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Abstract

Advances in DNA sequencing technology have revolutionized the field of molecular

analysis of trophic interactions, and it is now possible to recover counts of food

DNA sequences from a wide range of dietary samples. But what do these counts

mean? To obtain an accurate estimate of a consumer’s diet should we work strictly

with data sets summarizing frequency of occurrence of different food taxa, or is it

possible to use relative number of sequences? Both approaches are applied to

obtain semi-quantitative diet summaries, but occurrence data are often promoted as

a more conservative and reliable option due to taxa-specific biases in recovery of

sequences. We explore representative dietary metabarcoding data sets and point

out that diet summaries based on occurrence data often overestimate the impor-

tance of food consumed in small quantities (potentially including low-level contami-

nants) and are sensitive to the count threshold used to define an occurrence. Our

simulations indicate that using relative read abundance (RRA) information often pro-

vides a more accurate view of population-level diet even with moderate recovery

biases incorporated; however, RRA summaries are sensitive to recovery biases

impacting common diet taxa. Both approaches are more accurate when the mean

number of food taxa in samples is small. The ideas presented here highlight the

need to consider all sources of bias and to justify the methods used to interpret

count data in dietary metabarcoding studies. We encourage researchers to continue

addressing methodological challenges and acknowledge unanswered questions to

help spur future investigations in this rapidly developing area of research.

1 | INTRODUCTION

Many recent studies documenting trophic interactions make use of

metabarcoding, an approach which combines high-throughput

sequencing (HTS) with DNA barcoding to identify the food remains

present in faecal samples or stomach contents (Nielsen, Clare, Hay-

den, Brett, & Kratina, 2017). When HTS first became available, the

potential applications in diet studies were clear and the methods

were quickly embraced by the community (Deagle, Kirkwood, & Jar-

man, 2009; Valentini et al., 2009). In a comprehensive review of
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DNA-based diet analysis by King, Read, Traugott, and Symondson

(2008), the possibility of using HTS was only briefly mentioned as a

“Future Direction,” and just four years later, another review paper

focussed entirely on this approach (Pompanon et al., 2012). While

many underlying technical and biological details vary between dietary

metabarcoding studies, the general workflow is now well defined. It

involves extraction of total DNA from the dietary sample, PCR ampli-

fication of DNA barcode markers from food taxa of interest and then

DNA sequencing for taxonomic classification of the recovered

sequences. The workflow has been applied to determine diet in a

range of animals, from invertebrates to large mammalian herbivores

and carnivores (representative studies summarized in Table 1).

The rapid adoption of HTS to characterize complex mixtures of

DNA is not unique to dietary studies; over the last ten years, the tech-

nology has produced a wealth of new genetic data providing insight

into almost all areas of biology (Goodwin, McPherson, & McCombie,

2016). One feature of HTS is that it provides counts of DNA

sequences in each sample, and therefore, it has the potential not only

to provide a qualitative list, but also to quantify what DNA is present.

The interpretation of sequence read counts as a numerical representa-

tion of sample composition is common in many HTS applications. For

example, studies sequencing transcripts to determine differences in

gene expression (Finotello & Di Camillo, 2015), profiling microbe com-

munities (Vandeputte et al., 2017) or measuring epigenetic variation

(Schield et al., 2016) all rely on sequence read counts. However, deci-

sions about how to interpret read counts is certainly not routine and

the validity of interpretations is sometimes questioned even in fields

where the practice is well established (e.g., Edgar, 2017; Olova et al.,

2017). These debates are constructive and should motivate research-

ers to test underlying assumptions and justify their interpretations, but

can give rise to the impression that count data are always misleading.

The reality is that all metabarcoding studies use sequence counts

to some extent. In dietary investigations, count data are used either to

record the occurrence of food species within samples based on a

threshold number of sequences (i.e., presence/absence of taxa), or to

calculate the percentage of DNA belonging to each food species as a

proxy for relative biomass consumed (i.e., relative abundance of taxa;

