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ABSTRACT Amoebic gill disease (AGD) is one of the largest threats to salmon aquaculture, causing serious
economic and animal welfare burden. Treatments can be expensive and environmentally damaging, hence
the need for alternative strategies. Breeding for disease resistance can contribute to prevention and control
of AGD, providing long-term cumulative benefits in selected stocks. The use of genomic selection can
expedite selection for disease resistance due to improved accuracy compared to pedigree-based
approaches. The aim of this work was to quantify and characterize genetic variation in AGD resistance in
salmon, the genetic architecture of the trait, and the potential of genomic selection to contribute to disease
control. An AGD challenge was performed in �1,500 Atlantic salmon, using gill damage and amoebic load
as indicator traits for host resistance. Both traits are heritable (h2 �0.25-0.30) and show high positive
correlation, indicating they may be good measurements of host resistance to AGD. While the genetic
architecture of resistance appeared to be largely polygenic in nature, two regions on chromosome
18 showed suggestive association with both AGD resistance traits. Using a cross-validation approach,
genomic prediction accuracy was up to 18% higher than that obtained using pedigree, and a reduction
in marker density to �2,000 SNPs was sufficient to obtain accuracies similar to those obtained using the
whole dataset. This study indicates that resistance to AGD is a suitable trait for genomic selection, and the
addition of this trait to Atlantic salmon breeding programs can lead to more resistant stocks.
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Salmonids are a high-value group of fish species, comprising 16.6% of
global fish trade in 2013 (FAO2016). Demand has grown steadily and is
expanding geographically, and Atlantic salmon (Salmo salar) has the
highest production volume and value of all the salmonid species (FAO
2016). However, in recent years, Atlantic salmon supply has fluctuated,

partly as a result of infectious disease outbreaks in all major salmon
producing countries (FAO 2017). These outbreaks are a major threat to
sustainable production and future expansion of salmon aquaculture.
While solutions to several bacterial and viral diseases (e.g., vaccines)
have beenwidely and routinely applied (Brudeseth et al. 2013), parasitic
diseases are currently presenting a substantially greater problem to the
industry. In addition to the major economic concern, these parasitic
diseases and current treatment strategies can pose serious animal wel-
fare and environmental concerns.

Amoebic gill disease (AGD), primarily caused by Neoparamoeba
perurans, has been a perennial problem for salmon aquaculture in
Australia, and outbreaks have become increasingly frequent in Euro-
pean salmon farms. It also affects other commercially important sal-
monids such as rainbow trout (Oncorhynchus mykiss) and chinook
salmon (Oncorhynchus tshawytscha), and certain non-salmonid
aquaculture species such as turbot (Scophthalmus maximus; Young
et al. 2008). While gill disease symptoms are complex, AGD typically
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presents as multifocal white patches on the gill surface, lesions and
epithelial hyperplasia leading to impaired gas exchange, poor growth
and ultimately severe morbidity andmortality if untreated (Zilberg and
Munday 2000; Adams and Nowak 2003). Current treatment strategies
are crude, laborious, stressful to fish, and potentially environmentally
damaging; for example involving hydrogen peroxide application or
fresh water bathing of affected fish. This results in a large economic
burden associated with the costs of treatment and productivity losses
due to the disease. Therefore, alternative approaches that help control
the impact of AGD are highly desirable.

One such method is improving the resistance of farmed salmon
stocks to this disease via selective breeding, the benefits of which can be
cumulative and permanent. Several studies have found significant
estimates of heritability for disease resistance in aquaculture species
(e.g., Silverstein et al. 2009; Gjerde et al. 2011; Yáñez et al. 2014a;
Palaiokostas et al. 2016, Tsai et al. 2016b). Harnessing this heritability
for genetic improvement in selective breeding programs is a current
goal. The high fecundity of aquaculture species, and resulting large full
sibling family sizes, facilitates disease challenge testing of close relatives
(i.e., full siblings) to enable breeding value estimation in selection can-
didates. Selection is oftenmore accurate when the relationship between
individuals is obtained from genomic data (genomic selection) rather
than the pedigree (traditional selection), but it depends on the archi-
tecture of the trait as well as other technical variables such as marker
density (Daetwyler et al. 2010). For instance, genomic selection has
been found to outperform traditional selection in resistance to sea lice
in Atlantic salmon (Ødegard et al. 2014; Tsai et al. 2016; Correa et al.
2017b) and in resistance to pasteurellosis in sea bream (Sparus aurata;
Palaiokostas et al. 2016). Further, while an initial study found no dif-
ference between genomic selection and pedigree-based approaches for
resistance to bacterial cold water disease in rainbow trout (Vallejo et al.
2016), a later study with larger sample sizes resulted in doubling of
accuracy with the genomic selection approach (Vallejo et al. 2017). One
advantage of genomic selection over pedigree-based selection is that it
more accurately captures theMendelian sampling term between closely
related individuals in the population—particularly relevant in aquacul-
ture species with large families.

