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Abstract

Early adolescent substance use dramatically increases the risk of lifelong substance use disorder 

(SUD). An adolescent sensitive period evolved to allow the development of risk-taking traits that 

aid in survival; today these may manifest as a vulnerability to drugs of abuse. Early substance use 

interferes with ongoing neurodevelopment to induce neurobiological changes that further augment 

SUD risk. Although many individuals use drugs recreationally, only a small percentage transition 

to SUD. Current theories on the etiology of addiction can lend insights into the risk factors that 

increase vulnerability from early recreational use to addiction. Building on the work of others, we 

suggest individual risk for SUD emerges from an immature PFC combined with hyper-reactivity 

of reward salience, habit, and stress systems. Early identification of risk factors is critical to 

reducing the occurrence of SUD. We suggest preventative interventions for SUD that can be either 

tailored to individual risk profiles and/or implemented broadly, prior to the sensitive adolescent 

period, to maximize resilience to developing substance dependence. Recommendations for future 

research include a focus on the juvenile and adolescent periods as well as on sex differences to 

better understand early risk and identify the most efficacious preventions for SUD.
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1. Introduction

Adolescence is a developmental period that evolved to maximize survival and reproductive 

fitness. Adolescence is defined by the maturation of secondary sexual characteristics and the 

development of adult-like psychological and social behaviors (Bereczkei and Csanaky, 1996; 

Sisk et al., 2003; Surbey, 1998). Risk-taking and subsequent drug experimentation during 

this developmental period increases the likelihood of developing a lifelong addiction. The 

2010–2011 National Survey on Substance Use and Health reports an estimated 16.6% of 

25.1 million adolescents in the U.S. aged 12–17 drank alcohol or experimented with illicit 
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drugs for the first time (SAMHSA, 2012). This statistic represents approximately 4 million 

teenagers who are at increased risk for developing substance dependence. However, the 

teens that initiate substance use before the age of 14 years are at greatest risk for substance 

dependence (Fig. 1) and have a 34% prevalence rate of lifetime substance use (Grant, 1998; 

SAMHSA, 2015a,b). As individuals continue to mature between 13 and 21 years, the 

likelihood of lifetime substance abuse and dependence drops 4–5% for each year that 

initiation of substance use is delayed (Grant, 1998; SAMHSA, 2015a,b), further suggesting 

early drug use conveys the greatest risk. While it is probable that individuals who initiate 

substance use early have an underlying predisposition to use (Robins, 1984), individual risk 

factors can interact with a specific maturational state of vulnerability, known as a sensitive 

period, to substantially increase the risk of addiction. Here, we integrate what is known 

about adolescent development with existing theories on the etiology of SUD to inform 

prevention efforts.

Substance use disorder is characterized by drug craving and loss of control over drug 

consumption, including inordinate amounts of time spent pursuing or using the drug and 

continued use despite negative consequences. Consequences of SUD involve a failure to 

fulfill work, school, and home obligations, and the development of social and interpersonal 

problems, physical or psychological harm, and tolerance and withdrawal symptoms (APA, 

2013; NIDA, 2014). While many adolescents experiment with drugs, the transition to 

dependence is marked by compulsive and habitual substance use (Everitt et al., 2008; 

Volkow and Fowler, 2000). In the present review we use the term addiction or substance 

dependence in reference to more severe forms of SUD, which are characterized by chronic 

drug seeking and drug use (APA, 2013; NIDA, 2014).

2. An evolutionary understanding of adolescent risk behaviors

To understand how the developing brain can become vulnerable to drugs of abuse during 

adolescence, we first turn to evolution and the adaptive role of reward and risk-related 

behaviors. Our tenet is that the adaptive adolescent strategies, which evolved for survival, 

manifest today as risk behaviors that can be commuted to substance use disorder (SUD) in 

vulnerable individuals. Adolescence is maturational period unique to mammals, during 

which time puberty occurs before peripheral and neurological growth is complete (Bogin 

and Smith, 1996). Gonadal hormones released during puberty stimulate the development of 

adult social behaviors (Bogin and Smith, 1996). The adolescent stage allows individuals to 

practice more complex physical and social skills before adulthood is reached, to increase 

survival and reproductive fitness (Bogin and Smith, 1996; Darwin, 1871).

Behaviors that emerged during adolescence to promote survival and reproduction may no 

longer be adaptive, but instead can increase an individual's likelihood to experiment with, 

use, and become dependent on drugs (Bardo et al., 1996; de Wit, 2009; Hester and Garavan, 

2004; Kreek et al., 2005; Naneix et al., 2012; Potvin et al., 2014; Vonmoos et al., 2013). For 

example, aggression and risk-taking in males can be a competitive strategy that increases 

reproductive fitness by increasing mating opportunities and genetic diversity (Gluckman and 

Hanson, 2006). Yet, data from the National Epidemiological Study of Alcohol and Related 

Conditions (a survey of n = 43,084 individuals 18 years and older) shows that violent 
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behavior increases risk of SUD 2.42-fold (Schwartz et al., 2015). Other traits, including 

hyperactivity, novelty seeking, and impulsivity were advantageous to early humans by 

promoting exploration of the environment and acquisition of resources (Bjorklund and 

Pellegrini, 2000), but are also associated with substance abuse (Belin et al., 2008; Gruber et 

al., 2014; Khurana et al., 2013; Mitchell et al., 2014; Sonntag et al., 2014; Volkow et al., 

1999).

The early-onset of puberty may represent a unique risk factor for substance abuse due to 

early initiation of adolescent risk behaviors. As a risk factor early puberty is of particular 

concern for females, who on average mature up to two years earlier than males (Tanner, 

1962). Early puberty onset is associated with earlier initiation and increased frequency of 

nicotine and alcohol use in adolescent males and females (Harrell et al., 1998; Patton et al., 

2004; Wilson et al., 1994). Today puberty occurs at increasingly earlier ages, up to 3 years 

earlier than 100 years ago (Gluckman and Hanson, 2006). Earlier onset has been attributed 

to a number of factors, including improved nutrition, lower rates of disease in childhood, 

reduced early mortality, exposure to growth hormones through cow's milk, other endocrine-

disrupting toxins (i.e., bisphenol A), genetic polymorphisms, and childhood obesity 

(Gluckman and Hanson, 2006; Parent et al., 2011; Surbey, 1998). Regardless of the cause, 

earlier-onset puberty has resulted in increasingly wider gaps between an individuals’ 

cognitive and reproductive maturity (Hawley, 2011). In some cases, interventions aimed at 

limiting factors that accelerate puberty may therefore be protective against SUD risk 

(Houben et al., 2011).

3. Advantages and limitations of animal studies

Animal models, in particular rodents, represent an opportunity to investigate the contribution 

of behavioral and biological risk factors to substance dependence. Environment, genetics, 

and neurobiology can be manipulated in laboratory animals to determine mechanistic 

contributions to individual responses to drugs of abuse (Anker and Carroll, 2010; Brenhouse 

et al., 2008; Sonntag et al., 2014; Wong and Marinelli, 2016). More broadly, behaviors 

related to substance dependence can be studied systematically using place conditioning or 

self-administration paradigms.

