
rstb.royalsocietypublishing.org
Review
Cite this article: Urrego D, Tomczak AP,

Zahed F, Stühmer W, Pardo LA. 2014

Potassium channels in cell cycle

and cell proliferation. Phil. Trans. R. Soc. B 369:

20130094.

http://dx.doi.org/10.1098/rstb.2013.0094

One contribution of 17 to a Theme Issue

‘Ion channels, transporters and cancer’.

Subject Areas:
physiology, cellular biology, biophysics,

neuroscience

Keywords:
potassium channels, proliferation, cell cycle,

cell division, cancer

Author for correspondence:
Luis A. Pardo

e-mail: pardo@em.mpg.de
& 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
Potassium channels in cell cycle
and cell proliferation

Diana Urrego1, Adam P. Tomczak1, Farrah Zahed1, Walter Stühmer2,3

and Luis A. Pardo1

1Oncophysiology Group, and 2Department of Molecular Biology of Neuronal Signals, Max Planck Institute of
Experimental Medicine, Hermann-Rein-Strasse 3, Göttingen 37075, Germany
3Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany

Normal cell-cycle progression is a crucial task for every multicellular organ-

ism, as it determines body size and shape, tissue renewal and senescence,

and is also crucial for reproduction. On the other hand, dysregulation of

the cell-cycle progression leading to uncontrolled cell proliferation is the

hallmark of cancer. Therefore, it is not surprising that it is a tightly regulated

process, with multifaceted and very complex control mechanisms. It is now

well established that one of those mechanisms relies on ion channels, and in

many cases specifically on potassium channels. Here, we summarize the

possible mechanisms underlying the importance of potassium channels in

cell-cycle control and briefly review some of the identified channels that

illustrate the multiple ways in which this group of proteins can influence

cell proliferation and modulate cell-cycle progression.

1. Introduction
Regulation of cell division is of great relevance for eukaryotes. Cells must pro-

liferate throughout ontogenesis, tissue renewal and remodelling, and to repair

damaged areas during wound healing. Defective cell-cycle checkpoints are a

common feature of cancer cells and the inactivation of cell cycle regulators deci-

des the physiological or pathological fate of stem cells. Although there are a

large number of studies on the molecular and biochemical mechanisms control-

ling the cell cycle, the bioelectrical modulation of cell-cycle progression is still

poorly understood. Kþ channels have been implicated in the control of cell-

cycle progression both through their influence on the membrane potential

and non-canonical, permeation-independent mechanisms.
2. Checkpoints and transmembrane potential regulate
cell-cycle progression

The process that produces two daughter cells from a mother cell has been divi-

ded into several phases, each with very characteristic functional properties. Cell

division in eukaryotes starts with the G1 (gap 1) phase, which separates the

previous cell division from the period of DNA synthesis (S-phase), where

chromosome replication is accomplished. This is followed by the second gap

(G2) and the mitotic (M) phase. After M phase, a cell can proceed to a new G1

phase or enter a quiescent state (termed G0) that can last for a very long time,

even for the rest of the life of the cell in the case of end-differentiated cells. The

correct progression of the cycle is guaranteed because the initiation of a late

event is strictly dependent on the successful completion of the preceding step.

In eukaryotic cells, for example, mitosis will not start until the completion of

DNA synthesis. The interdependency of events is owing to a series of surveillance

or control mechanisms termed checkpoints, which have evolved to minimize the

production and propagation of genetic inaccuracies [1,2]. The complex machinery

of cell-cycle checkpoints includes in all cases a sensor supervising the complete-

ness of a particular task and a response element triggering the next downstream
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Figure 1. Complete block of DNA synthesis, measures as [3H]thymidine incorporation in cells with fixed hyperpolarized membrane potential. Reproduced from [7]
with permission. Open circles, control; black circles, manipulation of membrane potential.
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event, which will be a process involved in the actual replication

and segregation of the DNA. For instance, the downstream

event at the onset of S phase is DNA synthesis, the downstream

event at the onset of mitosis is the assembly of the spindle and

the downstream event at the end of mitosis is chromo-

some segregation [3,4]. Thus, checkpoints are constitutive

feedback control pathways safeguarding key cell-cycle tran-

sitions G1/S, G2/M and exit from mitosis [5]. The key

components of the mechanisms coordinating the downstream

events are cyclin/cyclin-dependent kinase (CDK) comp-

lexes, which need to be expressed in a timely fashion and/or

activated to allow cell-cycle progression.

