
Supervised Normalization of Microarrays

SUPPORTING INFORMATION
Additional Terms for Study-Specific Models
The models considered in the main text included probe-specific
adjustment variables and intensity-dependent array effects and dye
effects. There exist other technical factors that have been shown to
influence intensities in microarray data. One of the most important
of these are effects are related to the nucleotide composition of
the probe sequences (Naef and Magnasco, 2002). Early work in
the microarray analysis field demonstrated that models based on
the physical chemistry of DNA-RNA binding identified robust and
consist effects related to probe composition (Zhang et al., 2003).
Here we demonstrate how to extend the framework described in the
main text to include such effects.

Let si denote the nucleotide sequence of probe i, S consist of
the set of sequences for all probes, and guj be the function that
maps si to the uth probe sequence effect on array j. For example,
guj could describe the effect of having a given nucleotide at each
position in a 25-mer probe sequence for array j, or it could describe
the effect of probe sequence i being b bases away from the 3’ end
of its target RNA molecule. The u-th probe sequence effect can be
parameterized as either a smooth function of some variable (e.g.,
position in probe sequence) or as a scalar shift, such that for a given
j, the E[guj(si)] = 0 for any u across all of S. The model for each
probe can be written as:

yij =

dX
k=1

bikxkj +

rcX
`=1

ai`z`j +

rfX
t=1

ftj (mij)+

rgX
u=1

guj (si)+eij ,

with all terms described above or in the main text. Similarly, we can
write the model probe i data, yi, as :

yi = biX + aiZ +

rfX
t=1

f t(biX + aiZ) +

rgX
u=1

gu(si) + ei,

where gu = (gu1(si), gu2(si), ..., gun(si)). The entire data set Y can
be written as:

Y = BX + AZ +

rfX
t=1

f t(BX + AZ) +

rgX
u=1

gu(S) + E.

where all terms have been described. See Naef and Magnasco
(2002) for an example of a model to account for probe sequence
effects that easily translate to relevant guj(s).

Example Construction of Biological and Adjustment
Variables
Consider the Array Effects Plus Batch Effects simulation study in the
main text. For this simulation, X parameterizes the membership in
Group 2, while Z parameterizes both the probe intercept and batch
terms. The matrices of probe-specific biological and adjustment
variables are:

X =
ˆ

0 0 0 0 0 0 1 1 1 1 1 1
˜

Z =

»
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1 0 0 0

–
A similar construction of X and Z is possible for the main study

designs encountered with microarrays, even a two sample time
course study, for example.

Additional Details on the SNM Algorithm
Here we expand on several details and operating characteristics of
the SNM algorithm.

Importance of iteratively updating the estimated set of null probes.
All probes are estimated to be null for the first iteration of the
SNM algorithm. (A refined initial estimate can be provided if
the investigator has prior information from another experiment.)
It can be seen that this initial estimate quickly becomes more
accurate over the first several iterations of the algorithm. An
important point is that failing to adaptively update the set of
null probes leads to poor normalization. This reinforces the fact
that the relevant biological signal should be taken into account
when performing a normalization. It should be noted that some
unsupervised normalization procedures effectively treat all probes
as null probes.

As an example, we considered the Array Effects Plus Batch
Effects simulation from the main text. We fit model 3 from the
main text in two extreme cases. The first is where all probes are
estimated to be null probes and only a single iteration of the SNM
algorithm is performed. The second case is where only the true null
probes are utilized in a single iteration of the SNM algorithm. The
π0 estimates resulting from these two cases are equal to 33% and
72%, respectfully. Figure 0 presents the error associated with the
normalized data obtained from these two cases. There is a clear
relationship between the errors and the simulated biological variable
in the first case (Figure 0A), which is reflected by the biased π0

estimate of 33%. Figure 0B shows that by utilizing only the true null
probes we have removed the bias in the estimated array effects. This
example demonstrates the importance of SNM being an iterative
algorithm where the estimated set of null probes is refined and made
more accurate, with the goal to come as close to the set of true null
probes as possible.