Limitations to animal studies exist. The relatively brief adolescent period in rodents (Spear, 

2000) enables rapid assessments (days/weeks in rodents vs. months/years in humans), but 

necessitates quick tests to study substance abuse. Place conditioning assays animals’ 

preferences for a drug-associated environment over the course of 4–12 days (Brenhouse and 

Andersen, 2008; Crawford et al., 2011; Schramm-Sapyta et al., 2009; Zakharova et al., 

2009b). However, in place conditioning drug delivery is non-contingent, i.e., drugs are 

administered by the experimenter. In contrast, self-administration paradigms allow rodents 

to respond voluntarily for drugs, allowing assessment of drug-seeking and drug-taking 

behaviors, but require weeks to months of training (Anker and Carroll, 2010; Doherty and 

Frantz, 2012; Levin et al., 2003, 2007; Perry et al., 2007; Wong et al., 2013; Wong and 

Marinelli, 2016). Drug studies in adolescent versus adult rats are reviewed further in Section 

5.2.2. Another limitation to animal studies is that non-human primates, and particularly 

rodents, do not exhibit cortical gyriification as complex as humans (Ongur and Price, 2000). 
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However, working within the constraints of animal models, drug studies can be designed to 

study discrete stages of exposure to identify sensitive periods of risk for SUD.

4. Sensitive periods of substance abuse

Sensitive periods are stages when an individual is more responsive to particular 

environmental input or can more readily acquire a behavior relative to other developmental 

stages (Knudsen, 2004). As shown in Fig. 1, early substance use (before age 14) is 

associated with the highest risk of developing SUD (Grant, 1998; SAMHSA, suggesting the 

concept of sensitive periods applies to drug addiction (Andersen, 2003, 2005). Well-known 

examples of sensitive periods in development include second language acquisition and 

musical and athletic abilities. For example, children more readily achieve fluency in a 

second language and acquire musical and athletic skills than adults (Bailey and Penhune, 

2012; Johnson and Newport, 1989; USAA, 2011). Early language and musical skill 

acquisition is associated with increased cortical grey matter density and white matter 

connectivity in the corpus callosum compared to later skill acquisition (Mechelli et al., 2004; 

Steele et al., 2013). These and other observations suggest that sensitive periods result from 

elevated plasticity in the brain (Knudsen, 2004). Repeated activation of a neural circuit 

during a sensitive period produces in long-lasting increases in the responsivity of those 

circuits to the stimulating environmental input (Knudsen, 2004). Drug use during a sensitive 

period can therefore have important long-term impact on neural development.

4.1. Evidence for sensitive periods of substance abuse in humans

Evidence indicates that drug exposure beginning in early adolescence can increase the risk 

of SUD long-term (Chambers et al., 2003; Grant, 1998). Predisposing risk factors, including 

impulsivity, exposure to early adversity, or other pre-existing conditions (such as attention 

deficit hyperactivity disorder [ADHD] and conduct disorder) may lead to early-onset drug 

use if not addressed (Enoch, 2011; Mannuzza et al., 2008; Verdejo-Garcia et al., 2008). 

However, individuals with ADHD who receive early treatment show the same age-related 

elevated rates of SUD as age-matched community controls (Mannuzza et al., 2008; 

Steinhausen and Bisgaard, 2014; Wilens et al., 2003). In other words, medication does not 

seem to increase risk of substance use when initiated early (Molina et al., 2013; Volkow and 

Swanson, 2008). While these former results have been shown in longitudinal studies, cross-

sectional studies demonstrate a different relationship between impulsivity and marijuana use, 

such that early-onset use (<16 years of age) may be associated with elevated impulsivity 

(Gruber et al., 2014). Epidemiology studies further indicate that adolescent use of alcohol, 

marijuana, and cocaine adolescent increase the risk of substance dependence (Wagner and 

Anthony, 2002). Findings such as these raise more questions—does early drug use lead to 

impulsivity? Do different drugs have different long-term effects on the brain and subsequent 

SUD vulnerability? The prospective ABCD initiative of the NIH (abcdstudy.org) will help 

answer some of these issues surrounding early drug exposure.

Disentangling the cause-and-effect of SUD from individual risk factors is difficult due to 

shared neural substrates. Adolescent networks that underlie impulsivity risk factors are the 

same as those affected by illicit drugs (Nees et al., 2012; Schneider et al., 2012; Stanger et 
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al., 2013; Whelan et al., 2012). The prefrontal cortex (PFC) does not mature fully until late 

adolescence or early adulthood (Arain et al., 2013; Barnea-Goraly et al., 2005; Durston et 

al., 2001; Giedd et al., 1999; Sowell et al., 1999; see Section 5.1), and is pivotal for 

underlying SUD risk. Substance use during adolescence can induce changes in PFC activity 

and PFC projections to subcortical regions that persist in adulthood (Squeglia et al., 2009). 

Brain regions that are influenced by drug exposure depend on their state of maturation when 

drug exposure occurs (Andersen, 2005; Andersen and Navalta, 2011). For example, 

adolescent marijuana users show reduced cortical thickness in middle, superior frontal and 

insular cortices, but increased thickness in more posterior cortical regions such as the 

superior temporal and inferior parietal cortices, compared to non-users (Lopez-Larson et al., 

2011). Moreover, early-onset marijuana use (<16 years) is associated with reduced white 

matter fiber tract integrity in the corpus callosum compared to later-onset marijuana use 

(>16 years; Gruber et al., 2014).

4.2. Evidence for sensitive periods of substance abuse in animals

Animal studies have demonstrated that timing of drug exposure matters. Periods of increased 

vulnerability to stimulant use are evident in rodent models as further evidence for a sensitive 

adolescent period to substance abuse (Adriani et al., 2004; Baskin et al., 2015; Brandon et 

al., 2001, 2003; Harvey et al., 2011; Jordan et al., 2014, 2016; Kuhn, 2015; Ruedi-Bettschen 

et al., 2006; Schramm-Sapyta et al., 2009; Smith, 2003; Wong et al., 2013). For example, in 

animal models of ADHD, which is often comorbid with SUD in humans (Mannuzza et al., 

2008; Steinhausen and Bisgaard, 2014), treatment with stimulant drugs during adolescence 

(post-natal days [P] 28–55) enhanced the rate to acquire cocaine self-administration, and 

increases the efficacy and motivating influence of cocaine reinforcement (Baskin et al., 

2015; Harvey et al., 2011; Jordan et al., 2014). Gulley and Juraska (2013) provide further 

review on the long-term effects of adolescent drug exposure.

One mechanism by which adolescent drug exposure may increase the risk of SUD is by 

altering the developmental trajectory of the PFC and its connections with subcortical 

regions. In rodents, cocaine exposure in adolescence, but not adulthood, produces a long-

lasting attenuation of medial PFC (mPFC) GABAergic activity and parvalbumin cell 

expression that remains evident in adulthood (Cass et al., 2013). Moreover, binge-like 

alcohol exposure in adolescent rats reduces adult hippocampus, thalamus, dorsal striatum 

(STR), and cortex volumes compared to littermate controls (Gass et al., 2014; see Gulley 

and Juraska, 2013 for further review). Taken together, evidence from both humans and 

rodents indicates that substance use during the sensitive adolescent period can further 

exacerbate vulnerability to developing SUD, with long-term impact on cortical and 

subcortical development.

4.3. Prevention measures: promoting invulnerability to substance abuse

With respect to substance abuse and dependence, an individual may also experience periods 

of relative invulnerability to the long-term effects of drugs, such as during the juvenile or 

prepubertal periods (Andersen, 2003, 2005; Stanis and Andersen, 2014). Studies both in 

humans (Biederman et al., 1999; Mannuzza et al., 2008; Wilens et al., 2003) and in rodents 

(Adriani et al., 2006b; Andersen et al., 2002a; Bolanos et al., 2003; Carlezon et al., 2003; 
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Thanos et al., 2007) suggest that childhood or prepubertal exposure to stimulants reduces the 

rewarding properties of drugs of abuse and may protect against SUD later in life. In pre-

pubertal children stimulants do not produce rewarding effects (Rapoport et al., 1978). 