Figure 1). The conversion of sequence counts to occurrence data is

often considered a more conservative approach than using propor-

tional data. In their introduction to the Molecular Ecology Special Issue

on “Molecular Detection of Trophic Interactions”, Symondson and

Harwood (2014) pointed out that authors of many metabarcoding

papers “now simply record numbers of predators testing positive for a tar-

get prey or plant species, providing a pragmatic and useful surrogate for

truly quantitative information.” This sentiment, that focusing only on

occurrence data is a reliable and safe option, is now common in the lit-

erature, and this step in the analysis pipeline is often uncritically

applied as the default option. Using counts as an indication of biomass

in samples is more controversial. Indeed, the difficulties of obtaining

an accurate biomass signature from sequence counts include both

technical and biological biases that affect barcode marker recovery

rates from different taxa (Amend, Seifert, & Bruns, 2010; Deagle et al.,

2009; Pompanon et al., 2012). Therefore in the best-case scenario

sequence read counts can only provide a rough estimate of propor-

tional abundance. Still, to accept the notion that relative sequence

counts provide no meaningful information would mean that, within

one sample, a few DNA sequences from one food taxon are equivalent

to 10,000 sequences from another. Most molecular ecologists would

interpret these disparate counts to mean that there are differences in

template DNA abundance (as long as methods used to collect the data

are reasonable) and that there is some biological basis for that differ-

ence. Ignoring this difference may inhibit ecological understanding.

Here, we review the approaches taken to interpret sequence count

data in dietary metabarcoding studies and consider their implications.

Throughout the paper, we will refer to the two general approaches as

“occurrence” (i.e., presence/absence of taxa) and “relative read abun-

dance” (RRA; i.e., proportional summaries of counts). The end product

of both methods is the same, a semi-quantitative surrogate for the

true diet, and our goal is to critically evaluate these different interpre-

tations. We point out that converting sequence read counts to occur-

rence information can introduce strong biases, and thus, we suggest it

is not always a “conservative” approach. We also assess the scale of

biases in recovery of sequences from different food taxa in study sys-

tems where it has been examined. Using simulations, we explore the

impact of these biases on data summaries (both based on occurrence

and read counts). In this light, we evaluate factors that impact dietary

metabarcoding data summaries and consider when using sequence

count data as an indication of relative biomass within samples might

be justified to provide a more nuanced picture of animal diet.

The issues we consider on how best to summarize dietary data

have implications for all metabarcoding studies (Taberlet, Bonin, Zin-

ger, & Coissac, 2018), and similar issues have been considered exten-

sively in traditional diet studies (e.g., Barrett et al., 2007; Laake,

Browne, DeLong, & Huber, 2002). In HTS-based diet studies, the ideas

are most relevant when the underlying objective is to estimate the

true diet of a particular consumer (i.e., the relative biomass contribu-

tions of alternative diet species). This may not be a clearly stated goal,

but is often implicit in outcomes of dietary metabarcoding studies.

Approaches for summarizing sequence counts may be of less concern

in studies aiming to provide a list of taxa consumed by a particular spe-

cies (niche breadth), a qualitative description of trophic interactions in

a food web, or an indicator of dietary differences between sites. We

focus mainly on dietary studies using DNA extracted from faecal mate-

rial. The use of HTS to identify food in stomach contents is common in

invertebrates, and also fish, but the material recovered is in various

states of digestion and the sequence counts are less likely to contain a

meaningful quantitative signal based on RRA compared to the more

consistent signal seen in faecal material (Deagle, Thomas, Shaffer,

Trites, & Jarman, 2013; Nakahara et al., 2015).

2 | CURRENT PRACTICE

Nondietary metabarcoding studies use a range of approaches to

interpret sequence count data, and these vary depending on the tar-

geted organisms. Recent papers published in Molecular Ecology on
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bacterial/archaeal communities all make use of RRA, although half of

these studies also presented summaries based on taxon occurrences

(Supporting Information Table S1). There is widespread acknowl-

edgement of taxon-specific biases in recovery of the bacterial/ar-

chaeal barcode markers, but RRA is accepted as a flawed, but useful,

measure of these diverse communities that cannot be easily charac-

terized by other means (Forney, Zhou, & Brown, 2004; Ibarbalz,

P�erez, Figuerola, & Erijman, 2014). There is no clear consensus in

metabarcoding of eukaryotic communities: RRA is sometimes used

exclusively (often the case in studies of fungi), whereas metazoan

studies use either occurrence data only or both metrics in tandem

(recent examples listed in Supporting Information Table S2).

In dietary metabarcoding studies, it is common to only interpret

sequence data after conversion to taxon occurrences (representative

studies summarized in Table 1). This conversion is carried out in vari-

ous ways. During initial processing of sequence reads, most researchers

discard rare sequences to avoid incorporation of background sequenc-

ing errors (e.g., Qu�em�er�e et al., 2013). After this, a summary table of

remaining sequence reads in each sample is produced (often with simi-

lar sequences being clustered) and sequences are assigned taxonomy.