The transmembrane potential has been reported as a cellu-

lar bioelectric parameter that influences the progression

through the cell cycle [6]. The concept came from the early

experimental observation of a correlation between the resting

membrane potential and the degree of mitotic activity [7];

forcing the membrane potential of Chinese hamster ovary

cells to a fixed hyperpolarized value completely inhibited

DNA synthesis measured as [3H]thymidine incorporation,

while cycling was recovered upon release of the potential

(figure 1). Cell types with a very hyperpolarized resting poten-

tial, such as muscle cells and neurons, typically show little or no

mitotic activity. Inversely, it was reported in the early 1970s that

ouabain-induced depolarization was followed by the initiation

of DNA synthesis and subsequent mitosis in chick spinal cord

neurons [8,9]. Moreover, it has been shown that the membrane

potential is not constant during progression through the

cell cycle [10,11]. For example, the distribution of membrane

potentials in cells from the breast cancer cell line MCF-7 is

multimodal. The frequency of events at each maximum can

be shifted when experimental treatments change the distri-

bution of cells among the different phases of the cell cycle.

The results of these experiments showed a pattern of positive

correlation where the membrane potential hyperpolarizes

during the G1/S transition, there is a significant contribution

of depolarized cells towards G0/G1 and an enrichment in

hyperpolarized cells towards G2/M transition [12].
3. Kþ channels as important players in the
cell cycle

If the membrane potential is not constant along the cell cycle,

cell-cycle-dependent changes in membrane permeability are

required (figure 2). Potassium conductance governs the resting

membrane potential in both excitable and non-excitable cells.
In contrast to an action potential fired by a neuron, the potential

changes along the cell cycle are much slower, gradual and

smaller, and can be intuitively explained by modifications

in the conductance that sets the resting membrane potential.

Proliferation was one of the first identified aspects of cell physi-

ology where potassium channels play a crucial role. The early

observation that wide-spectrum potassium channel blockers

inhibit proliferation [13] has been repeatedly confirmed in

many tissues and cell types (reviewed e.g. in [6]). Many differ-

ent potassium channels show cell-cycle-dependent variations

of expression or activity [14–17].

For instance, a large conductance, voltage-gated Kþ chan-

nel is expressed in unfertilized mouse oocytes; in the first cell

cycle of fertilized oocytes, the channel is active throughout M

and G1 phases, and inactive during S and G2. Thus, changes

in channel activity set the membrane potential along the cell

cycle in the oocyte [18]. Increasing evidence shows that vol-

tage-gated potassium channels are required for proliferation

and may also help to determine the final identity and mor-

phology of the cell [19–22]. The results of experiments in

lymphocytes where the inhibition of Kþ channel activity

induces a reversible cell-cycle arrest [23,24] or experiments

where potassium channel blockers inhibit Schwann cell pro-

liferation in a dose-dependent manner [22,25,26] have been

replicated in many systems and by many approaches; data

from those experiments have been compiled already in

several reviews (e.g. [27–31]).

Direct evidence for a change in ion channel composition

in G1 phase was obtained from embryonic retinal cells,

which express mainly two membrane conductances, delayed

rectifier (IK) and inward rectifier (IKir) potassium currents

[32]. Daughters of the same parental cell examined during

and after mitosis always expressed similar IK and IKir den-

sities. However, non-sibling cells showed quantitative and

qualitative differences in IK and IKir densities. The heterogen-

eity therefore arises after cells re-enter G1, because the density

distribution of potassium channels at cytokinesis is shown to

be symmetric in both daughter cells [33].