Moreover, in pre-pubertal children exposure to methylphenidate produces an enduring 

increase in methylphenidate-stimulated blood flow in the STR and thalamus, with no 

significant change observed in adult-exposed subjects (Schrantee et al., 2016). Similar brain 

changes were evident in rodent males that were exposed pre-pubertally (P20-35) to 

methylphenidate (Andersen et al., 2008a). Under these drug exposure conditions, exposure 

to methylphenidate induced aversions to cocaine-associated environments in a place 

preference paradigm that is evident in adulthood (Andersen et al., 2002a; Carlezon et al., 

2003, but see Crawford et al., 2011). In animals, pre-pubertally established ‘aversions’ to 

cocaine manifest as a deactivation of the amygdala in response to cocaine-conditioned odors 

(Lowen et al., 2015; discussed further in Section 5.2). Exposure to psychostimulants may 

also affect brain morphometry in regions relevant for SUD. In a longitudinal study of 

cerebral cortex thickness, psychostimulant treatment normalized the ADHD-associated 

excess cortical thinning during adolescence (Shaw et al., 2007, 2009; van der Marel et al., 

2014). Age-dependent effects of methylphenidate treatment on brain morphometry in 

animals depend on the age of exposure, with a greater impact on corpus callosum white 

matter and striatal volume following adolescent exposure compared to adults (van der Marel 

et al., 2014). Together, these data suggest that there is a pre-pubertal window of 

invulnerability to stimulants, and exposure to stimulants during this window may be 

protective against the rewarding effects of drugs later in life.

The juvenile period may represent an opportunity to institute preventative interventions for 

SUD. Pharmacotherapeutic interventions, such as pre-pubertal methylphenidate exposure, 

can reduce the rewarding properties of drugs later in life (Adriani et al., 2006a; Andersen et 

al., 2002a; Brenhouse et al., 2009; Carlezon et al., 2003; Thanos et al., 2007). However, 

caution must be exercised as pharmacotherapies are not without side effects, and variables 

such as age, sex and duration of treatment can negatively impact SUD vulnerability (Baskin 

et al., 2015; Brandon et al., 2001, 2003; Brenhouse et al., 2009; Harvey et al., 2011; Jordan 

et al., 2014; Lambert and Hartsough, 1998; Steinhausen and Bisgaard, 2014). In particular, 

there is a greater need for research in females. Preclinical research suggests that females 

experience different long-term effects following pre-pubertal (Brenhouse et al., 2009), 

pubertal, or even adult exposure to drugs (Dow-Edwards, 2010).

In contrast to pharmacotherapies, behavioral interventions can be broadly applied to young 

populations with little concern for side effects, and can also be combined with medication to 

further increase efficacy. We propose that the prevailing theories of the etiology of SUD can 

inform effective interventions for at-risk individuals. Below we review four SUD theories 

and suggest behavioral interventions (Table 1) that can be implemented alone or in 

combination to address specific risk factors for the transition to substance dependence.

5. Etiology of substance abuse and relevance to adolescence

Nearly 8000 teenagers initiate substance use each day (SAMHSA, 2015a), but only 5–14% 

of those who try drugs develop SUD (Fig. 1; SAMHSA, 2008), suggesting early risk factors 
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interact with the sensitive adolescent period to mediate the transition from substance use to 

dependence. Currently prevailing theories on the etiology of SUD conceptualize addiction as 

1) an executive function/inhibitory control deficit (e.g., Goldstein and Volkow, 2011; Hester 

et al., 2010), 2) increased incentive salience attributed to drug-related stimuli (Robinson and 

Berridge, 1993a), 3) a compulsive habit (Everitt et al., 2008), and 4) a hyperactive stress 

system and removal of negative reinforcement (Koob and Le Moal, 2001). Building on the 

work of others, we suggest that early risk for SUD emerges from an immature prefrontal 

control system (Casey et al., 2008; Galvan et al., 2006), combined with hyper-reactivity of 

reward salience (Brenhouse et al., 2008; Casey and Jones, 2010; Ernst et al., 2005; Galvan, 

2010; Somerville et al., 2011), habit, and stress systems (Andersen and Teicher, 2008; 

Newcomb and Harlow, 1986; Sinha, 2008; Wills, 1986).

5.1. Executive immaturity in adolescence

Substance use disorder is thought to arise in part from a reduced ability to inhibit or control 

the desire to pursue the rewarding effects of drugs, known as an executive function deficit 

(Hester et al., 2010). Brain regions associated with executive function include the 

dorsolateral PFC, the dorsomedial PFC (Curtis and D'Esposito, 2003), the pre-

supplementary motor area (Lau et al., 2006) and the ventrolateral PFC (Ridderinkhof et al., 

2004; Fig. 2). In the adult brain, the PFC plays an important inhibitory role on subcortical 

reward and motivational systems (Arnsten and Rubia, 2012; Tekin and Cummings, 2002), 

including interactions with the striatum (STR) and subthalamic nucleus (STN; Diamond, 

2013; Fig. 2).

5.1.1. Evidence from humans—In drug-abusing and addicted adults, subregions of the 

PFC are hyper-reactive to environmental cues associated with substance use, but hypo-

reactive during inhibitory control tasks (Goldstein and Volkow, 2011). With executive 

dysfunction as a framework for SUD, adolescence represents a developmentally sensitive 

period of heightened reactivity to drugs of abuse and the transition to addiction (Peeters et 

al., 2015). The frontal cortex does not complete development until the end of adolescence or 

as late as the mid-twenties (Barnea-Goraly et al., 2005; Durston et al., 2001; Giedd et al., 

1999; Sowell et al., 1999). Cognitive maturation results in improved integration between 

inhibitory networks and salience networks (Section 5.2; Marek et al., 2015) due, in large 

part, to increased myelination and connectivity between regions. For example, imaging 

studies show that white matter increases more or less linearly from childhood through early 

adulthood (Barnea-Goraly et al., 2005; Durston et al., 2001), whereas grey matter volume in 

the frontal lobe peaks in late childhood or early adolescence, and declines post-adolescence 

(Giedd et al., 1999; Sowell et al., 1999).

Functional MRI (fMRI) studies show that adolescents overall exhibit hypoactivity in the 

ventrolateral PFC, orbitofrontal cortex (OFC), and dorsal anterior cingulate cortex (ACC) 

compared to adults during decision-making tasks (Eshel et al., 2007; Galvan et al., 2006). 

These cortical regions provide top-down inhibitory control of subcortical regions, including 

the amygdala, NAc, and dorsal STR (Munakata et al., 2011). As a result of an immature 

PFC, adolescents exhibit reduced cortical inhibition and are more subject to subcortically 

driven, reward-based decision-making (Casey and Jones, 2010; Casey et al., 2011; Ernst et 
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al., 2006; Sturman and Moghaddam, 2011). The imbalance of adolescent cortical and 

subcortical systems, with predominance of mature subcortical reward-processing circuitry, 

has been conceptualized as the triadic model of motivated behavior (Ernst et al., 2006; Ernst, 

2014) and is hypothesized to play a role in adolescent risk for SUD.