One of the main limitations of genomic selection is the cost;
genotyping a large number of animals with a high density SNP panel
could be prohibitive for all but the largest aquaculture breeding com-
panies. Several strategies have been proposed to reduce the cost of
genotyping for genomic selection in aquaculture via low density SNP
panels, including within-family genomic selection (Lillehammer et al.
2013) and the use of genotyping strategies including imputation from
low to high density SNPs (Kijas et al. 2016; Tsai et al. 2017). Genotype-
by-sequencing technologies are also likely to help reduce costs in the
near future given the continuously decreasing costs of sequencing and
the advent of new sequencing technologies suitable for low to medium
scale SNP genotyping, such as RAD-seq or GT-seq (Robledo et al.
2017). Reducing the cost of genomic selection will be critical to im-
plement genomic selection in most aquaculture breeding programs,
and in this sense improving the cost-effectiveness of genomic selec-
tion will likely be an important area of research in the coming years
(Lillehammer et al. 2013).

Previous studies on host resistance to AGD in salmon have found
estimates of heritability ranging from 0.16 to 0.48 (Taylor et al. 2007,
2009). The objectives of this study were a) estimate genetic variance of
amoebic gill disease resistance in experimentally challenged Atlantic
salmon, b) investigate the architecture of the trait using a single-SNP
genome-wide association study (single-SNP GWAS) and regional her-
itabilitymapping, c) explore genomic selection using SNPmarkers and/

or pedigree, and d) explore different marker densities with a view to
future improvement of cost-effectiveness of genomic selection within
commercial breeding programs.

MATERIALS AND METHODS

Challenge experiments
AnAGD challenge experiment using 1,481 Atlantic post-smolt salmon
(�18 months, mean weight �700 g) originating from a commercial
breeding program (Landcatch, UK) was conducted by distributing the
fish equally into 2 · 4 m seawater tanks in the experimental facilities of
Machrihanish (Scotland, United Kingdom). Seeder fish with a uniform
level of AGD infection were produced by cohabitation with infected
fish from an in vivo culture. The challenge was then performed by
cohabitation of infected seeder fish at a ratio of 15% seeder to naïve
fish, allowing three separate cycles of infection with a treatment and
recovery period after the first two (Taylor et al. 2009). For the first two
challenges, fresh water treatment was performed 21 days after chal-
lenge, followed by a week of recovery. The disease was allowed to
progress until the terminal sampling point in the third challenge. Fish
were sampled and phenotypes were recorded during three consecutive
days. A subjective gill lesion score of the order of severity ranging from
0 to 5 was recorded for both gills (Table 1; Taylor et al. 2016). These gill
lesion scores were recorded by a single operator, who referred to pic-
tures to guide classification. Some fish were scored by additional oper-
ators, and the scores never differed by.0.5. Further, one of the gills was
stored in ethanol for qPCR analysis of amoebic load using Neopara-
moeba perurans specific primers. Amoebic load has previously been
used as a suitable indicator trait for resistance to AGD in salmon
(Taylor et al. 2009). The challenged fish belonged to 312 different
families with 1 to 37 fish per family. All fish were phenotyped for mean
gill score (mean of the left gill and right gill scores) and amoebic load
(qPCR values using Neoparamoeba perurans specific primers, ampli-
fied from one of the gills). All phenotypic information is available in
File S1.

