices and yellow beta-strands. (G) The secondary structure of ‘ferredoxin’ (PDB entry
1BLU) and its two [4Fe–4S] clusters highlighted with the ‘HyperBall’ representation.

purpose molecular visualization and as it does not require
the installation of specialized software it can simplify access
3D structural data for life scientists.

IMPLEMENTATION

The ‘NGL Viewer’ web application is written mostly in
JavaScript, with some code in HTML and CSS to create
the GUI. Fast 3D graphics are enabled by GPU acceler-
ation available through WebGL, a standard based on the
OpenGL ES 2.0 API and built directly into the browser
without the need for any plug-ins. All major web browsers
support WebGL in their current versions through a 3D con-
text for the HTML5 canvas element. Bindings to JavaScript
in turn provide a flexible and low-level API to the GPU for
web-based applications.

Architecture

The source code is organized into task-specific modules:
parsing and processing of molecular structures; transform-
ing molecular structures into display representations such
as spheres for atoms, sticks for bonds or tubes tracing a
protein backbone; rendering of display representations on
the GPU with WebGL; and, finally, creating an interac-
tive GUI. A goal of this organization is a layered archi-
tecture with a clear separation of modules to facilitate re-
use and refactoring in development. At the center of the
implementation is the stage class. It supplies an instance
of the viewer class for rendering and hosts component in-
stances that contain, for example, the molecular structures

for visualization. The component instances in turn host
representation instances containing the geometry to be
rendered. The GUI is decoupled from the stage class and
reacts only to signals. For example, a stage instance emits a
‘component loaded’ signal to which the GUI reacts with the
creation of an interface element for the loaded component.
By that, no GUI-specific code is needed within the non-
GUI parts. Generally, this architecture simplifies creation
of custom GUIs and facilitates embedding the viewer into
other web applications.

Structures

Molecular structures are parsed and converted into an in-
ternal format based on the common structure-model-chain-
residue-atom hierarchy of biomolecules. Parsers are cur-
rently implemented for the PDB, GRO and mmCIF file-
formats. For large structures, each type of atomic data such
as the coordinates or the element name is stored in a sin-
gle JavaScript typed array. This saves memory compared to
storing the data in properties of JavaScript objects for each
atom individually.

Visualization

To minimize time-consuming data exchange between CPU
and GPU, the geometries of molecular representations are
sent to the GPU in few but large arrays. The geometries in
each of the arrays can then be rendered by a single draw call
to the WebGL API.



W578 Nucleic Acids Research, 2015, Vol. 43, Web Server issue

Figure 2. Screenshot of the ‘NGL Viewer’ GUI, magnified for clarity. A
more detailed description of the GUI can be found in the online documen-
tation. (A) The menu bar at the top provides access to general commands.
The ‘File’ menu includes commands to load files or export images. But-
tons to change the theme or to go fullscreen are in the ‘View’ menu. The
‘Examples’ menu includes various possible use cases. Help-related items
like a preferences section and a link to the documentation can be found
in the ‘Help’ menu. (B) Molecular visualizations are rendered to the view-
port at the center. Here the structure of ‘crambin’ (PDB entry 1CRN) is
shown highlighting the three disulfide bridges. (C) The sidebar hosts an
interface element for each loaded structure and added representations. A
number of buttons are available to quickly access commands: hide/show
(eye icon), center (bulls eye icon), delete (trash bin icon) and parameters
menu (stacked bars icon). Input fields for atom selections (funnel icon) re-
strict the display of representations. Here the ‘hyperball’ representation is
limited to CYS and sidechainAttached. (D) The status bar at the bot-
tom notes the last picked atom, in this case the ‘SG’ atom in the ‘cysteine’
with residue number ‘4’ in chain ‘A’ of model ‘0’.

For the rendering of spheres and cylinders, ray-casted
impostors are used to greatly reduce the geometric com-
plexity and enable display of very large macromolecules
with sphere- and cylinder-based representations (15,16).
For older hardware that does not support the required
EXT frag depth WebGL extension, spheres and cylinders
are rendered as meshes of triangles forming the geomet-
ric primitives. Ray-casting is also used to provide an imple-
mentation of the ‘HyperBalls’ representation (17) in which
atoms are smoothly connected by an elliptic hyperboloid
(Figures 1G and 2B).

The line and point primitives available in the WebGL
API provide visually simple but very fast representations for
huge macromolecules or when older hardware is used. All
remaining representations such as a tube tracing the back-
bone atoms are rendered as triangle meshes.

The ‘three.js’ library (threejs.org) is used to create and
render the scene containing the geometries of molecular
representations. The library also provides the camera im-
plementations and mouse controls.

Interaction

Picking atoms with pixel-level accuracy is implemented
GPU-based by rendering the scene off screen with colors
that uniquely identify all pickable elements. Upon clicking
on the canvas, the color of the pixel under the mouse pointer
is read identifying the corresponding element, for instance
a specific atom.