5.1.2. Evidence from animals—The classic study of Goldman and Alexander was 

among the first to show that PFC development is delayed. Specifically, early cryogenic 

studies in adolescent, non-human primates show that the PFC becomes functional with 

sexual maturity (Goldman and Alexander, 1977). The development of executive function in 

animals is limited due to the complexity of behavioral tasks, which often require more 

training time than the brief adolescent period allows (Section 3). In rodents, Newman and 

McGaughy (2011) found that adolescents behave less flexibly in a attentional set-shifting 

task than adults, but were not different in the ability to learn the initial attentional set. 

Structurally, the rodent brain exhibits adolescent changes mirroring observations in humans. 

Increases in dendritic spine density in the PFC are evident through the juvenile through early 

adolescent periods, and thereafter decline (prune) from mid-adolescence to adulthood (Koss 

et al., 2014). Conversely, in subcortical structures such as the amygdala, dendritic spine 

density matures before adolescence and remains relatively stable from puberty through 

adulthood (Koss et al., 2014). Amygdalar dendritic spines, however, are sensitive to pubertal 

increases in gonadal hormones (Zehr et al., 2006). Developmental sex differences are 

described in more detail by Brenhouse and Andersen (2011). Maturational trajectories of 

other subcortical structures, such as the STR, are reviewed in subsequent sections.

5.1.3. Prevention measures: promoting executive maturity in adolescence—
Promotion of executive maturity may be an effective intervention for adolescents at risk for 

SUD (Stanger et al., 2013). A number of PFC-mediated risk behaviors are measurable in 

both human and animal models, such as in stop-signal and go/no go paradigms (Congdon et 

al., 2012; Eagle and Baunez, 2010; Smith et al., 2014), although in rodents these paradigms 

require training that extends beyond adolescence. Mindfulness-based activities like 

meditation, yoga, or practicing martial arts improve inhibitory control, sustained attention, 

and emotional regulation (Diamond and Lee, 2011; Holzel et al., 2011; Lakes and Hoyt, 

2004; Manjunath and Telles, 2001; Tang et al., 2012). These activities also increase activity, 

grey matter density, and cortical thickness in mPFC, ACC and insular cortex (Holzel et al., 

2008, 2011; Lazar et al., 2005; Tang et al., 2009, 2012). Mindfulness-based interventions 

have some success in treating SUD (Bowen et al., 2009; Witkiewitz et al., 2005; Zgierska et 

al., 2009), but there is a need for research on mindfulness as a preventative intervention in 

at-risk youth.

5.2. Incentive salience and sensitization

A second theory on the etiology of substance dependence describes a key process in 

addiction: incentive salience, or the “wanting” or motivated desire attributed by the brain to 

a rewarding stimulus in the environment (Berridge and Arnsten, 2013; Berridge, 2007, 

2009a). During the transition from substance use to dependence, greater incentive salience is 

attributed to drug-related cues than to other reinforcing environmental cues or conditions 

(e.g., food, social cues, etc). Thus, over time, motivation to pursue the drug eclipses other 
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needs and drug cues increasingly drive behavior. The salience network has been identified 

by resting state connectivity fMRI studies, and includes dorsal ACC, OFC, and insular 

cortex with their strong connectivity to subcortical and limbic structures (Seeley et al., 

2007). Other important nodes within the salience network include subcortical sites for 

emotion, home-ostatic regulation, and reward (see Fig. 2; Ongur and Price, 2000; Seeley et 

al., 2007). The amygdala in particular plays an integral role in encoding salience, and also 

maintains conditioned effects after repeated pairing of internal drug sensations with external 

environmental stimuli (Chang et al., 2012; Meil and See, 1997; Szalay et al., 2013). Over 

time, conditioned drug cues gain further salience by activating cortical sites. In turn, cortical 

sites impinge upon reward-associated regions of the NAc, which is associated with wanting 

of the drug, and the STR, which is associated with habitual drug-seeking/taking behavior.

5.2.1. Evidence from humans—Adolescence is characterized by unique patterns of 

neural activity and changes in innervation and myelination within brain regions that 

contribute to heightened incentive salience at this developmental stage (Ernst et al., 2005, 

2006; Somerville et al., 2010). In fMRI studies, OFC activation patterns in adolescents (aged 

13–17 years) more closely resemble those of children (aged 7–11 years) than adults (aged 

23–29 years; Galvan et al., 2006). In contrast, adolescent NAc responses to anticipated 

reward more closely resemble those of adults than children, although the adolescent NAc 

may be more reactive overall compared to both other age groups (Galvan et al., 2006). 

Adolescents also exhibit greater amydalar activation to fearful faces (Guyer et al., 2008; 

Yurgelun-Todd and Killgore, 2006), a region that encodes the magnitude of cue salience 

(Guyer et al., 2006).

Functional connections between amygdala and mPFC do not emerge until age 10 years, and 

continue to mature through at least through 23 years of age (Gabard-Durnam et al., 2014). 

Accordingly, adolescent males and females (ages 10–16) show reduced resting state 

connectivity in amygdala-PFC networks, and almost no coupling between the basolateral 

amygdala (BLA) and PFC compared to adults, further suggesting that cortico-amygdalar 

pathways are not yet fully developed (Alarcon et al., 2015). Adolescents may therefore be 

less able to functionally recruit regions like the NAc and amygdala during reward-based 

tasks compared to adults (Bjork et al., 2004; Ernst et al., 2005). In contrast to the 

development of cortical/subcortical connectivity, positive functional connectivity between 

the amygdala and other subcortical regions, including the NAc and dorsal STR (caudate/

putamen), is observed in childhood and remains largely stable through adulthood (Gabard-

Durnam et al., 2014). Altogether, these data further indicate that subcortical systems are 

mature or even hyper-reactive to reward salience during adolescence, while cortical systems 

require more time to develop adult patterns of activity.

5.2.2. Evidence from animals—In contrast to executive function, incentive salience can 

be readily assessed during the brief adolescent period. Adolescents attribute greater 

incentive salience to rewarding stimuli, including drug-related cues, compared to juveniles 

or adults. Adolescent rodents form preferences for environments associated with lower doses 

of cocaine than juveniles or adults (Badanich et al., 2006; Brenhouse et al., 2008; Zakharova 

et al., 2009b) are more resistant to extinction of cocaine-associated cues, and reinstate 
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cocaine place preferences to a greater degree than adults (Brenhouse et al., 2010; Brenhouse 

and Andersen, 2011). Young adolescent rodents also form place preferences for nicotine-

associated environments after a single drug-environment pairing, whereas late adolescent 

and adult rats may not form preferences even after repeated pairings (Adriani et al., 2002; 

Belluzzi et al., 2004; Vastola et al., 2002). Similarly, self-administration paradigms show 

that, compared to adults, adolescent rats acquire cocaine self-administration faster (Perry et 

al., 2007), earn more cocaine infusions, are more resistant to extinction and more readily 

reinstate cocaine seeking (Anker and Carroll, 2010; Wong et al., 2013; Wong and Marinelli, 

2016). Furthermore, adolescent male and female rats self-administer more nicotine than 

adults (Levin et al., 2003, 2007), and adolescent male rats self-administer greater amounts of 

heroin than adults (Doherty and Frantz, 2012). Together, these findings suggest that 

heightened incentive or motivational salience during adolescence contributes to important 

characteristics of substance dependence, including augmented drug seeking, extinction 

resistance, and relapse behaviors.