All animalswere reared in accordancewith relevant national andEU
legislationconcerninghealthandwelfare. The challenge experimentwas
performed by the Marine Environmental Research Laboratory (Mach-
rihanish, UK) under approval of the ethics review committee of the
University of Stirling (Stirling, UK) and according to Home Office
license requirements. Landcatch are accredited participants in the
RSPCA Freedom Foods standard, the Scottish Salmon Producers
Organization Code of Good Practice, and the EU Code-EFABAR
Code of Good Practice for Farm Animal Breeding and Reproduction
Organizations.

Estimation of Amoebic load
Sampledwhole gills were weighed and combinedwith an equal amount
(wt/vol) 10 mM Tris, 1 mM EDTA, pH 8.0. Samples were then
homogenized using a Qiagen TissueLyser II (Qiagen, Manchester,
UK) following the manufacturers’ recommendations. Total DNA was
extracted from 50 ml homogenate using Questgene 9600 DNA extrac-
tion kits (Questgene, York, UK) following manufacturers’ protocols.
Amoebic load was determined via duplex qPCR reactions using
primer/probe combinations targetting a 139 bp N. perurans specific
18S sequence (Fringuelli et al. 2012), and a 66 bp fragment of the
Atlantic salmon Elongation Factor a 1 gene (Bruno et al. 2007).
DNA was normalized to 50 ng/ml, and 5 ml was combined into 50 ml
QPCR duplex reactions comprising: 1X Taqman QPCR reaction mix
(Questgene, York, UK), 300 nM N. perurans specific primers, 150 nM
N. perurans specific probe, 150 nM ELFa primers, and 75 nm ELFa
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probe (Table S1). Ampifications were performed using a Biorad iCycler
iQ QPCR Detection System. The thermal profile consisted of 95� for
10 min and 45 cycles of 15 s denaturation at 95�/30 s annealing/exten-
sion at 56�. Fluorescence in both FAM andHEX channels was acquired
during the annealing/extension stage. Ct (threshold cycle) values were
recorded and the level of N. perurans load was normalized against the
ELF internal control by computing the ratio Equivalent Target Amount
(ETA) N. perurans : ETA ELFa.

Genotyping
DNA was extracted from fin tissue samples using the DNeasy 96 tissue
DNA extraction kit (Qiagen,UK) and samples were genotyped using an
Illumina combined species Atlantic salmon and rainbow trout SNP
array (�17K SNPs, File S2), designed from a subset of SNPs from a
higher density array (Houston et al. 2014). Genotypes (File S3) were
filtered according to the following criteria: SNP call-rate , 0.9, indi-
vidual call-rate , 0.9, FDR rate for high individual heterozygosity ,
0.05, identity-by-state . 0.95 (both individuals removed), Hardy-
Weinberg equilibrium FDR p-value , 0.05, minor allele frequency ,
0.05. After this filtering, a total of 1,430 fish and 7,168 SNPs remained
for further analysis. The large number of SNPs removed by filtering is
due to the lack of informativeness of the rainbow trout SNPs in these
Atlantic salmon samples.

Estimation of genetic parameters
Gill score and gill qPCR data were analyzed using linear mixed models,
fitting collection date (3 levels) and tank (2 levels) as fixed effects and
animal as a random effect. The additive effect was estimated using both
the genomic kinship matrix (G-matrix) and the pedigree (A-matrix).
Heritabilities were estimated by ASReml 3.0 (Gilmour et al. 2014)
fitting the following linear mixed model:

y ¼ mþXbþZaþe

where y is a vector of observed phenotypes, m is the overall mean of phe-
notype records,b is the vector offixed effects of collectiondate and tank, a is a
vector of additive genetic effects distributed as �N(0,Gs2a) or N(0,As2a)
where s2a is the additive (genetic) variance, G and A are the genomic and
pedigree relationship matrices, respectively. X and Z are the corresponding
incidencematrices forfixed and additive effects, respectively, and e is a vector
of residuals. The genomic relationship matrix was constructed by the
GenABEL R package (Aulchenko et al. 2007) using the method of Van-
Raden (VanRaden 2008) and then inverted by applying a standard R
function. Phenotypic correlations between traits and genetic correlations
were estimated using bivariate analyses implemented in ASReml 3.0
(Gilmour et al. 2014) fitting the linear mixed model described above.