The mechanisms controlling ion channel densities along

the cell cycle appear to be manifold. For example, Kþ channel

activity in mouse oocytes is at least partly independent of the

nuclear cell-cycle clock, because channel activity continues

to cycle in bisected embryos in the anucleate as well as the

nucleate fragments [34]. This suggests the active contribution

of the cytoplasmic cell-cycle clock, which may involve changes

induced by surface contractions and deformations before the

cleavage of daughter cells on the channel activity [34,35].
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Figure 2. Schematic of the behaviour of the membrane potential along the cell cycle. Different potassium channels show variations of expression or activity through
the cell cycle, thus shifting the membrane potential towards hyperpolarized values, close to the equilibrium potential for potassium, at the border between G1 and
S-phases.
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Thus, potassium channels are proposed to be involved in the

signal transduction elicited by cell-cycle checkpoints, and

help to elicit cell responses in the cell-cycle machinery, integrat-

ing the nuclear clock and the cytoplasmic cell-cycle clock.

Pointing towards this hypothesis, there have been reports

where Kþ channel blockers (TEA) and depolarizing agents

(veratridine) inhibit cell proliferation in oligodendrocyte pro-

genitors in cell culture and cerebellar tissue slices, inducing

G1 arrest through accumulation of p27kip1 and p21CIP1, two

CDK inhibitors known to regulate cell proliferation [36,37].
4. Importance of Kþ channels relies on both
ionic conduction and permeation-
independent mechanisms

The participation of Kþ channels in the control of cell cycle

could be an early event in evolution. The pore structure and

the selectivity filter have been conserved between the prokar-

yotic and eukaryotic Kþ channels [38], which suggests that

they evolved very early. The importance of Kþ channels in

the cell-cycle progression can also be illustrated in plant cells,

for which Kþ is a major nutrient. BY-2 tobacco cells require

an increase in the Kþ concentration in order to re-enter the

cell cycle. The elevated Kþ concentration increases the turgor

pressure, which is required for cell growth. This is achieved

by the activity of the inward rectifier Kþ uptake channels

[39]. By contrast, mitosis requires a transient decrease in

turgor pressure owing to Kþ efflux channels. In what could

be a reminiscence of this function, the role of Kþ channels in

homoeostatic cell volume regulation is well established, and

they play a role in cell volume changes along the cell cycle

[40,41]. For instance, in a subset of human medulloblastomas,

a voltage-gated Kþ channel (KV10.2) seems to be required for

the completion of mitosis, because it participates in cell

volume reduction prior to cytokinesis [21].

Kþ channels also provide the driving force required for

Ca2þ to enter the cell by shifting the membrane potential

towards negative values. Ca2þ is an important mediator of

intracellular signals implicated in the control of proliferation

among other crucial processes in cell physiology, and by keep-

ing the membrane potential at hyperpolarized values, Kþ

channels ensure efficient Ca2þ entry into the cell [42–45].
Still, regardless of whether the potassium gradient is used to

generate driving force for Ca2þ or to change the cell volume,

we traditionally tend to define the potassium current as

the only effector, and ignore possible additional actions

of the ion channel molecule itself. If only Kþ flow was required,

essentially any potassium channel expressed at the right

moment would be able to affect cell-cycle progression. Exper-

imental observations using either siRNA knockdown or

specific blockers, for example antibodies, have repeatedly

shown, however, that a specific potassium channel can be

important for proliferation (e.g. [46–50]). This would indicate

a permeation-independent, non-canonical mechanism that

could involve protein–protein interactions, dependent or inde-

pendent of the conformational changes of the channel

mediated by voltage. Non-canonical functions [51] have been

described for at least the Drosophila eag channel [52], its mam-

malian orthologue KV10.1 [53], KV1.3 [54] and KCa3.1 [55],

which are still able influence cell proliferation in the absence

of Kþ permeation. Moreover, an alternatively spliced form of

Drosophila eag that lacks the transmembrane regions, and there-

fore is not even a bona fide potassium channel has also been

reported to influence intracellular signalling and alter cell

morphology in the background of PKA/PKC activation [56].