Developing circuitry and dopaminergic markers may help to explain heightened incentive 

salience during adolescence (Brenhouse et al., 2008; Sonntag et al., 2014). Lesion and 

inactivation studies demonstrate the importance of the NAc in encoding the initial salience 

of the primary reward-related cue, while the BLA appears necessary for maintaining 

salience encoding over time (Chang et al., 2012; Szalay et al., 2013). The attribution of 

motivational salience to drug-related cues is mediated by elevated D1 receptor expression on 

excitatory input from the PFC to the NAc (Kalivas et al., 2005; Robinson and Berridge, 

1993b; Sonntag et al., 2014). Over time, salient drug-related cues release dopamine in the 

NAc even in the absence of drug taking (Ito et al., 2002; Willuhn et al., 2010).

Altered PFC ←–→ BLA and PFC → NAc connectivity in adolescence provide additional 

mechanisms by which reward-related cues acquire heightened incentive salience, relative to 

the juvenile or adult periods. The density of axonal projections increases with age in BLA 

→ PFC (Cunningham et al., 2002, 2008) and PFC → NAc (Brenhouse et al., 2008) 

pathways until late adolescence/young adulthood. Within the BLA itself, dendritic spine 

density, length, and complexity increase locally from the juvenile period through late 

adolescence, and stabilize in adulthood (Koss et al., 2014). Dendritic density also increases 

on long-range projections from the BLA → mPFC from the juvenile period through 

adulthood (Johnson et al., 2016). Inhibitory GABAergic interneurons in the mPFC are a 

primary target of BLA projections (Cunningham et al., 2008), suggesting growing BLA → 
mPFC projections closes a sensitive period of development for the PFC. Excitatory BLA 

projections increase cortical interneuron excitation and ultimately augment PFC inhibitory 

tone, which may have downstream effects on driving NAc and other subcortical activity. 

Axonal projections from the PFC → BLA prune after adolescence (Cressman et al., 2010), 

suggesting further fine-tuning of activity.

Pharmacological changes also occur during adolescence that help to explain age differences 

in salience attribution (Brenhouse and Andersen, 2011). For example, our work (Andersen 

and Teicher, 2000; Teicher et al., 1995), and others (Tarazi et al., 1998) shows that dopamine 

receptors are transiently overproduced and pruned over the course of adolescence in a 

regional- and sex-dependent manner that seems to be independent of pubertal hormone 
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increases (Andersen et al., 1997a,b, 2002b). More specifically, dopamine D1 and D2 

receptors in the STR rise to higher levels in males than females during adolescence, and D1 

remains higher in males during adulthood despite some pruning (Andersen et al., 1997b). In 

contrast, dopamine D1 and D2 receptors in the NAc do not show this same pattern, 

suggesting NAc plasticity may be more adaptive to changing needs of the reward system 

(Teicher et al., 1995).

Dopamine receptors in the mPFC are also differentially expressed across transitions between 

childhood, adolescence, and adulthood (Andersen et al., 1997a,b; Lyss et al., 1999; Teicher 

et al., 1998). For example, D2 receptors switch from inhibitory to excitatory on parvalbumin 

interneurons in the mPFC during adolescence (Tseng and O'Donnell, 2007). Notably, 

developing signaling mechanisms are not uniform across brain regions, as initially reported 

in non-human primates (Lidow et al., 1991). Rather, signaling mechanisms within individual 

circuit develop independently. For example, we find that D1 receptors are overproduced on 

glutamatergic, but not GABAergic, neurons in the mPFC → NAc projections (Brenhouse et 

al., 2008). Elevated D1 on excitatory mPFC projection neurons is associated with increased 

drug seeking, taking, and drug-cue salience, as well as addiction-related behaviors such as 

novelty seeking, sexual activity, preferences for sweet taste, and impulsivity (Freund et al., 

2016; Nair et al., 2011; Sanchez et al., 2003; Sonntag et al., 2014). As suggested by Fig. 3, 

we predict that subjects with elevated motivational salience at an early age may be most 

vulnerable to developing SUD.

Taken together, these findings suggest that increases in PFC ←–→ BLA and PFC → NAc 

signaling and connectivity during adolescence may underlie elevated incentive salience of 

drug-related cues. We propose that theory of incentive salience helps capture the early 

phases of adolescent drug experimentation, while vulnerability to habit development 

(Section 5.3) reflects underlying risk to the transition to addiction.

5.2.3. Prevention measures: promoting ‘Selective’ salience in adolescence—
Incentive salience can be assessed on an individual basis by quantifying hedonic pleasure, 

craving and preferences for rewards and associated cues (Berridge, 2009b; Pool et al., 2016). 

Interventions recently studied in adolescents involve text messaging during periods of high 

craving to reduce nicotine consumption (Mason et al., 2015), in part by re-directing behavior 

to other salient cues. Somewhat counter-intuitively, exposure to novel experiences and 

stimuli reduces reward sensitivity and the incentive salience of reward or drug-related cues, 

and, we propose, may represent opportunities for prevention of SUD. Novelty exposure as a 

SUD prevention has not been well investigated in humans. However, exposure to enriched 

and novel environments during the juvenile and adolescent periods in animals reduces the 

rewarding effects of drugs of abuse (El Rawas et al., 2009; Solinas et al., 2009; Zakharova et 

al., 2009a), in part by reducing incentive salience of reward-related cues (Beckmann and 

Bardo, 2012) and reactivity to novelty (Cain et al., 2006). From a signal-to-noise 

perspective, experience of novel environments and stimuli may raise the threshold of 

salience attribution, thereby reducing sensitivity to drug reward and the potential impact of 

drug-related cues in motivating behavior.
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5.3. Habit formation

An alternative theory proposes that addiction reflects a shift in the neural control of behavior 

from a goal-directed learning mechanism to a habit-based mechanism (Everitt et al., 2008). 

Goal-directed learning and decision making describes choices made based upon 

environmental input and the affective value of the expected outcome (Hogarth and Chase, 

2011; Voon et al., 2015). In contrast, habit formation maintains behaviors regardless of 

motivation or goals (Judah et al., 2013; Rothman et al., 2009), such that behaviors are 

initiated more or less “automatically” (Gardner et al., 2012). In substance users, drug 

seeking is driven initially by desire for the rewarding effects of the drug, a goal-directed 

behavior. After repeated drug pairings with the environment, drug-associated cues become 

behavioral triggers that ultimately lead to compulsive and habitual abuse. As use transitions 

to abuse, projections from limbic to associative to sensorimotor cortex gradually recruit 

involvement from the ventromedial striatum to progressively greater involvement of the 

dorsomedial to the dorsolateral striatal regions (Fig. 2; Belin and Everitt, 2008; Burton et al., 

2015; Everitt and Robbins, 2013; Gremel and Cunningham, 2008; Haber et al., 2006).

5.3.1. Evidence from humans—The habit model provides a valuable framework for 

predicting early vulnerability to the transition from substance use to dependence. Habits 

such as playing music and sports are easily formed before adolescence, when the brain 

regions underlying these skills are still maturing. However, the same concept may also apply 

to drug addiction. Habits that are physically harmful, such as excessive television viewing 

and sugar consumption, are more persistent when established at a young age (de Bruijn and 

van den Putte, 2009; Kremers et al., 2007). Although substance dependence often develops 

after age 18, as we show in Fig. 1, early substance use (<14 years; Grant and Dawson, 1998; 

SAMHSA, 2014, 2015a,b; Wagner and Anthony, 2002) is associated with the highest risk of 

developing SUD.