Then, when converting these read counts to occurrence data, a thresh-

old number of reads is often required for each taxon to be tallied as an

occurrence. Sequencing depth can vary considerably between samples,

so in practice a threshold percentage of reads is often used (e.g., 1% of

food sequences McInnes, Alderman, Lea, et al., 2017), or sequencing

depth can be rarefied to a common level (O’Rorke, Holland, Cobian,

Gaughen, & Amend, 2016). These approaches normalize detection

across samples, so that more sequences are required for an occurrence

to be recorded in samples with higher read depths.

Once occurrences are recorded in individual samples, several

metrics can be used to summarize the diet across samples. Those

considered here are per cent frequency of occurrence (%FOO), per

cent of occurrence (POO) and weighted per cent of occurrence

(wPOO) (Figure 1; see Box 1 for details).

Some dietary metabarcoding studies present RRA data along

with occurrence summaries, although relatively few have relied

BOX 1 Metrics used to summarize sequence data in dietary metabarcoding studies

Occurrence Data

Frequency of occurrence (FOO) is the number of samples that contain a given food item, most often expressed as a per cent (%FOO).

Per cent of occurrence (POO) is simply %FOO rescaled so that the sum across all food items is 100%. Weighted per cent of occur-

rence (wPOO) is similar to POO, but rather than giving equal weight to all occurrences, this metric weights each occurrence according

to the number of food items in the sample (e.g., if a sample contains five food items, each will be given weight 1/5). Intuitive graphical

representations are shown in Figure 1, and mathematical expressions are as follows:

%FOOi ¼ 1
S

XS

k¼1

Ii; k � 100%

POOi ¼
PS

k¼1 Ii; kPT
i¼1

PS
k¼1 Ii; k

wPOOi ¼ 1
S

XS

k¼1

Ii; kPT
i¼1 Ii; k

where T is the number of food items (taxa), S is the number of samples, and I is an indicator function such that Ii, k = 1 if food item i is

present in sample k, and 0 if not.

Many metabarcoding diet studies make use of both %FOO and POO (e.g., Xiong et al., 2017). POO provides a convenient view as

each food taxon contributes a percentage of total diet (unlike %FOO which does not sum to 100%). In POO summaries, samples with

a high number of food taxa have a stronger influence, whereas in wPOO, each sample is weighted equally (i.e., lower weighting to

food taxa in a mixed meal) and this may be more biologically realistic (wPOO is the same as split-sample frequency of occurence; see

Tollit et al., 2017 and references within).

Read Abundance Data

Using the sequence counts, relative read abundance (RRAi) for food item i is calculated as:

RRAi ¼ 1
S

XS

k¼1

ni; kPT
i¼1 ni; k

� 100%

where ni,k is the number of sequences of food item i in sample k.
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solely on information obtained from RRA (Table 1). In almost all of

these studies, the number of sequences obtained per sample is con-

verted to percentages (Figure 1a), because the absolute counts (i.e.,

sample sequencing depth) are dependent on several factors unre-

lated to the overall importance of the sample (amount of starting

material used, DNA extraction efficiency, standardization of samples

before HTS, etc.). To provide an overall diet summary, sample-speci-

fic RRA values can be averaged across samples; when doing so, each

sample is given equal weight (Box 1; Figure 1). The RRA of taxa in

each sample will vary depending on genetic marker, laboratory pro-

tocol and bioinformatic filtering strategy (Alberdi, Aizpurua, Gilbert,

& Bohmann, 2017; Deagle et al., 2013). Ensuring laboratory methods

are robust (i.e., focussing on samples with sufficient target DNA and

checking replicates), and using a standardized bioinformatics pipeline

without excessive filtering can help ensure RRA data are repro-

ducible and precise (Alberdi et al., 2017; Deagle et al., 2013; Emma-

nuel et al., 2017; McInnes, Alderman, Deagle, et al., 2017; Murray,

Coghlan, & Bunce, 2015).

3 | DOES CONVERTING READ COUNTS TO
OCCURRENCE DATA SOLVE OUR
PROBLEMS?

It is often assumed that because conversion to occurrence data

moderates the impact of taxa-specific bias in marker signal, it pro-

vides a trustworthy, or at least conservative, view of diet. While it is

true that occurrence-based summaries of diet are less affected by

recovery bias, it is not necessarily the case that they provide a more

accurate representation of overall diet. Our simulations suggest POO

summaries are highly consistent but generally less accurate represen-

tation of overall diet compared to RRA summaries even when

moderate taxa-specific recovery biases are present (see Box 2 and

Figure 2 for details).