Single-SNP genome-wide association study
The single-SNP GWAS was performed using the GenABEL R package
(Aulchenko et al. 2007) by applying the mmscore function (Chen and
Abecasis 2007), which accounts for the relatedness between individuals
applied through the genomic kinship matrix. Significance thresholds
were calculated using a Bonferroni correction where genome-wide sig-
nificance was defined as 0.05 divided by number of independently
segregating SNPs (Duggal et al. 2008) and suggestive as one false pos-
itive per genome scan (1/number of independently segregating SNPs).
The number of independently segregating SNPs was calculated using
Plink v.1.9 (Chang et al. 2015) accounting for linkage disequilibrium
among the consecutive SNPs. SNPs showing r2 values . 0.9 were
considered linked.

Regional heritability mapping
A regional heritability mapping (RHM) analysis (Nagamine et al. 2012;
Uemoto et al. 2013) was performed where the genome was divided into
overlapping regions consisting of 20 sequential SNPs and overlapping
by 10 SNPs using Dissect v.1.12.0 (Canela-Xandri et al. 2015). The
significance of the regional heritability for each window was evaluated
using a log likelihood ratio test statistic (LRT) comparing the global
model fitting all markers with the model only fitting SNPs in a specific
genomic region (File S4). These windows overlap and therefore the
significance threshold was determined using a Bonferroni correction
using half the number of tested windows.

Genomic prediction
The accuracy of genomic selection was estimated by five replicates of
fivefold cross-validation analysis (training set 80%, validation set 20%).
The phenotypes recorded in the validationpopulationweremasked and
breeding valueswere estimated usingASReml 3.0 using the linearmixed
model described above. Prediction accuracy was calculated as the
correlation between the predicted EBVs of the validation set and the
actualphenotypesdividedby the square root of theheritability estimated
in the validation population [� r(y1 , y2) / 2Oh2 ]. Genomic best linear
unbiased prediction (GBLUP) was applied to predict the masked phe-
notypes of the validation sets and the resulting prediction accuracy was
compared to that of pedigree-based BLUP (PBLUP). The bias of the
EBVs was estimated as the regression coefficient of the phenotypes on
the predicted EBVs. Since medium-density SNP array genotyping can
be expensive, we also evalutated the impact of reduced SNP density on
prediction accuracy by using subsets of the SNP data for the GBLUP.
To choose the SNPs for the (pseudo) low density panels we tried two
different strategies: 1) we progressively increased the minimum allele
frequency threshold in increments of 0.05 (maf, 0.05, 0.10, 0.15, . . .)
resulting in genotype datasets with progresively lower SNP density and
progressively higher MAF; and 2) we iteratively removed the SNP
showing the lowest mean distance to the previous and the next SNP
on the genome, resulting in datasets of evenly spaced genotypes.

Data availability
Primers and probes to perform amoebic load estimation by qPCR are
provided in Table S1. Phenotypic data of the fish used in this study is
available in File S1. Note that gill scores correspond to an experimental

n Table 1 Gill score description

Gill score Level of infection Description

0 Clear Healthy red gills,
no gross sign of infection.

1 Very
light

One white spot, light scarring
or undefined necrotic streaking

2 Light 2-3 spots/small mucus patch
3 Moderate Established thickened mucus

patches or spot groupings
up to 20% of the total gill area

4 Advanced Established lesions covering
up to 50% of gill area

5 Heavy Extensive lesions covering
most of the gill surface

n Table 2 Heritability estimates for the AGD resistance traits

Pedigree gMatrix

Mean gill score 0.25 6 0.06 0.24 6 0.04
Amoebic load 0.36 6 0.07 0.25 6 0.04
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challenge, gill scores higher than 0.5-1 are rarely encountered in Land-
catch commercial facilities. Markers included in the SNP array and
their position in the Atlantic salmon genome can be found in File S2.
Genotypes of the fish used in this study are available in File S3. The
regional heritability mapping model is detailed in File S4.