Early substance use may facilitate the transition to SUD due to early activation of habit-

related circuitry in the brain. The transition to SUD is mediated by a shift in neural control 

of behavior from the ventral STR (NAc) to the dorsal STR, considered the “habit region” of 

the brain (Everitt et al., 2008). In drug-dependent humans, drug cues consistently increase 

BOLD responses in the STR, BLA, VTA, PFC, hippocampus, and NAc (Grusser et al., 

2004; Jasinska et al., 2014; Lukas et al., 2013; Maas et al., 1998). In chronic substance 

abusers, drug-related cues activate and increase dopamine release in the dorsal STR 

(Garavan et al., 2000; Volkow et al., 2006), a finding associated with greater addiction 

severity (Volkow et al., 2006).

5.3.2. Evidence from animals—Animal models provide evidence of a propensity to 

habit formation and STR reactivity during adolescence. One approach to studying habit in 

animals is to examine punished responding, which models the cost of addiction by training 

rats to take drug in the presence of a small electric shock (Jonkman et al., 2012). Only ~20% 

of the rats continue to respond for drug when delivery is paired with shock, which is 

consistent with the overall percentage of individuals who are likely to develop an addiction 

(Everitt and Robbins, 2016). However, this paradigm can be difficult to implement in 

developing rodents. Other animal studies of habit formation involve over-training to respond 
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for reinforcement, which is then devalued prior to a test session (Dickinson, 1985). The term 

“devalued” refers to the removal of motivation to pursue the reinforcer; for example, if the 

subject is satiated or nauseous, it will no longer be motivated to work for food. Continued 

responding in the absence of motivation is considered outcome insensitive, or habitual. 

Adolescents are less sensitive to reward devaluation than adults (Hammerslag and Gulley, 

2014; Kendig et al., 2013; Naneix et al., 2012). Insensitivity to reward devaluation, in 

conjunction with resistance to extinction (Andrzejewski et al., 2011; Brenhouse and 

Andersen, 2008; Sturman et al., 2010), suggest an enhanced propensity to habit formation in 

adolescence. Once a habit is established, environmental cues associated with the behavior 

serve as triggers for the behavior. Augmented salience of environmental cues during 

adolescence interact with a propensity to habit formation, rendering young subjects 

increasingly vulnerable to SUD when substance use is initiated early.

Animal studies, like human studies, show an increasing role of the dorsal STR as habitual, 

compulsive substance use emerges. Tract-tracing studies reveal ascending spiral-like 

connections linking the ventromedial NAc shell and core to more dorsolateral STR 

(Averbeck et al., 2014; Burton et al., 2015; Haber et al., 2000). In the primate brain, anterior 

portions of the dorsal STR receive projections from multiple regions of the PFC, including 

the mPFC, OFC, and ACC, suggesting the dorsal STR may be a critical node for integrating 

cortical and subcortical processing (Averbeck et al., 2014). While acquisition of cocaine 

taking is associated with metabolic changes in the ventral STR, chronic, more habitual 

cocaine self-administration is associated with increasingly greater activity and dopamine 

transporter (DAT) density in the dorsal STR in adult primates (Letchworth et al., 2001; 

Porrino et al., 2004).

Functional MRI responses to drug-associated cues in adult rodents after chronic cocaine 

exposure show remarkable faithfulness to human and other primate fMRI changes, including 

elevated responses in the dorsal STR, NAc, mPFC, and insular cortex (Johnson et al., 2013; 

Liu et al., 2013). Similar changes in blood flow in response to cocaine-associated cues are 

found when a mechanism underlying salience (PFC D1 receptors; Sonntag et al., 2014) is 

increased in the PFC in young rats (Lowen et al., 2015). Like primates, repeated drug taking 

in rodents increases dopamine release in the dorsal STR in response to drug-related cues (Ito 

et al., 2002). Inhibition of the dorsolateral STR, but not the NAc, impairs cue-induced 

cocaine seeking and prevents the reinstatement of seeking after prolonged abstinence (Fuchs 

et al., 2006; See et al., 2007; Vanderschuren et al., 2005). Similarly, disrupting functional 

connectivity between the NAc and dorsolateral STR decreases cocaine-seeking maintained 

by a second-order schedule, but does not affect acquisition of self-administration (Belin and 

Everitt, 2008). Taken together, converging evidence across species implicates the dorsal STR 

as critical for the transition to habitual, compulsive substance abuse.

More studies are needed to determine the role of the dorsal STR in adolescent drug seeking. 

However, as with the other brain regions, the dorsal STR undergoes unique developmental 

changes during adolescence. Male rats exhibit a more prominent rise and decline in striatal 

dopamine D1 and D2 receptors from adolescence to adulthood than female rats, although 

adult levels of each receptor subtype are comparable in both sexes (Andersen et al., 1997b; 

Naneix et al., 2012; Teicher et al., 1995). Functional reactivity to stimulation of dopamine 
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receptors, at the cyclic AMP level, is also elevated during adolescence compared to 

adulthood (Andersen, 2002). DAT density increases in the STR from early adolescence until 

peaking in late adolescence (Moll et al., 2000), and thereafter declines through adulthood 

(Moll et al., 2000; but see Matthews et al., 2013). In parallel with DAT, dopamine 

concentrations in the dorsal STR increase through late adolescence, although they 

transiently dip at P35 in rats (Andersen and Gazzara, 1993), and then rise into adulthood 

(Naneix et al., 2012). The dorsal STR also shows increased firing during reward anticipation 

in adolescents, an effect not observed in adults (Sturman and Moghaddam, 2012). Together, 

these data suggest that ongoing development in the dorsal STR may underlie an 

vulnerability to habit formation in adolescence and the development of addiction in 

adulthood, if drugs are sampled early.

5.3.3. Prevention measures: promoting healthy habits in adolescence—An 

individual propensity to form automatic habit-guided behaviors may represent an additional 

risk factor of SUD, and can be assessed in both humans and animal models using paradigms 

such as reward devaluation, as described earlier (Dickinson, 1985; Schwabe and Wolf, 2009; 

Seger and Spiering, 2011). The risk of drug-related habits can be combated by the earlier 

formation of physically beneficial habits, particularly exercise. In individuals with SUD, 

exercise is effective in promoting abstinence and reducing relapse (Bardo and Compton, 

2015; Weinstock et al., 2008). High-school aged male and female athletes are less likely to 

use illicit drugs such as marijuana and cocaine (Ferron et al., 1999; Taliaferro et al., 2010). 

Moreover, eighth grade to high school-aged students participating in fitness consultations are 

less likely to abuse alcohol or cigarettes, even at 12-month follow-up (Werch et al., 2003, 

2005). Aerobically fit children have enhanced cognitive control and greater dorsal STR 

volumes (Chaddock et al., 2010), suggesting physical exercise has important effects on the 

“habit” region of the brain.

Similar to humans, in male and female rodents access to running wheels reduces cocaine and 

heroin seeking (Lacy et al., 2014; Ogbonmwan et al., 2015; Peterson et al., 2014; Zlebnik et 

al., 2014; Zlebnik and Carroll, 2015). Wheel running during adolescence also reduces 

concurrent nicotine consumption in male rats (females were not examined; Sanchez et al., 

2015), and concurrent cocaine consumption in female rats (males were not examined; 

Zlebnik et al., 2012). In adult rodents, aerobic exercise increases brain-derived neurotrophic 

factor (BDNF) levels in the STR (Aguiar et al., 2008; Marais et al., 2009), as well as 

phosphorylated TrkB (the BDNF receptor) and D2 receptor mRNA (Thompson et al., 2015). 