The primary drawback of occurrence data sets is that the impor-

tance of rare food taxa is often artificially inflated at the expense of

food taxa eaten in large amounts, effectively flattening the rank-abun-

dance species curves typically seen in dietary data sets (Figure 1; Fig-

ure 2). This effect can be illustrated in metabarcoding data from a

population-level diet study of killer whales (Figure 3). This study con-

cluded that the whale population’s diet consisted primarily of Chinook

salmon (~80%) based on high RRA of this species in most samples

(Ford et al., 2016). If we consider the killer whales’ diet as occurrence

(POO; each food species occurrence given equal value), the view

changes considerably because other salmon species and halibut fre-

quently detected at low levels become important prey. The threshold

level used to count an occurrence also impacts the relative importance

of these fish prey; a lower threshold increases the importance of rare

diet items (Figure 3). A similar pattern is seen in seal population-level

diet estimates calculate with RRA and POO (Figure 4a). These differ-

ent outcomes have substantial implications when diet percentages are

combined with bioenergetics estimates and consumer population size

to derive estimates of prey consumption (Chasco et al., 2017).

Another implication of rare-item inflation occurs in studies of niche

partitioning. Here, the conclusion that species feed on separate

resources may be inaccurate because separation may be driven pri-

marily by partitioning of rare diet items, which are given similar weight

as shared important food. In contrast, the conclusion that species

overlap in their dietary niche is potentially less likely (i.e., requiring

overlap in both primary and rare food items), but may therefore be

more biologically meaningful when found (Clare, 2014).

How much influence rare diet taxa have in overall diet estimates

depends to some extent on the foraging strategy of the focal species

and food distribution. In cases where small amounts of rare diet items

are consumed in most feeding bouts, the importance of these items

could be strongly overestimated in occurrence-based summaries (as

seen in the simulations with a high number of taxa per scat sample;

Figure 2). This may be the situation for some large grazing herbivores

that forage continuously across a grassland, often eating relatively rare

plant taxa in proportion to their availability (i.e., nonselective feeding).

In contrast, when rare diet items are eaten sporadically, their DNA

would be detected only occasionally and diet estimates would be more

realistic. For instance, some carnivores feed sporadically, individualisti-

cally, and in discrete foraging events such that prey occurrences may

provide a more meaningful indication of how often each taxon is pre-

dated (Codron, Codron, Sponheimer, & Clauss, 2016). The feeding

ecology of a species is reflected to some extent in the number of food

taxa in individual faecal samples and this varies widely between stud-

ies (Table 1). This value provides insight into the potential impact of

rare-item inflation bias. For example, in Figure 1, the zebra faecal sam-

ples have many food taxa per sample and when summarized as occur-

rences, these have a predictably flat rank-abundance curve; this curve

would be generated regardless of the true amount of each plant con-

sumed in each meal (Figure 2).

Summaries based on occurrences become less accurate when sam-

ples are pooled (i.e., when sequence reads from individual scats are

not identifiable; Clare, Symondson, & Fenton, 2014; Deagle et al.,

2009; Ford et al., 2016) because rare diet taxa present in any one of

the pooled samples are weighted equally to taxa found in all of the

pooled samples. The time period over which food consumption is inte-

grated in a faecal DNA sample (influenced by gut passage time) can

affect these data in a similar way, as longer integration will mean rare

taxa have a greater likelihood of being present in each sample.

The inflated importance of rare sequences in occurrence sum-

maries could also magnify some problems encountered in diet

metabarcoding. There are occasions when exogenous DNA can

contaminate a sample of interest. This includes field-based contami-

nation from nonfood environmental DNA (McInnes, Alderman, Dea-

gle, et al., 2017), laboratory contamination (De Barba et al., 2014)

and misassignment of sequence-to-sample during HTS (i.e., tag-

jumping; Schnell, Bohmann, & Gilbert, 2015). These problems will

generally have less influence in RRA summaries as the real food

items should dominate unless samples are very poor quality. A sim-

ilar issue is the detection of secondary predation (i.e., DNA from

gut contents of ingested prey). Depending on the study system

and research question, secondary predation may or may not be a
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serious problem. However, occurrence-based data sets are

expected to over-emphasize these detections and ruling out sec-

ondary predation in occurrence summaries may require information

of RRA, examination of prey co-occurrence or expert knowledge

(Bowser, Diamond, & Addison, 2013; Hardy et al., 2017; McInnes,

Alderman, Lea, et al., 2017).