In more general terms, the fact that more than 70 genes

encode Kþ channels suggests an exquisite distribution of

functions among specific molecular entities, rather than a

homogeneous function for all potassium channels. Along

these lines, the variability of Kþ channels is further increased

by the formation of heteromultimers, the influence of accessory

subunits and a large number of post-translational modifi-

cations, such as glycosylation [57], phosphorylation [58] and

sumoylation [59]. There is substantial evidence that several

Kþ channels play a role in cell cycle and proliferation by

means of both permeation-related and unrelated mechanisms

(figure 3). Below, we describe some of them in more detail.
5. KV1.3
KV1.3 (together with KCa3.1) was probably the first case

showing the involvement of Kþ channels in cell proliferation

[13,60]. In a very early report on T lymphocytes, mitogenesis

induced by phytohaemagglutinin caused Kþ channels to

open more rapidly and at more negative membrane
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potentials, suggesting that they may play a role in mitogen-

esis [13]. KV1.3 blockade was shown to suppress T-cell

activation and Ca2þ signalling in human T cells owing to

membrane depolarization, resulting in a reduced driving

force for Ca2þ entry and impairment of activation by agents

inducing mitogenesis [61,62]. KV1.3 can act in conjunction

with KCa3.1, which is a Ca2þ-dependent Kþ channel activated

by Ca2þ–calmodulin [63]. KV1.3 and KCa3.1 have been found

to cluster at the immunological synapse following contact

with an antigen-presenting cell [60]. Together, KV1.3 and

KCa3.1 modulate calcium-dependent cellular processes in

immune cells, such as T-cell activation and proliferation

[43,64]. KCa3.1 has also been implicated in the control of

cell proliferation in rat mesenchymal stem cells, vascular

smooth muscle cells (VSMCs), hepatocellular carcinoma

cells as well as endometrial and prostate cancer cells

[45,46,65–68], although in glioma cells KCa3.1 knockdown

abolished the current but did not affect proliferation [69].

As KCa3.1 seems to play a crucial role in glioma cell migration

[70–75], it might be difficult to dissect both properties and

the results can depend very strongly on the methods used

to determine proliferation.

KV1.3 has also been implicated in the control of the

cell cycle in many other cell types, such active microglia cells

[76,77], proliferating oligodendrocyte progenitors during

G1/S transition [37] and macrophages [78–80]. In human

endothelial cells, vascular endothelial growth factor induces

a KV1.3-dependent hyperpolarization that results in an

increased Ca2þ entry, which is responsible for the effects on

proliferation [81,82]. It has been shown that the contractile

activity of VSMCs controlling blood flow changes during the

course of several vascular disorders and the cells acquire a pro-

liferative and migratory phenotype [83]. KV1.3 functional

expression is associated with the proliferative phenotype,

because the blockade of the channel induces a significant

inhibition of cell proliferation [81,84,85]. Switching from con-

tractile to proliferative phenotype is thus associated with

changes in ion channel activity. However, one study suggests
KV1.3 increases VSMC proliferation by voltage-dependent con-

formational changes of the channel that activate intracellular

signalling pathways, rather than by ionic conduction [54].
6. KV11.1
The voltage-sensitive human ether à go-go-related gene

(hERG, KV11.1) [86] potassium channels have emerged as

regulators of both proliferation and survival in cancer cells.

KV11.1 (encoded by KCNH2) channel expression in normal

adult human tissue is abundant in heart, brain, myometrium,

pancreas and haematopoietic progenitors [87–90]. KV11.1

expression has been reported in many cancer types as well

as cancer cell lines of different lineages, be it epithelial, leuke-

mic, connective or neuronal [89–91] Various studies have

demonstrated this expression to be largely confined to neo-

plastic cells both in solid and haematological malignancies,

when compared with neighbouring normal tissues or

normal bone marrow samples [90–94]. Studies over the

past decade have also shown its expression to be preferential

to the cancer stem cells especially in leukaemia when com-

pared with normal haematopoietic stem cells [90,94].

KV11.1 expression has also been linked to higher grade and

worse prognosis, both in the case of solid as well as haema-

tological malignancies [89,91–94]. KV11.1 expression is not

an epiphenomenon of cancer cells and rather plays a relevant

role in their proliferative capacity, for both haematological as

well as solid tumours [49,90–98]. Studies by various groups

on KV11.1 inhibition in cell lines derived from solid tumours

or leukaemias have shown a clear reduction in proliferation

[49,90–99]. The reduction in cell proliferation has been

explained by either increase in apoptosis or an arrest at the

G0/G1 phase of cell cycle [49,90–99]. Nevertheless, the

anti-tumour effects of blockers of KV11.1 appear to act

through a reduction in cell proliferation [49,82,98,99]. Some

studies have implicated the two isoforms of hERG (hERG1a

and hERG1b) to play a vital role not only in cell proliferation
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by affecting different phases of cell cycle but also in the chan-