However, the protective effects of pre-pubertal exercise (prior to the sensitive adolescent 

window) in the brain require further study.

5.4. Stress reactivity and negative reinforcement

Recent evidence suggests that stress facilitates the attribution of incentive salience and the 

recruitment of habit-related circuitry during learning, which further augment vulnerability to 

addiction (Dias-Ferreira et al., 2009; Sadowski et al., 2009; Schwabe et al., 2008, 2011; 

Taylor et al., 2014). A fourth theory on the etiology SUD proposes that compulsive 

substance use critically involves negative reinforcement, or the removal of an aversive 

(physically or psychologically uncomfortable) affective state, such as stress. Over time, the 
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hedonic effects caused by drug activation of the brain's reward system are increasingly 

countered by an up-regulation of an anti-reward system (opponent-process counter-

adaptation; Koob and Le Moal, 2001). The process drives formation of a new allo-static state 

in the reward set point (i.e., an increase in what is perceived as rewarding) such that 

increasingly greater amounts of reinforcement are needed to maintain functioning, leading to 

further substance abuse and the development of SUD. Higher allo-static reward set points 

can additionally be driven by prenatal or early life stress (Hanson et al., 2016). Exposure to 

stressors may therefore represent important risk factors for the transition from early 

substance use to dependence in young individuals.

5.4.1. Evidence from humans—Stress is one of the most commonly recognized triggers 

for early substance use and dependence (Sinha, 2008; Wills, 1986; Wills et al., 1992, 2001). 

Poverty, low socioeconomic status (SES), and a family history of SUD and other psychiatric 

disorders are associated with addiction (Hawkins et al., 1992; Patrick et al., 2012; Uhl, 

2004). While the stress associated with a low SES household predicts neuropathology in 

adolescence and adulthood (McEwen and Gianaros, 2010), high SES is also linked to SUD. 

For example, low childhood SES is associated with smoking in late adolescence and young 

adulthood, but high childhood SES is associated with alcohol use, binge drinking, and 

marijuana use (Patrick et al., 2012). Adolescents and young adults from high SES may even 

be more likely to binge drink and to use marijuana or cocaine (Humensky, 2010), due in part 

to more expendable income (spending money; Bellis et al., 2007).

One contributing factor to SUD that is independent of SES is early life stress, often in the 

form of abuse, loss of a caregiver, or exposure to a natural disaster. Early life stress is 

associated with early onset substance use as well as SUD in young adulthood (Enoch, 2011). 

Adolescents with alcohol abuse or dependence are up to 21 times more likely to have a 

history of physical or sexual abuse (Clark et al., 1997; Kilpatrick et al., 2000), and drug-

dependent adolescents report significantly higher life stress than non-dependent teens 

(Duncan, 1977). Exposure to early life stress also accelerates the onset of puberty (Mendle 

et al., 2011), which may in itself be a risk factor for the transition to substance dependence 

(see Section 2).

Functional MRI studies in human adolescents show that early life stress alters activity in the 

PFC and STR, resulting in impaired cognitive control (Mueller et al., 2010). 

Correspondingly, individuals experiencing severe early deprivation show blunted ventral 

STR (NAc) activity during a reward anticipation task (Mehta et al., 2010). In addition to 

PFC → STR changes, the amygdala shows increased activity in human fMRI studies and in 

animals exposed to early life stress (recently reviewed by Callaghan et al., 2014). 

Pharmacologically, positron emission tomography (PET) studies suggest acute stress 

induces dopamine release in the ventral STR, particularly in individuals reporting low 

parental care (Pruessner et al., 2004). Early life stress thus impacts cognitive and reward-

processing circuitry, and by extension may alter an individual's response to drugs of abuse 

and risk for addiction.

5.4.2. Evidence from animals—Consistent with the allostasis model, early life stress 

increases feelings of dysphoria, anhedonia, and anxiety by dampening the reward system 
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(Matthews et al., 1999; Ruedi-Bettschen et al., 2006), suggesting an increase in the reward 

set point. In rodent models, stress in the form of maternal separation reduces responding for 

reward in an intracranial self-stimulation (ICSS) procedure (Michaels et al., 2007), and 

decreases sensitivity to the reinforcing value of cocaine (Matthews et al., 1999; Moffett et 

al., 2007; Phillips et al., 1994). As a consequence, maternally separated or neonatally 

isolated rats show enhanced cocaine and ethanol intake in adulthood (Cruz et al., 2008; Huot 

et al., 2001; Kosten et al., 2000, 2004, 2006; Moffett et al., 2006, 2007; Ploj et al., 2003), 

although these effects of separation are dependent upon the duration and precise ages at 

which pups are separated, as well as sex. For example, females show greater enhancement of 

cocaine self-administration, but no change in ethanol consumption, than males following 

early separation (Gustafsson et al., 2005; Kosten et al., 2004, 2006; Matthews et al., 1999; 

Roman et al., 2004).

In addition to increasing reward set point, early life stress may facilitate the transition from 

experimental substance use to SUD by increasing the salience of reward-related stimuli. 

Early life stress (deprivation of maternal care) enhances the salience of a rewarding food 

cues in adulthood (Lomanowska et al., 2011), which may be mediated by increased PFC D1 

receptors on projections to the NAc (Brenhouse et al., 2013). Early life stress may also 

induce a propensity towards habit formation (Schwabe and Wolf, 2011; Sinha, 2008). Both 

humans and rodents exposed to chronic stress have increased habit-guided, stimulus-

response learning over goal-directed responding (Dias-Ferreira et al., 2009; Sadowski et al., 

2009; Schwabe et al., 2008; Schwabe and Wolf, 2011), which may increase the risk of SUD 

(see Section 5.3).

Adolescence itself may be a sensitive period to the effects of stress. Stress sensitivity and the 

reactivity of the hypothalamic-pituitary-adrenal (HPA) axis, which initiates and terminates 

the body's stress response via a negative feedback loop (Koob and Le Moal, 2001; Myers et 

al., 2014), ramps up during adolescence (Romeo et al., 2016). Adolescent rats, especially 

females, are hyper-responsive to stressors and take longer to return to baseline after 

provocation (Lupien et al., 2009; Romeo and McEwen, 2006; Romeo, 2013). Behaviorally, 

rats with a maternal separation history show increased impulsive behavior and hyperactivity 

in a novel environment (Colorado et al., 2006; Marin and Planeta, 2004). Andersen and 

Teicher (2008) provide a more detailed review of the effects of early childhood stress and 

abuse as it relates to the sensitive adolescent period.

The long-term impact of stress during development may be different from that of stress in 

adults (Andersen, 2015; Fareri and Tottenham, 2016). The effects of stress depend upon the 

brain's maturational state at different developmental periods and often do not fully manifest 

until adolescence or later (Andersen and Teicher, 2004, 2008; Andersen et al., 2008b). 