RESULTS AND DISCUSSION
The means and standard deviations for AGD resistance traits were
2.796 0.85 and 31.366 3.24 for the gill score and qPCR amoebic load,
respectively. Moderate heritability estimates were observed for both
phenotypes, which ranged between 0.25 and 0.36 (Table 2), and both

Figure 1 GWAS for resistance to AGD. Single-SNP GWAS results for A) mean gill score and B) amoebic load are shown. Horizontal bars represent
Bonferroni corrected significance (red) and nominal signifcance (black).

n Table 3 Top single-SNP GWAS markers for AGD resistance

Mean gill score Amoebic load

Chr. Position Explained gen. var. (%) p-val Chr. Position Explained gen. var. (%) p-val

18 9,010,507 4.81 1.37E-04 16 87,305,577 4.40 1.03E-04
18 61,003,989 4.05 2.28E-04 18 61,003,989 4.17 1.37E-04
18 59,141,833 4.13 2.59E-04 18 59,141,833 4.21 1.67E-04
22 29,458,040 3.89 3.07E-04 17 17,603,968 3.98 3.30E-04
6 20,420,312 3.76 3.93E-04 18 9,010,507 3.82 5.30E-04

26 22,182,178 3.21 1.03E-03 26 22,182,178 3.41 5.60E-04
9 65,305,177 3.16 1.13E-03 18 11,619,560 3.20 8.43E-04

18 54,225,069 3.14 1.17E-03 17 31,447,688 3.19 1.03E-03
14 85,642,477 3.14 1.18E-03 25 37,782,067 3.05 1.10E-03
18 9,896,346 3.08 1.30E-03 12 31,597,392 3.06 1.13E-03
7 46,569,758 3.32 1.37E-03 8 13,396,576 3.17 1.14E-03

16 87,305,577 3.10 1.40E-03 18 13,403,715 2.99 1.39E-03
12 31,597,392 3.04 1.45E-03 8 49,527,638 2.85 1.63E-03
3 82,689,281 3.04 1.46E-03 15 49,527,638 2.79 1.82E-03

26 14,842,966 3.08 1.47E-03 6 83815992 2.77 1.88E-03

Chr.: chromosome; gen. var.: genetic variance.
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the phenotypic and genetic correlations between the two traits were
high and positive (0.81 and �1 respectively).

A previous study on AGD disease resistance within the Tasmanian
Atlantic salmon population found similar heritability estimates, ranging
from 0.16 for gross gill score (similar tomean gill score here) to 0.35 for

digital image gill score (Taylor et al. 2007). Higher heritability estimates
were obtained in the study of Taylor et al. (2009), which varied from
0.23 to 0.48 for mean gill score depending on the number of rounds of
re-infection. The highest heritability, 0.48, corresponded to the third
challenge trial after two rounds of infection and subsequent freshwater

Figure 2 Regional heritability mapping for AGD re-
sistance. Regional heritability mapping results for mean
gill score and amoebic load are shown. A) and C)
represent the log-ratio test values for each tested region
(20 consecutive SNPs) for mean gill score and amoebic
load respectively, horizontal bars represent Bonferroni
corrected significance (red) and nominal significance
(black). B) and D) represent the percentage of additive
genetic variance explained by each region for mean gill
score and amoebic load repectively.
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treatment, as in our study. This challenge model is based on results
from Taylor et al. (2009) which showed that the gill scores from
the third challenge is the most accurate predictor of ultimate sur-
vival, potentially implying genetic variation in the adaptive immune
response.

Similar heritability estimates were obtained for host resistance to sea
lice; �0.2 to 0.3 for the North Atlantic sea louse (Lepeophtheirus sal-
monis; Kolstad et al. 2005; Gjerde et al. 2011; Gharbi et al. 2015; Tsai
et al. 2016), and 0.1-0.3 for the Pacific sea louse (Caligus rogercresseyi;
Lhorente et al. 2012; Yáñez et al. 2014a; Correa et al. 2017a). Similarly,
the heritability of resistance to Gyrodactylus salaris, another ectopara-
site mainly affecting wild Atlantic salmon, was estimated to be 0.32
(Salte et al. 2010). These heritabilities are comparable to estimates for
host resistance to bacterial and viral infections (Ødegård et al. 2011;
Yáñez et al. 2014b), and imply that selective breeding for improved
resistance to parasites in salmon is a plausible goal.

Single-SNP genome-wide association analysis and
regional heritability mapping
The single-SNPGWAS revealed nomajorQTL regions that reached the
genome-wide significance threshold for gill score or amoebic load
(Figure 1). However, there were two suggestive QTL identified for both
traits on chromosome 18, seemingly located in two non-overlapping
regions around 9-12 Mb and 54-61 Mb respectively, each explaining
�4% of the additive genetic variance (Table 3). The most significant
SNP for amoebic load was observed at the distal end of chromosome 16.
There were other genomic regions that either reach suggestive signif-
icance but only for one of the traits (i.e., distal end of chromosome 16)
or are close (chromosomes 6, 17 or 22), and these could also be QTL of
moderate effect (�3–4% of the additive genetic variance, Table 3) that
might have been significant with a larger sample size.