4 | DOES RRA ACTUALLY REFLECT FOOD
BIOMASS?

The relationship between proportions of biological material in a sam-

ple and sequence reads recovered by HTS has been studied in many

experiments by sequencing artificial mixtures with known composi-

tion. These “mock communities” are most relevant to dietary metabar-

coding studies when made from food tissues similar to what is being

consumed. Both mitochondrial and chloroplast DNA markers are pre-

sent in multiple copies in each cell, and copy number varies between

tissue types (e.g., leaves versus roots; Ma & Li, 2015) and physiological

state (e.g., juvenile vs. gravid adult; Veltri, Espiritu, & Singh, 1990).

Getting a thoroughly homogeneous mix of tissues in a small volume

suitable for DNA extractions is challenging; therefore, mixtures made

from DNA extracted separately for each taxa are sometimes used (e.g.,

Ford et al., 2016; Krehenwinkel, Wolf, et al., 2017; Pi~nol, Mir, Gomez-

Polo, & Agust�ı, 2015). However, results from purified genomic DNA

mixture may have little biological meaning because differences in cell

density and genome size will confound results (i.e., low recovery from

a species could be a bias, or the species may have a large genome and

therefore fewer markers are in the fixed amount of DNA added to the

mixture) (Pi~nol et al., 2015). Mixtures of PCR products can identify

technical biases (i.e., good for assessing PCR primers), but miss under-

lying biological differences.

Conclusions from analyses of mock communities vary from no

relationship to good correlations between the composition of the

mixture and sequence reads (Edgar, 2017; Kimmerling et al., 2018;

Pornon et al., 2016). One reason for these different conclusions is

that the range of concentrations analysed varies considerably across

studies, from nearly equal mixtures of a few taxa, to mixtures con-

taining many taxa in very different abundances. For example, con-

sider two mixtures: (i) three species in the ratio 20:30:50 and (ii)

eight species in the ratio 1:1:4:4:10:10:20:50. In the first mixture,

even modest relative deviations in recovery would result in a poor

correlation, whereas the second would be less impacted by the same

relative level of bias. High variability between studies is also due to

biotic differences in target organisms and technical differences (e.g.,

different barcode markers, PCR primers, sequencing platforms). This

variation makes it difficult to generalize, and considerable work is

required to understand the reliability of RRA in any system. Two tax-

onomic prey groups that have been the focus of several dietary

metabarcoding studies, and for which mock communities have been

examined, are fish and insects. These groups provide some insight

into the expected scale of biases.

In metabarcoding of fish mixtures, conserved PCR primers are

generally employed and documented recovery biases are moderate.

In their killer whale study, Ford et al. (2016) analysed known percent-

ages of DNA extracted from four fish species and the RRA of each

fish corresponded well to input (generally within 5% of expected val-

ues) providing confidence in their conclusions. Using prey species of

harbour seals, Thomas, Deagle, Eveson, Harsch, and Trites (2016) car-

ried out a detailed study on sequence recovery from blended tissue

mixtures. Various taxa (primarily fish; n = 18) were sequenced in

50:50 tissue mixes with a control fish, and the extent of deviations

from the control fish measured. The recovered sequences varied from

20% to 60%, a threefold variation in marker recovery relative to the

control. A recent study looking at recovery of barcode markers from

bulk samples of larval fish avoided marker amplification by directly

sequencing all DNA, then bioinformatically recovering relevant mar-

ker sequences (Kimmerling et al., 2018). They found strong

BOX 2 Simulations evaluating approaches for summarizing population-level diet composition

To compare how effectively occurrence and RRA methods reconstruct population-level diet, we simulated HTS read counts for sam-

ples derived from a population with a fixed diet and investigated the impact of taxa-specific sequence recovery biases (Figure 2). We

show how population-level diet estimates vary given a range of biases that can impact any food taxa in the diet. Our simulation results

are for a population with 40 food taxa in its diet, occurring in exponentially declining abundance. Sequencing was simulated for 100

scat samples assuming a mean of either three or 20 food taxa per sample, and assuming different sequence recovery bias scenarios:

no bias, low bias or high bias. The biases introduce positive or negative biases of up to 49 and 209 (low and high biases respectively)

relative to a standard. Diet summaries were made using: (1) RRA; (2) POO with a 1% minimum sequence threshold. For further details,

see Supporting Information and R scripts in the Dryad Digital Repository (https://doi.org/10.5061/dryad.jt07145).

