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To address surface reaction network complexity
using scaling relations machine learning
and DFT calculations
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Surface reaction networks involving hydrocarbons exhibit enormous complexity with

thousands of species and reactions for all but the very simplest of chemistries. We present a

framework for optimization under uncertainty for heterogeneous catalysis reaction networks

using surrogate models that are trained on the fly. The surrogate model is constructed by

teaching a Gaussian process adsorption energies based on group additivity fingerprints,

combined with transition-state scaling relations and a simple classifier for determining the

rate-limiting step. The surrogate model is iteratively used to predict the most important

reaction step to be calculated explicitly with computationally demanding electronic structure

theory. Applying these methods to the reaction of syngas on rhodium(111), we identify the

most likely reaction mechanism. Propagating uncertainty throughout this process yields the

likelihood that the final mechanism is complete given measurements on only a subset of the

entire network and uncertainty in the underlying density functional theory calculations.
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R
eaction network complexity limits the understanding and
modelling of experimental behaviour in combustion,
metabolic engineering and catalysis, among other fields.

The sheer number of possible intermediates leads to reaction
networks with hundreds or thousands of species, thousands of
reactions and an exponential number of possible pathways and
mechanisms to be considered. In all of these fields, studying
individual reactions is a costly and time-consuming process. For
direct hydrocarbon reactions in combustion and catalysis, density
functional theory (DFT) allows for estimation of kinetic reaction
parameters with a reasonable degree of accuracy, but at
significant computational cost. In metabolic engineering, there
is no straightforward method to estimate accurately enzyme
kinetics, and most kinetic parameters are derived from experi-
mental studies. Identifying the right reactions to focus computa-
tional and experimental resources on is thus of paramount
importance. This problem is especially difficult in catalysis since
the reaction network varies greatly across different catalyst
surfaces and active sites, and thus the precise mechanism must be
reidentified for every catalyst, as illustrated in Fig. 1 for the
reaction of syngas over Rh(111). This process is a fundamental
limitation to the design of new catalysts and introduces error in
the interpretation of experimental data if the wrong mechanism is
derived.

The overwhelming complexity of reaction networks can be
addressed with the insight that most of the network has little
impact on the final results and can thus be treated with less
accurate surrogate models. The most important properties
of these reaction networks, the kinetic parameters of the
rate-limiting step, exhibit little sensitivity to the majority of
the reaction network. Model refinement should focus on the
most important reactions. This approach is fundamentally similar
to insights from sloppy modelling in the systems biology

community, where sensitivity analyses show that refinement in
some model parameters will have a limited impact on key system
observables1 and allowing low-quality estimates to be used. Using
surrogate models as a guide for full-accuracy electronic structure
calculations allows for a rapid exploration of new reaction
networks. Similar approaches are used in related fields. The
combustion literature has developed approaches to automate the
study and reduction of gas-phase kinetics using group additivity
energetics and automated semiempirical quantum mechanical
calculations2. Metabolic engineering has also begun to focus
on reaction mechanism reduction techniques, now that well-
annotated genome-wide data sets are available3. In heterogeneous
catalysis, it is widely accepted that adsorption energetics for
various species are fundamentally related on the same surface and
change in predictable fashions when moving to other surfaces,
resulting in broadly applicable linear scaling relations4. There has
also been success in applying detailed group-additivity
approaches to the study of large reaction networks5–10 and
identifying the impact of uncertainty on these processes11,12.
Previous work has also used precalculated semiempirical models
to aid in model reduction13. As these methods have become
increasingly accurate they have focused on developing
approximations that can completely predict the properties of a
reaction network but with increased complexity and cost.

This work takes a markedly different approach and is
distinguished by two key insights. First, we cast the problem of
surface reaction mechanism elucidation in a fully probabilistic
framework, starting for a surface for which no mechanism or
surface energetics are available. This approach provides a route to
bootstrap to a mechanism of optimal complexity rather than
relying on intuition or expensive comprehensive analysis.
Tracking the uncertainty at various levels of approximation
enables the use of low accuracy methods for most of the reaction
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Figure 1 | The challenge of reaction network complexity in catalyst discovery. (a) Reaction network for the reaction of syngas (COþH2) to CO2, water,

methane, methanol, acetaldehyde and ethanol, including surface-adsorbed intermediates with up two carbons and two oxygens (C1/C2 chemistries). Even

for this reduced network, there are hundreds of reactions and thousands of possible mechanisms to consider for each new catalyst active site, which are

prohibitively expensive for materials discovery screens. (b) The reduced network for syngas reactivity on Rh(1 1 1), producing acetaldehyde selectively as