nel kinetics and current amplitude [100]. Both isoforms have

been shown to coexist, but hERG1b expression is more pro-

minent in the S phase of the cell cycle and hERG1a

expression in the G1 phase. Modulation of these expression

patterns affects the cell proliferation [95]. Co-assembly of

hERG1a with hERG1b results in increased availability of chan-

nels on the plasma membrane and a larger current flow when

compared with homomeric forms of the channel [100]. Further

insight into the hERG isoforms and its role in cancer is needed

to conclusively designate hERG as a therapeutic target.
Phil.Trans.R.Soc.B
369:20130094
7. KV10.1
KV10.1 (Eag1, encoded by KCNH1) is one of the best-studied

ion channels in the context of cancer. Its oncogenic poten-

tial was first described in 1999 with the discovery that the

inhibition of KV10.1 expression reduces proliferation of sev-

eral somatic cancer cell lines [101]. KV10.1 overexpression,

in turn, increases cell proliferation and can confer a trans-

formed phenotype. In the same study, our laboratory also

reported that KV10.1 is undetectable in healthy tissues out-

side the brain and favours xenograft tumour progression in

immunodeficient mice in vivo. Along these lines, KV10.1 has

also been detected in approximately 70% of human tumour

biopsies of diverse origin [102–113]. Its widespread presence

in clinical samples, together with the fact that the physiologi-

cal expression of KV10.1 is confined to the brain (with the

exception of a few restricted cell populations [111]), aroused

a lot of interest in the channel owing to its potential thera-

peutic and diagnostic applications. It had been assumed

that KV10.1 is present only in solid tumours but recent

research has revealed its presence in leukaemias, correlating

with a poor prognosis [107]. KV10.1 expression also correlates

with poor prognosis for patients of ovarian [106], gastric

[112] and colon cancer [114], and with lymph node meta-

stasis in gastric cancer and head and neck squamous cell

carcinoma, where it also correlates with the disease stage

[105]. Moreover, a number of studies have supported the obser-

vation that KV10.1 blockage or knockdown decreases the

proliferation of many cancer cell lines and in vivo tumour

models [53,107,115,116]. An interesting exception here is glio-

blastoma, where the levels of KV10.1 are lower than that in

healthy brain tissue [109], while further silencing of channel

expression increases the responsiveness to interferon gamma

treatment [117]. Although it is probably not the only relevant

localization of KV10.1 [118], it is also worth mentioning here

that membrane localization makes KV10.1 an attractive target

for therapy, as it is easily accessible from the extracellular

side. In order to selectively induce apoptosis in cancer cells,

an anti- KV10.1 antibody has been coupled to TNF-related

apoptosis-inducing ligand, and this strategy has been

successfully tested in vitro [119].

The mechanisms of how KV10.1 is able to increase cell

proliferation and favour tumour progression remain elusive.

Ion permeation does not seem to be a necessary condition

for either of the above, as non-conducting mutants retain

the ability to influence proliferation and tumourigenesis

[52,53]. By implication, the advantage KV10.1 expression con-

fers is independent of the ‘classical’ contributions of Kþ

channels to proliferation: regulating cell volume, maintaining

the driving force for Ca2þ and G1/S hyperpolarization. As
we already indicated earlier, this is less surprising than it

may appear, because if the features associated with Kþ per-

meation were enough to render a transformed phenotype,

many more Kþ channels would be oncogenic. Moreover,

the loss of ionic conductances can often be compensated

for by other channels, which also does not fit into the pic-

ture where removing a particular conductance drastically

reduces proliferation in so many cancer cell lines, as well as

tumourigenesis in vivo. In contrast to ion permeation, vol-

tage-dependent conformations may be crucial for KV10.1 to

support proliferation, as the non-conducting mutants that

have a preference for the open conformation fail to influence

proliferation [52]. It is important to note that channel blockers

could reduce proliferation not only by inhibiting permeation,

but also by trapping the channel in a particular conformation.