A concise language for selecting parts of molecular struc-
tures from models and chains to atoms was created, with
a syntax inspired by the atom expressions available in
the scripting language of ‘Jmol/JSmol’. Strings written in
the selection language are parsed and transformed into
testing functions that can be applied at all levels of the
structure-model-chain-residue-atom hierarchy to efficiently
determine if an entity belongs to the selection or not. For
example, the selection string ALA and .CA breaks down to
tests for ‘alanine’ residues and ‘C-alpha’ atoms. All atoms
for which both tests evaluate to true are selected.

WEB APPLICATION

The ‘NGL Viewer’ web application enables interactive dis-
play of large macromolecules and allows complex manip-
ulations of the visualization through a GUI. Structures in
PDB, mmCIF or GRO format can be loaded into the ap-
plication from local and remote sources. For instance, local
files can be loaded via drag’n’drop and PDB entries are re-
trieved from the RCSB archive (www.rcsb.org) by their ID.
Moreover, compressed files in ‘gz’ or ‘zip’ format are auto-
matically unpacked upon loading.

Structures loaded into the viewer are displayed using a
variety of representations that can be combined to create
complex molecular views (Figure 1). Multiple representa-
tion types are supported, including cylinders and spheres
for bonds and atoms (‘spacefill, ball+stick, licorice, line,
point’) as well as secondary structure depictions based on
backbone atoms (‘cartoon, tube, ribbon, trace, backbone,
rocket’). The appearance of the representations is tunable
by parameters to create unique styles and also to trade qual-
ity for performance. Most representations have a color and
a radius parameter that can use data from the underlying
structure. For instance, a representation can be colored uni-
formly or according to the element, residue or secondary
structure type of the atoms from which the representation
is derived. The size of representation objects, such as sphere
and cylinder radii in a ‘ball+stick’ representation, is set sim-
ilarly. The GUI provides controls to add new representa-
tions to a structure and to change the parameters of exist-
ing ones (Figure 2C). Clicking on a representation prints
the full name of the entity (i.e. atom, residue, chain, model,
structure) it belongs to (Figure 2D).

Display of representations is easily limited to specific
atoms, residues or chains via a concise selection lan-
guage. This allows detailed control of which parts of a
biomolecule are shown to highlight important aspects or
are not shown for clarity (Figure 2B and C). For example,
the side-chain and C-alpha atoms plus the backbone nitro-
gen in the case of proline are selected with side-chain or
.CA or (PRO and .N). For convenience, the shorthand
sidechainAttached is available. A detailed description of
the selection language can be found in the online documen-
tation.

Large systems of biomolecules are often available as
coarse-grained structures where only the backbone atoms
are resolved. Here, visualization of coarse-grained struc-
tures is supported by special treatment when calculating
backbone and side-chain bonds as well as by automatic
alpha-helix detection. Thus, representations such as ‘car-

file:www.rcsb.org


Nucleic Acids Research, 2015, Vol. 43, Web Server issue W579

toon or ribbon’ are available for coarse-grained structures
despite their missing atoms. Also provided is a ‘rope’-
like protein fold abstraction especially suitable for coarse-
grained structures. In this representation a tube follows a
local axis similar to what is done in ‘Bendix’ (18).

Structure files from the PDB include data on biologically
relevant assemblies and provide information about crystal-
lographic symmetries. Display of the corresponding assem-
blies can be controlled via the parameter menu of structures
and representations (Figure 2C).

The molecular views created can be exported as anti-
aliased high-resolution images for use elsewhere.

Embedding

The viewer can be embedded into other websites by includ-
ing a single JavaScript file and then calling API methods to
create a stage instance that allows loading and subsequent
manipulation of molecular structures. Instructions and ex-
amples for embedding and controlling the viewer are avail-
able in the online documentation along with a description
of the API methods.

CONCLUSION

By leveraging modern web technologies such as WebGL,
the ‘NGL Viewer’ provides scalable molecular graphics al-
lowing the display of large macromolecular assemblies in-
cluding ribosomes and virus capsids (Figure 1). It is acces-
sible through a user-friendly GUI (Figure 2) but can also
be embedded in other websites as a library. The viewer sup-
ports common structure file formats, including PDB and
mmCIF. To create complex molecular views, a wide array of
molecular representations is available, including the atom-
istic display of atoms and bonds as well as secondary struc-
ture depictions based on backbone atoms. Moreover, we
implemented state-of-the-art representations known from
desktop applications, including ray-casted primitives, ‘Hy-
perBalls’ and a ‘Bendix-like’ representation (15–18).

The web application is free and open to all users and
there is no log-in requirement. Moreover, the full source
code is available at https://github.com/arose/ngl/ under an
open-source license. Extensive documentation can be found
at http://proteinformatics.charite.de/ngl/doc.

ACKNOWLEDGEMENT

We thank Heiko Bittner, Johanna Tiemann and Jochen Is-
mer for testing the software and suggesting features.