Subcortical structures, with their earlier maturation, are often dysfunctional before later-

developing cortical structures (Andersen and Teicher, 2009). Neither the NAc nor the 

hippocampus, which consolidate the process of reward “liking” (Grace et al., 2007), develop 

normally following exposure to early life stress (Andersen and Teicher, 2004; Goff et al., 

2013; Teicher et al., 2006). Furthermore, a reduction in D1 receptor expression on mPFC → 
NAc projections in adolescence is observed following maternal separation (Brenhouse et al., 

2008, 2013), and may represent a depressive affect state (Freund et al., 2016). Chronic stress 
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also reduces dendritic branching and/or spine density in mPFC and dorsomedial STR 

(including the NAc; Cook and Wellman, 2004; Dias-Ferreira et al., 2009; Liston et al., 2006; 

Radley et al., 2004; Taylor et al., 2014; but see Farrell et al., 2016). In contrast, chronic 

stress increases dendritic branching in OFC and dorsolateral STR, the latter of which is 

involved in habit-driven behaviors (Dias-Ferreira et al., 2009; Taylor et al., 2014).

Taken together, these above findings indicate that chronic or early life stress alter the 

trajectory of neural development and can increase the risk of SUD (Fig. 3), potentially by 

increasing reward set points, the incentive salience of drug-related cues, and the propensity 

to form drug abuse habits. The combination of these elevated risk factors with an immature 

PFC during the sensitive adolescent period may dramatically increase an individual's 

vulnerability to the transition to substance dependence, once drugs are sampled.

5.4.3. Prevention measures: promoting emotional regulation in adolescence—
Exposure to early life stress augments the risk of initiating drug use in early adolescence and 

later transitioning to substance dependence. The National Child Traumatic Stress Network 

(2008) notes that one in four children and adolescents experience a traumatic event before 

age 16 years (Kilpatrick et al., 2003), making it imperative to identify and intervene in at-

risk subjects. Individual stress reactivity can be quantified as a risk factor for SUD by 

assessing emotional dysregulation, startle and other physiological responses, and in open-

field and elevated plus maze tests (Connor-Smith et al., 2000; Ganella and Kim, 2014; 

Kalinichev et al., 2002; Quas et al., 2014). Practices that reduce arousal and promote 

emotional regulation, such as yoga, meditation, exercise and social support can help 

counteract the effects of early life stress in pre-teens and adolescents (Biegel et al., 2009; 

Brown and Siegel, 1988; Cobb, 1976; Hostinar, 2013; White, 2012). In rodents, 

environmental enrichment during the pre-pubertal or adolescent periods (in the form of toys, 

elaborate habitats, and social housing) reverses the effects of pre-natal and post-natal early 

life stress on HPA axis function, spatial memory, social play and fear responses (Cui et al., 

2006; Francis et al., 2002; Laviola et al., 2004). Most importantly, it is critical that 

preventative interventions are implemented early in life, before the sensitive adolescent 

manifests, in order to be maximally effective.

6. Conclusions

Substance use is a substantial public health issue that is estimated to cost the U.S. over $600 

billion each year (NIDA, 2015). Given that early substance use increases the risk of SUD 

four-fold, it is imperative to identify and intervene with high-risk individuals before 

dependence develops. Adolescence represents an evolved sensitive period when the circuitry 

underlying incentive salience, habit formation and stress are uniquely vulnerable to 

hijacking by drugs of abuse, in part due to reduced cortical control and elevated drive of 

subcortical systems. Current theories on the etiology of substance dependence lend insight 

into the risk factors that render a young person vulnerable to transitioning from experimental 

substance use to substance dependence. By identifying at-risk individuals early, preventative 

interventions can be used to promote resilience to substance dependence. Additional 

research that focuses on the juvenile and adolescent period is needed to understand sex 
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differences in the risk for substance dependence and to determine the most efficacious early 

preventative interventions for SUD.
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Fig. 1. 
Early initiation of substance use increases the risk of substance abuse or dependence. 

Substance abuse or dependence among persons aged 18 or older (black bars) is plotted by 

age at first substance use for A) nicotine, B) alcohol, and C) illicit drugs (marijuana, 

cocaine/crack, heroin, hallucinogens, inhalants, non-medial prescription use, and 

methamphetamine), based on results of the 2014 National Survey on Substance use and 

Health (SAMHSA, 2015a,b). Past year initiation of each drug (gray bars) is also shown for 

each age group for comparison; this data is based on the 2013 National Survey on Substance 

use and Health (SAMHSA, 2014). Although adolescents aged 15–17 are most likely to 

experiment with drugs of abuse, initiation before age 14 is associated with the highest risk of 

developing abuse or dependence later in life.
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Fig. 2. 
Neural circuitry underlying adolescent vulnerability to substance use disorder (SUD). 

Current theories on the etiology of SUD indicate addiction results from an executive 

function deficit (A), increased incentive salience of drug-related cues (B), and the formation 

of compulsive drug habits (C). Adolescence is a sensitive period of ongoing 

neurodevelopment in which these traits are expressed even in the absence of drug taking. 

Specifically, adolescents exhibit A) poor executive control, resulting from reduced inhibitory 

control of the orbitofrontal cortex (OFC), dorsolateral PFC (DL), and anterior cingulate 

cortex (ACC), over more developed subcortical regions such as the striatum (S) and 

subthalamic nucleus (STN). Adolescents also attribute B) increased incentive salience to 

reward-related cues, due to elevated excitation in projections between the ventromedial PFC 

(VM), the ventral striatum (including the nucleus accumbens) and amygdala (A). Finally, 

adolescents are more prone to C) formation of habitual over goal-directed behaviors. Habit 

formation in adults involves a progressive recruitment (increased activation) of the VMPFC 

to the ventral striatum (pathway 1) followed by increased activity in the ACC (pathway 2), 

to the striatum (pathway 3), and motor cortex (pathway 4). In contrast, adolescents show 

evidence of direct excitatory projections between the VMPFC and dorsal striatum (S), 

providing a shortcut to the formation of habits.
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Fig. 3. 
Risk for the transition to substance use disorder (SUD). Substance use before age 14 is 

associated with the greatest risk of developing substance abuse or dependence later in life. 

However, while many individuals try drugs, only a small percentage transition to SUD. 

Individual risk factors for SUD may include heightened motivational salience of reward 

cues. Heightened incentive salience in adolescence is due to elevated dopamine D1 receptors 

on glutamatergic projections (CK-immunoreactive) from the medial prefrontal cortex 

(mPFC) to the nucleus accumbens (NAc). Subjects expressing high motivational salience/D1 

receptor levels early may be the most vulnerable to developing SUD (e.g., the grey-dotted 

juvenile in panel A). Additional risk factors include exposure to stress chronically (e.g., 

neglect, abuse, loss of a caregiver, natural disaster) or acutely during the sensitive adolescent 

period, which can interact with reward salience to further augment SUD risk in young 

subjects (panel B).
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Table 1

Summary of substance dependence etiology and relevance to adolescents.

Substance Dependence Theory Associated Risk Behaviors Predictions 
for 
Vulnerable 
Adolescents

Affected Neural Substrate(s) Preventative Interventions

Executive Dysfunction Inhibitory control, 
Sustained attention

Decreased PFC Meditation/Yoga, Martial 
Arts, Mindfulness Training

Incentive Salience Reward cue reactivity, 
Sensitivity to Reward

Increased NAc → mPFC, BLA ←–→ 
mPFC

Novelty, Enrichment

Habit Formation Automatic behaviors, 
Insensitive to devaluation

Increased Dorsal STR Exercise

Stress Reactivity Emotional dysregulation, 
Heightened startle/arousal

Increased Hypothalamus, Amygdala, 
Hippocampus, NAc, STR, 
mPFC

Yoga, Mindfulness, Social 
Support
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