confirmed by the experiment. The reduction from (a) to this subset is made more efficient and uses far fewer full-accuracy DFT calculations using the

methods in this work.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14621

2 NATURE COMMUNICATIONS | 8:14621 | DOI: 10.1038/ncomms14621 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


networks and builds on the recent introduction of uncertainty-
enabled DFT calculations. Second, this approach is more
approachable to the broader chemistry community than existing
methods due to its design and simplicity. We place a large
premium on being able to quickly identify the rate-limiting steps
so that we can engineer those reactions with modifications to the
underlying catalyst without a sophisticated model. The fact that a
remarkably simple model can capture the most important
underlying physics is precisely what makes them so powerful.
In all ways, this workflow represents how a typical researcher in
our field would approach the problem of studying a new surface,
except that the intuition for choosing the next reaction to study is
replaced by simple group-additivity-based methods that are more
accurate than a human at guessing the energetics for unstudied
reactions.

In this work, we focus accurate but computationally expensive
DFT methods on the reactions that are likely to be the rate-
limiting steps in the reaction network. Properties of the rest of the
network are inferred using a surrogate model based on physics-
based approximations that have already been established for
understanding catalyst trends, such as linear scaling relations, and
the accuracy of these methods is quantified. Propagating
uncertainty at every layer of approximation allows for estimates
on the residual error in the final reaction mechanism from parts
of the reaction network that have not been studied in detail.
These methods also avoid wasting computational resources on
reactions that are part of the final reduced mechanism but not
likely to be the rate-limiting step (for example, fast hydrogenation
reactions). This process is robust to the accuracy of the
approximations used since any important reactions are studied
with full-accuracy DFT calculations and added to model training
sets. Starting from a few DFT calculations and iterating this
approach generates the most likely pathway with fewer calcula-
tions than would be necessary to study the entire network. We
demonstrate these ideas for the reaction of syngas (COþH2) on
Rh(111), a reaction that has been studied both experimentally and
computationally14, and demonstrate reductions of 60% and 95%
for the number of intermediate and transition-state calculations,
respectively. This process is demonstrated for a single set of
experimentally relevant thermal conditions (573 K, 1 atm partial
pressure of all gas-phase species) but could easily be repeated for
other conditions.

Results
General. Modelling catalyst surface chemistry is a multistep
process from understanding intermediate adsorption configura-
tions to identifying kinetic reaction barriers, as illustrated in
Fig. 2a. DFT is particularly well suited to this problem with a
favourable compromise between chemical accuracy and compu-
tational resources. Recent advances have also allowed for esti-
mates of the uncertainty in DFT calculations by using an
ensemble of parameterizations15. Typical uncertainty for the
DFT methods used in this work (estimated with the ensembles
in Bayesian error estimation functional with van der Waals
correlation (BEEF-vdW)) are B0.15 eV for surface species
formation energies16, and B0.2–0.3 eV for transition-state
formation energies (relative to gas-phase species) as indicated
in Fig. 2. At every step, we can replace DFT calculations with
approximations that draw on an existing training set of
calculations or physics-based approximations. For example, we
can use a set of DFT calculations of surface intermediate
formation energies to train a machine learning regression scheme
based on group additivity fingerprints. Although these methods
introduce additional uncertainty into predictions for unmeasured
quantities, they are sufficiently accurate to exclude parts of the

network that are clearly unfavourable. Standard methods are used
for electronic structure of surface intermediates and transition
states, as described in the Methods section and the Supple-
mentary Methods.

Parts of the reaction network that are calculated to be rate
limiting are studied with full-accuracy DFT and added to the
training set to improve predictions for the remainder of the
network, as illustrated in Fig. 2b. The process is boot-strapped
with a small number of DFT calculations that are likely to be part
of the final reaction network, such as the adsorbed species for gas-
phase reactants and products, as well as well as elemental binding
energies. Properties of full network are predicted, rate-limiting
transition states identified and studied with DFT, and these
measurements are used to improve the accuracy of future
predictions. This process can be broadly classified into a simple
mechanism enumeration scheme (described in Supplementary
Note 1), a prediction scheme for surface formation energies, a
prediction scheme for transition-state energies and a simplified
reaction model to identify rate-limiting steps.

Prediction of reaction kinetics and rate-limiting steps.
A hierarchy of predictive methods are used to provide estimates of
transition-state free energies for reaction pathways without relying
on the computationally expensive DFT-based CINEB method as
outlined in the Methods section. The key approximations are
illustrated in Fig. 2a. First, the free energy of each intermediate
species is estimated using a combination of machine learning and
group additivity methods. These intermediate species energies are
then used to calculate reaction free energies for each reaction using
stoichiometric relations. Transition-state energies are then
predicted using established linear transition-state scaling relations.
Finally, significant pathways are determined using approximations
from absolute rate theory by tracking the highest transition state in
the free energy diagram for each mechanism.