FUNDING

The Deutsche Forschungsgemeinschaft [Sfb740-B6, HI
1502/1-1, BI 893/8 to P.W.H.]. Funding for open access
charge: the Deutsche Forschungsgemeinschaft [Sfb740-B6,
HI 1502/1-1, BI 893/8].

Conflict of interest statement. None declared.

REFERENCES
1. O’Donoghue,S.I., Goodsell,D.S., Frangakis,A.S., Jossinet,F.,

Laskowski,R.A., Nilges,M., Saibil,H.R., Schafferhans,A.,
Wade,R.C., Westhof,E. et al. (2010) Visualization of macromolecular
structures. Nat. Methods, 7, S42–S55.

2. Mura,C., McCrimmon,C.M., Vertrees,J. and Sawaya,M.R. (2010) An
introduction to biomolecular graphics. PLoS Comput. Biol., 6,
e1000918.

3. Ashkenazy,H., Erez,E., Martz,E., Pupko,T. and Ben-Tal,N. (2010)
ConSurf 2010: calculating evolutionary conservation in sequence and
structure of proteins and nucleic acids. Nucleic Acids Res., 38,
529–533.

4. Ismer,J., Rose,A.S., Tiemann,J.K.S., Goede,A., Rother,K. and
Hildebrand,P.W. (2013) Voronoia4RNA––a database of atomic
packing densities of RNA structures and their complexes. Nucleic
Acids Res., 41, D280–D284.

5. Gutmanas,A., Alhroub,Y., Battle,G.M., Berrisford,J.M., Bochet,E.,
Conroy,M.J., Dana,J.M., Fernandez Montecelo,M.A., Van
Ginkel,G., Gore,S.P. et al. (2014) PDBe: protein data bank in Europe.
Nucleic Acids Res., 42, 285–291.

6. Rose,A.S., Theune,D., Goede,A. and Hildebrand,P.W. (2014)
MP:PD––a data base of internal packing densities, internal packing
defects and internal waters of helical membrane proteins. Nucleic
Acids Res., 42, D347–D351.

7. Rose,P.W., Bi,C., Bluhm,W.F., Christie,C.H., Dimitropoulos,D.,
Dutta,S., Green,R.K., Goodsell,D.S., Prlic,A., Quesada,M. et al.
(2015) The RCSB Protein Data Bank: new resources for research and
education. Nucleic Acids Res., 43, D345–D356.

8. Hanson,R.M. (2010) Jmol––a paradigm shift in crystallographic
visualization. J. Appl. Crystallogr., 43, 1250–1260.

9. Hartshorn,M.J. (2002) AstexViewer: a visualisation aid for
structure-based drug design. J. Comput. Aided Mol. Des., 16, 871–881.

10. Hanson,R.M., Prilusky,J., Renjian,Z., Nakane,T. and Sussman,J.L.
(2013) JSmol and the next-generation web-based representation of
3D molecular structure as applied to Proteopedia. Isr. J. Chem., 53,
207–216.

11. Chavent,M., Lévy,B., Krone,M., Bidmon,K., Nominé,J.-P., Ertl,T.
and Baaden,M. (2011) GPU-powered tools boost molecular
visualization. Brief. Bioinform., 12, 689–701.

12. Biasini,M., Bienert,S., Waterhouse,A., Arnold,K., Studer,G.,
Schmidt,T., Kiefer,F., Cassarino,T.G., Bertoni,M., Bordoli,L. et al.
(2014) SWISS-MODEL: modelling protein tertiary and quaternary
structure using evolutionary information. Nucleic Acids Res., 8, 1–7.

13. Rego,N. and Koes,D. (2014) 3Dmol.js: molecular visualization with
WebGL. Bioinformatics, 8, 1322–1324.

14. Li,H., Leung,K.-S., Nakane,T. and Wong,M.-H. (2014) iview: an
interactive WebGL visualizer for protein-ligand complex. BMC
Bioinformatics, 15, 56.

15. Sigg,C., Weyrich,T., Botsch,M. and Gross,M. (2006) GPU-based
ray-casting of quadratic surfaces. In: Botsch,M, Chen,B, Pauly,M
and Zwicker,M (eds). Symp. Point-Based Graph. The Eurographics
Association, Aire-la-Ville, pp. 59–65.

16. Tarini,M., Cignoni,P. and Montani,C. (2006) Ambient occlusion and
edge cueing to enhance real time molecular visualization. IEEE
Trans. Vis. Comput. Graph., 12, 1237–1244.

17. Chavent,M., Vanel,A., Tek,A., Levy,B., Robert,S., Raffin,B. and
Baaden,M. (2011) GPU-accelerated atom and dynamic bond
visualization using hyperballs: a unified algorithm for balls, sticks,
and hyperboloids. J. Comput. Chem., 32, 2924–2935.

18. Dahl,A.C.E., Chavent,M. and Sansom,M.S.P. (2012) Bendix:
intuitive helix geometry analysis and abstraction. Bioinformatics, 28,
2193–2194.

https://github.com/arose/ngl/
http://proteinformatics.charite.de/ngl/doc