The QTL identified by regional heritability mapping (RHM) were
consistent with the results of the single-SNPGWAS,with two regions in
chromosome 18 showing the highest significance for both mean gill
score and amoebic load (Figure 2). These regions explained between 9.5
and 11.6% of the genetic variance respectively, and contained the most
significant SNPs detected by the single-SNP GWAS. Another region in
chromosome 18 between 25 and 42 Mb explained �20% of the heri-
tability, but its significance was lower. The SNPs in this large region
between the two putative QTL may be picking up on effects arising
from either or both of the flanking regions due to linkage disequilib-
rium. Further, regions in chromosomes 17, 25 and 26 almost reached
nominal significance for amoebic load, explaining.10% of the genetic
variance. The most important discrepancy is in the distal region of
chromosome 16, which shows no significant association in RHM but
held the most significant marker in the amoebic load single-SNP
GWAS. This difference might be explained by the high recombination
rates found in the extremes of the chromosomes in Atlantic salmon
(e.g., Tsai et al. 2016a); the significant SNP was the penultimate marker
in chromosome 16. RHM uses information from several consecutive
markers, and has been shown to have an advantage over single-SNP
GWAS to explain part of the typical missing heritability of single-SNP
association studies and to detect QTL of small effects which otherwise

would not be detected using information from single SNPs (Nagamine
et al. 2012, Uemoto et al. 2013, Riggio and Pong-Wong 2014; Shirali
et al. 2016).

Our results point toward a polygenic architecture of resistance to
AGD, but potentially including a fewQTL explainingmoderate levels of
the genetic variation. Genotyping additional AGD-challenged and
phenotyped samples would help provide evidence in support or against
the existance of theseQTL. Further, a higher SNPdensity could possibly
identify additional QTL not in linkage disequilibrium with the SNPs in
this study, help tofinemap the ones reportedhere, and possibly increase
the estimates of genetic variation explained by the QTL.

While a fewmajordisease resistance locihavebeendescribed, suchas
for viral infectiouspancreatic necrosis inAtlantic salmon (Houston et al.
2008, Moen et al. 2009), the majority of disease resistance traits for
aquaculture species are polygenic in nature (Houston 2017). Polygenic
architecture has been observed for host resistance to sea lice (Tsai et al.
2016) and Piscirickettsia salmonis (Correa et al. 2015) in Atlantic
salmon, pasteurellosis in gilthead sea bream (Palaiokostas et al. 2016)
and Gyridactylus salaris in salmon (Gilbey et al. 2006). Other examples
of putative major QTL include whirling disease in rainbow trout,
caused by the myxosporean parasite Myxobolus cerebralis, which ex-
plains up to 86% of phenotypic variance depending on the family
(Baerwald et al. 2011), bacterial cold water disease in trout where 27–
61% of the genetic variation is explained by major QTL depending on
the line (Vallejo et al. 2017), and Pancreas Disease in Atlantic salmon
where approximately 20% of the genetic variation is explained by the
largest QTL (Gonen et al. 2015). While resistance to parasitic disease
does tend to show a polygenic architecture, and AGD is no exception,
the putative QTL region(s) of moderate effect identified merit
validation tests in independent populations, and functional genomic
and resequencing studies to identify putative underlying genes and
mechanisms.

Genomic selection accuracy
Using a fivefold cross-validation analysis, the prediction accuracy with
the genomic relationship (G) matrix was �18% higher than with the
pedigree (A) matrix for both mean gill score and amoebic load, and
GBLUP predictions showed practically no bias (Table 4). Prediction
accuracies obtained for amoebic load measured by qPCR were �20%
higher than those of mean gill score, which may be due to the wider
range of the amoebic load trait. Taylor et al. (2007) found that gill
damage scores obtained using image analysis or histopathology showed
high positive genetic correlation, but correlation between these traits
and gill score was lower. The prediction accuracy results from the
current study suggest genomic selection will significantly outperform
pedigree-based selection for AGD resistance, and that both gill score
and qPCR measures of amoebic load are useful traits for selection for
AGD resistance.