Formation of free energies of intermediate surface species were
predicted using a Gaussian process (GP) regression scheme with
group-additivity-based fingerprints as illustrated in Supple-
mentary Fig. 1, with details included in Supplementary Note 2.
Chemical structures were decomposed into a number of
fragments. The number of each type of fragment was fingerprint
from which the formation energy could be estimated. Since the
contributions of fragments to the formation energy are not
linearly independent quantities, as evidenced by the wide
applicability of linear scaling relations4, principal component
analysis was used to reduce the dimensionality of this fingerprint
to a small number of dimensions (usually about 10–15). A GP
was then trained on DFT adsorption energies. As species were
selected for study, they were added to the training set and the GP
retrained. The free energy of formation and the enthalpy of
formation were both predicted in this fashion.

Estimates of transition-state enthalpies from reaction enthal-
pies were provided with linear scaling relations. Scaling relations
between the enthalpy of reaction and enthalpic activation energy
were constructed using the CatApp database17. Two scaling
relations were constructed: one for hydrogenation reactions, and
one for all other reactions, as illustrated in Supplementary Fig. 2,
the details of which are discussed in Supplementary Note 3.
Uncertainty in the final transition-state energy due to the use of
these scaling relations was also measured and propagated to the
model refinement loop. These transition-state energies were then
used to identify the rate-limiting step in the reaction network, as
detailed in Supplementary Note 4.

Model feedback and refinement. The reaction network model
was refined at each iteration by performing DFT calculations on
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important intermediates or transition states, as illustrated in
Fig. 2b. At each iteration, the most likely reaction mechanism was
identified from above. For each transition state with at least 10%
probability of being the highest-lying transition state, the
energetics of reactants and products were measured with DFT,
providing a more accurate estimate of the reaction energy and
thus the transition-state energy. If the reactants and the products
had already been measured with DFT, the transition-state energy
was measured with the CINEB method as outlined below. If no
species or transition states were chosen for refinement, the next
most likely mechanism was chosen instead and this process
repeated. This process could be simplified if experimental
observations of the apparent transition-state energy or reaction
order were available, as these would provide constraints on which
reactions were likely to be present in the final model.

The model refinement procedure is visualized in Fig. 3 for the
determination of ethanol production mechanism on Rh(111). At
the first iteration, very few DFT intermediate energies have been
measured and the mechanism predicted by the GP is incorrect,
indicating direct scission of CO to elemental C and O. After four
iterations, the mechanism is similar except the elemental oxygen
is reacted to CO2, and the C and CO both undergo hydrogena-
tions before combination. By the ninth iteration, the correct rate-
limiting step has been identified, the scission of CHOH to CH
and OH, but there is still uncertainty in the final hydrogenations.
By the 22nd iteration, the most likely mechanism has converged
and all of the intermediate energetics in the reduced mechanism

studied with DFT. At this point, only 5% of the transition states
of the full reaction network have been calculated (all within the
final mechanism), and energetics have been calculated for only
about 40% of the intermediate species in the full reaction
network. In this case, 40% of the reaction network is still
quite modest compared to the training sets used to construct
group additivity-based models in the past5,6,11, at the cost of less
accuracy. Essentially, the very coarse group-additivity-based
model used here is sufficient to exclude clearly unimportant
parts of the reaction network, as long as full-precision DFT is
used for the remaining important regions, thus retaining full DFT
accuracy.

After the selection of the most likely pathway, model refine-
ment focuses on other pathways that are less likely to contain the
rate-limiting step. The reduced networks constructed at the 50 or
80% confidence level (that is, the confidence that the final
network contains the rate-limiting step at the set of reaction
conditions given DFT-level uncertainty) take longer to converge.
The 50% confidence level converges to the most likely mechan-
ism, while the 80% confidence level contains additional pathways
that cannot be excluded given DFT-level uncertainty.

Mechanism reduction under DFT uncertainty. Model uncer-
tainty at the DFT level limits the selection of a mechanism even
after all intermediates and transition states have been calculated
for a reaction network. Typical uncertainty in transition-state
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energies are typically 0.1–0.4 eV, as estimated using the BEEF-
vdW ensemble function. At this level of uncertainty, many
pathways through the reaction network may be competitive, as
illustrated in Fig. 4. The most likely pathway is shown in Fig. 4b
and is consistent with experimentally observed selectivity to

acetaldehyde14. The reduced mechanism is included in
Supplementary Note 5, along with the complete mechanism in
Supplementary Note 6. Including additional pathways that are
progressively less likely to contain the network rate-limiting step
increases the probability that the the actual transition state is
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present, as shown in Fig. 4d. At the 80% certainty level, shown in
Fig. 4d, water formation may also be possible. At the 90%
confidence level, a desired level of confidence for mechanism
reduction, we find that it is impossible to rule out water and
methanol as alternate products given DFT-level uncertainty.