Hegle and co-workers also described an increase in p38-MAP

kinase activity in non-cancer cells transfected with KV10.1,

and abolishing the effect of KV10.1 on cell proliferation

by p-38MAPK inhibition. Interestingly, modulation of KV10.1

expression levels by p-38MAPK pathway has been described

in MG-63 cells from osteosarcoma [102], so the relation

between the channel and p-38MAPK signalling needs further

clarification. Another non-conducting function of KV10.1 is

an increase in hypoxia resistance by boosting HIF-1 levels

and VEGF secretion, eventually leading to better tumour vas-

cularization [53]. Nevertheless, the mechanisms described

above remain insufficient to explain the benefit KV10.1

expression brings to the proliferation of so many different

cancer cell lines.

Finally, in some models, KV10.1 appears to be regulated

by cell cycle. Inducing the G2/M transition by progesterone

in Xenopus oocytes heterologously expressing KV10.1 causes

a reduction in current [17]. This reduction is dependent on

the mitosis-promoting factor (MPF, a complex of cyclin B

and p34cdc2) and obeys a voltage-dependent block by intra-

cellular Naþ [16]. MPF induces an increase in selectivity

during the M phase [120] that results in block by Naþ,

which leads to a rectification of the current–voltage relation.

The resulting net loss of Kþ conductance at G2/M transition

may be a way to achieve membrane depolarization associated

with mitosis. Cell-cycle regulation of KV10.1 has also been

studied in MCF-7 breast cancer cells. Synchronization of

these cells in G0/G1 by serum starvation leads to an increase

in Eag1 mRNA expression compared with unsynchronized

controls, with a further increase during the progression

through G1 and a decrease in the S-phase [121]. At the func-

tional level, this is accompanied by an increase in outward-

rectifier Kþ current that hyperpolarizes the membrane

towards the S-phase [121]. Both KV10.1 mRNA and KV10.1-

mediated current in MCF-7 cells can also be increased by

stimulation with insulin-like growth factor 1 (IGF-1) via

the PI3 K/Akt pathway, suggesting that the progression

through G1 to S triggered by IGF-1 can partially be owing

to its effect on KV10.1 [122]. Defective checkpoint control

between G1 and S-phase can also result in KV10.1 upregula-

tion. In SH-SY5Y neuroblastoma cells, KV10.1 expression is

regulated by the p53/mir34/E2F1 pathway [123]. Addition-

ally, keratinocytes immortalized with human papilloma

virus oncogenes E6 and E7 targeting p53 and Retinoblastoma

protein (pRb) start to transcribe KV10.1 mRNA [124]. One can

thus expect that p53 or pRb/E2F pathway inhibition or mal-

functions, which are very common in cancer, can give rise to

higher KV10.1 expression levels. However, further research is
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needed to establish that KV10.1 expression is cell-cycle

dependent and to elucidate the effect(s) of the channel on

cell-cycle progression.
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8. Conclusion
Progression through the cell cycle is guarded by several

checkpoint control pathways that have the ability to delay or

stop further events, such as DNA synthesis or assembly of

the mitotic spindle, before commitment into cell division.

In accordance with the experimental data compiled in this

review, there can be little doubt that Kþ channels play an

active role in cell-cycle progression. On the other hand,

their expression or function can be regulated by the cell cycle.

Therefore, Kþ channels could also be viewed as effectors of

the checkpoint machinery. As molecular machines that

enable the passage of Kþ ions through the membrane, they
can regulate cell volume, provide driving force for Ca2þ

entry, hyperpolarize the cell at the G1/S transition and

depolarize it towards mitosis. Additionally, non-canonical,

permeation-independent mechanisms may be involved,

where Kþ channels recruit or modulate signalling cascades

via protein–protein interactions. It is tempting to assume that

signalling cascades activated by such interactions could link

the nuclear clock control with its cytoplasmic counterpart.

Unfortunately, to date we have only a rough estimate of

how membrane potential changes along the cell cycle. More-

over, very little is known about the non-conducting functions

of Kþ channels. Which signalling cascades can they modify?

How do they interact with other proteins? There are also

more general questions that remain unanswered. How exactly

does membrane potential affect the cell-cycle machinery?

Further research on Kþ channels in cell cycle and proliferation

will give us better understanding of these fundamental

processes and may have therapeutic implications.
 9:20130094
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