Sincegenotypingwithmediumorhigh-density SNParrays is relatively
expensive, and aquaculture species tend to have closely related animals in
training and validation populations (e.g., in ‘sib testing’ schemes), well
designed low density genotyping panels may be useful in genomic selec-
tion. When SNP density was reduced either via progressive increase in
MAF thresholds or selecting evenly-spaced sets of markers, accuracy
remained relatively stable until 1,808 SNPs where a gradual drop off in
accuracy was observed (Figure 3). However, even at very low SNPdensity
of 435 SNPs the accuracy of prediction was higher using GBLUP than
PBLUP, except forAmoebic load estimated using the evenly spaced SNPs
which resulted in an accuracy similar to that of PBLUP.

The results for genomic prediction of breeding values are generally
consistent with published observations for aquaculture species to date.

n Table 4 Accuracy and bias of genomic selection

Pedigree gMatrix

Accuracy Bias Accuracy Bias

Mean gill score 0.51 0.90 0.62 1.00
Amoebic load 0.60 0.88 0.70 0.99
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For host ressitance to sea lice, marked gains in accuracy were observed,
from 10 to 52% depending on the population studied (Ødegard et al.
2014; Tsai et al. 2016); and recently different genomic selection models
(ssGBLUP, wssGBLUP, BayesB) have been shown to almost double the
prediction accuracy for bacterial cold water disease in rainbow trout
compared to pedigree-based estimates (Vallejo et al. 2017). Interest-
ingly, both studies on host resistance to sea lice in salmon showed
practically no improvement in prediction accuracy when SNP density
was increased above 5K (Ødegard et al. 2014; Tsai et al. 2016). As
shown in the current study, genomic prediction accuracy is higher
compared to pedigree-based prediction even when we use very low
density genotyping (a few hundred SNPs). This is somewhat surprising
given the size of the salmon genome (�3 Gb, Lien et al. 2016), but
probably reflects the close relationship between the training set and the
reference set in the cross validation design – i.e., full and half siblings
will occur in both sets. The high accuracy with lowmarker density may
also reflect aspects of the salmon population history, for example rel-
atively low effective population size and past admixture may be
expected to result in long-range LD and thismay increase the predictive
ability of a sparse SNP marker set.

Genotyping costs can be an important hurdle for the application
of genomic selection, especially for small companies and breeding
programs. For example, in mass spawning species that require
genotyping to ascertain the pedigree, genomic selection could
potentially be applied without a major genotyping cost increase.

Further, this can be combined with genotyping strategies and im-
putation to improve cost-effectiveness, e.g., Tsai et al. (2017) showed
that imputation from 250 SNPs to �25K led to an improvement in
prediction accuracy of 21% compared to pedigree prediction. Such
strategies may increase cost-effectiveness and therefore uptake of
genomic selection in aquaculture breeding, with beneficial impact
on disease resistance and control.

Conclusions
Host resistance to AGD in Atlantic salmon is moderately heritable (h2

�0.25 - 0.30) and can be measured using indicator traits such as gill
score or amoebic load measured by qPCR. The genetic architecture of
AGD resistance appears to be polygenic, but with two suggestive QTL
explaining up to 11% of the genetic variance on chromosome 18, and
other non-significant regions in other chromosomes accounting for a
similar amount of variance. These possible QTL should be tested in
independent populations, and may form the basis for identification of
underlying causative genes. Genomic prediction accuracy was substan-
tially higher (�18%) when using genomic relationships rather than
pedigree-based relationships with a �7K SNP panel, and remained
so even when marker density substantially reduced. Since AGD is a
large threat for salmon aquaculture in most major salmon production
countries, genomic selection is likely to be an important component of
breeding programs to help tackle this disease via genetic improvement
of host resistance.

Figure 3 Prediction accuracy for different SNP densities. Accuracy of genomic prediction (GBLUP) for mean gill score and amoebic load with
different SNP densities, selected based on their minimum allele frequencies (MAF) or their position in the genome so the markers are evenly
spaced (Spaced). Horizontal lines indicate the accuracy of pedigree selection. X-axis figures represent MAF values and number of SNPs (in
parenthesis).
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