The presence of alternate products that compose the network
at 90% confidence raises questions about the limitations of using
DFT to discriminate between competing reaction networks.
Several phenomena might contribute to this problem. First, the
uncertainty estimate from the BEEF-vdW ensemble function
could be larger than the actual DFT uncertainty. Second, in this
work we treat the uncertainty for the linear-scaling relations for
transition-state energies to be uncorrelated. However, there could
a systematic over- or underprediction for the transition-state
energies for a class of reactions that happen to represent the
limiting transition states. Testing this is only possible by
evaluating the transition state for reaction in the full network
and computationally inefficient. However, these estimates will
improve as new scaling relations are reported in literature for
specific classes of reactions.

Discussion
Estimating the probability that a given mechanism is correct,
given a number of alternative pathways, is only possible when
reasonable estimates of model uncertainty are available. For DFT

calculations, this has been a challenge, since various levels of
theory and different parameterizations can often lead to varied
predictions. The development of ensemble-based approaches to
this problem, representing uncertainty that arises from para-
meterizations of the underlying models fit to sets of experimental
data, has already helped. Further work to estimate accurately the
uncertainty in DFT calculations will have a large impact in deri-
ving bounds on model predictions for these complex networks.
We expect that this work will help remind the community that
model error can have a very significant impact on mechanism
selection, and that any single mechanism derived solely from DFT
calculations should be carefully checked given all of the (large)
sources of uncertainty.

Improving the accuracy of surrogate models in this work has a
limited benefit in improving the efficiency of network explora-
tion, due to the large separation in pathway energetics between
the most and least likely pathways. More accurate methods to
predict transition-state energies or species formation energies can
be helpful in more quickly establishing the most likely
mechanisms. However, we generally require that all species in
the final mechanism be studied with full-accuracy DFT for
verification, so the accuracy of the surrogate models does not
affect the energetics of the final pathway, inspired by surrogate-
model approaches in the systems engineering literature18. More
importantly, there is a trade off in intuition versus simplicity in
choosing surrogate models. We desire models that can lead to
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physical intuition, such as simplified linear scaling relations in an
effort to avoid an overly complex system. We have also focused
on approaches that lend themselves to augmenting the existing
workflow of computational chemistry (deriving energetics of
important pathways), rather than complicated (but more
accurate) full systems that aim to control the entire process.

The framework presented here is generalizable to multisite or
multicatalyst models as well, given our understanding of how
surface adsorption energies on different surfaces are inter-related
through linear scaling relations. Implementing this currently
requires a separate linear scaling relation for each surface species.
We believe linear scaling relations could be fitted on the fly for
reaction networks that model activity on multiple surface facets. For
example, by including elemental adsorption energies into the
fingerprint of each surface species, it may be possible to predict the
energetics for arbitrary surfaces given the correct linear scaling
relations. Further, some of the intermediate information such as the
principal component analysis mapping of molecular fragments are
probably reusable from surface to surface as they describe the
important fragments that contribute to surface formation energies.

Finally, more accurate modelling of kinetics on the surface to
choose the most interesting species to study is desirable.
Integration of these methods with existing microkinetic codes
such as CatMAP would simplify this process. We have found that
the chosen criterion (highest transition-state energy in a pathway)
has worked well for determining the rate-limiting step in the
networks presented here, likely due to the proximity of the rate-
limiting step to the beginning of the pathway. Reaction networks
with multiple competing transition states in series would likely be
better modelled using a full microkinetic approach.

Methods
Computational. All electronic structure calculations are carried out via the open-
source package Quantum ESPRESSO19. The exchange-correlation energies are
approximated using the BEEF-vdW15 functional, which uses the generalized gradient
approximation and includes a non-local van der Waals correction. All calculations are
preformed using a plane-wave basis (plane-wave cutoff of 500 eV, density-wave cutoff
of 5,000 eV) and the Brillouin zone is sampled by a Monkhorst-Pack k-point mesh20.
The lattice constant of Rh was calculated with by minimizing the energy of the
1� 1� 1 bulk unit cell (k-point sampling 12� 12� 12). The lattice constant was
determined to be 3.838 Å, which compares well with the experimental value of
3.803 Å (ref. 21). Surface calculations were conducted using a standard approach14,
but for completeness these details are also included in the Supplementary Methods.

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.
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