Model for intensity-dependent effects. Within each iteration the
algorithm estimates intensity dependent effects using a linear mixed
effects model. The intensity dependent variables are parameterized
using B-spline basis functions available through the ns function
in the splines library of the R statistical software package. The
coefficients applied to the B-spline basis functions are modeled as
random effects. The remaining probe-specific adjustment variables
are included as fixed effects. Due to the large amount of data
available in most microarray studies we fit this mixed effects model
to a data matrix that summarizes the probe-specific intensities. This
matrix is formed as follows. The range of the data is split into K
equally spaced bins. Denote the kth such bin sk. The matrix of
summarized intensities is then defined asm∗kj = |sk|−1 P

i∈sk
mij ,

where i ∈ sk implies that
Pn

j=1mij/n is within the intensity range
spanned by sk. Note the dimension of this matrix is determined by
the number of bins, not the number of probes, which reduces the
computational burden associated with estimating the random effects
terms.

Adjustment variable coefficient estimation. Another noteworthy
characteristic of our algorithm pertains to estimates of the
coefficients of the adjustment variables, denoted by A. Our
algorithm is designed to produce unbiased estimates of the
biological effects BX as well as residual variation independent
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from adjustment variables and technical factors. In doing so it is
not necessary to produce unbiased estimates of the coefficients A.
It is only necessary to unbiasedly estimate the combined terms
AZ +

Prf

t=1 f t(BX + AZ) from the model Y = BX + AZ +Prf

t=1 f t(BX+AZ)+E (equation 3 in the main text), for example.
To demonstrate this we present the intensity dependent

relationship between two arrays from the same biological condition
but different batches in Figure 0C. The solid grey line captures
the relationship in the unnormalized data for these two arrays, the
solid blue line the relationship after only the intensity-dependent
array effect estimates have been removed, and the solid red line
after the simultaneously estimated intensity-dependent array effect
and batch adjustment variable have been removed. The solid black
line is the line y = 0 and indicates that the technical effects have
been removed. Notice that only removing the array effect produces
data that still contain intensity dependent effects between the two
arrays. However, the data have been rotated so that any two arrays
from different batches have this difference. Simultaneously fitting
the entire SNM model produces data with no remaining intensity
dependent effects. Taken together, this figure demonstrates that
f̂(M̂) and Â are biased, but their total quantity ÂZ + f̂(M̂) is
unbiased.
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Supp. Fig. 1. Results from simulated data with biologically relevant differential expression, batch, and array effects. The true proportion of
null probes is π0 = 0.70. (A) P -value histogram of null probes after SNM normalization. (B) P -value histogram of all probes after SNM
normalization. (C) P -value histogram of null probes after QN normalization. (D) P -value histogram of all probes after QN normalization.
(E) P -value histogram of null probes after ISN normalization. (F) P -value histogram of all probes after ISN normalization. (G) P -value
histogram of null probes after QN normalization using a model that includes a term for batch. (H) P -value histogram of all probes after QN
normalization using a model that includes a term for batch. (I) P -value histogram of null probes after ISN normalization using a model that
includes a term for batch. (J) P -value histogram of all probes after ISN normalization using a model that includes a term for batch.
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Supp. Fig. 2. Results from supervised approach used to identify study-specific variables for the vascular development study. (A) Hierarchical
clustering of samples, where the distances between samples are defined on the residuals obtained by regressing the estimated biology from
the observed, raw probe-level intensities (via Y−B̂X). The leaves are labeled according the batch for that array. (B) The relationship between
the array-specific residuals and average intensity. These figures show that biology, batch, and intensity dependent array effects all influence
the observed intensities.
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Supp. Fig. 3. Operating characteristics of the SNM algorithm. (A, B) The total error between the normalized data and the optimal data.
The black and grey colors describe the two conditions. (A) The total error after one iteration of the SNM algorithm when all probes are
estimated to be null. (B) The total error after one iteration of the SNM algorithm using only the true null probes. (C) A demonstration that
SNM accurately estimates the total quantity AZ +

Prf

t=1 f t(BX + AZ). The intensity dependent relationships between two arrays from the
same condition but different batches using the raw data (grey line), the SNM normalized data after removing the array effects (blue line), and
the SNM normalized data after removing the array and batch effects (red line). The dashed black line is the line y=0.

5