Overall results (Figure 2) show that with these parameters RRA summaries were on average more accurate but had higher variance

than POO summaries. POO produced more consistent estimates less impacted by recovery biases, but only outperformed RRA when

the largest recovery biases corresponded to the most common food items. Both methods were more accurate when the number of

food taxa per sample was small: with a small number of food taxa per sample, POO estimates provide more realistic enumeration of

rare items and RRA estimates are less impacted by sequence recovery biases (as biases are only expressed in the context of other taxa

in a sample).
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correspondence between biomass in known mixtures and sequence

counts, suggesting that without PCR amplification biases, biological

differences in mtDNA density between these fish are small. Even

studies looking at fish environmental DNA samples have found a rela-

tionship between fish density and recovered sequence counts

(Lacoursi�ere-Roussel, Côt�e, Leclerc, & Bernatchez, 2016; Port,

O’Donnell, Lowell, Romero-Maraccini, & Kelly, 2015; Thomsen et al.,

2016).

Many studies have sequenced DNA from insect mock communi-

ties; however, rather than considering if read counts are proxies for

input biomass, the focus of these studies has generally been to test

whether taxa can be detected (Alberdi et al., 2017; Clarke, Soubrier,

Weyrich, & Cooper, 2014; Elbrecht & Leese, 2015; Yu et al., 2012).

The reason for this focus is that insect communities tend to be com-

plex, with many rare taxa, and the recovery biases large. In studies

by Yu et al. (2012) and Clarke et al. (2014), a paltry 43%–76% of

species known to be present in mock communities were recovered.

A study that included a mixture containing equal amounts of purified

DNA from 12 arthropod species (10 insects, two spiders) reported

RRA values for half of the species that were more than 100 times
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dissimilarity metric) for RRA and POO summary methods under different bias scenarios. The first plot shows an example bias vector (for both
low and high bias) used in one simulation with differential recovery values for each food taxa. The boxplots summarize results from 1000
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sample was 3 or 20. See Box 2 text for details [Colour figure can be viewed at wileyonlinelibrary.com]
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lower than expected (i.e., expected 8% and recovered at <0.08%

(Pi~nol et al., 2015)). Another arthropod study found consistent rela-

tionships between percentages of DNA and RRA; however, the slope

of the correlation deviated from the expected value of 1 in different

insect orders and with different DNA markers, which was attributed

to copy number variation (Krehenwinkel, Wolf, et al., 2017). Even a

change in PCR primers used to amplify a marker from the same gene

can produce very different results (Alberdi et al., 2017). Most diet

studies looking at insectivorous predators focus on occurrence data

because of the generally poor correlation between biomass and read
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counts (Table 1), but methodological improvements may change this

(Jusino et al., 2017).

Diet studies incorporate more complexity than analyses of mock

communities due to potential differential digestion of food taxa. Rel-

atively few captive feeding experiments have examined how well

dietary DNA counts reflect known diet, but studies have been car-

ried out on sheep (Willerslev et al., 2014), deer (Nakahara et al.,

2015), penguins (Deagle, Chiaradia, McInnes, & Jarman, 2010) and

seals (Thomas, Jarman, Haman, Trites, & Deagle, 2014). These have

focussed on simple diets (~2–6 diet items) and results generally show

that comparisons between major and minor diet components are

reflected in RRA. For example, the diet of sheep fed two plants in

ratios of 0:100, 25:75, 50:50, 75:25, 100:0 had a good correlation

with the percentages of DNA marker sequences amplified from

rumen content (Willerslev et al., 2014). In a study on captive deer,

>90% of the diet was made up of three plant species with two other

species fed in low amounts. In this case, >90% of sequences came

from the three dominant taxa, but considering just these taxa, the

correlation between what went in and what came out was poor

(Nakahara et al., 2015). Similarly, in faecal samples from captive pen-

guins fed pilchards in variable amounts as the majority of their diet,

sequence reads from pilchards were most common in the data; how-

ever, the three other fish species fed in mass ratios 45:35:20 pro-

duced sequences counts of 60:6:34 (Deagle et al., 2010).

Detailed captive feeding studies examining quantitative prey

DNA recovery have been carried out on captive seals and sea lions

(Bowles, Schulte, Tollit, Deagle, & Trites, 2011; Deagle & Tollit,

2007; Thomas et al., 2014). Early studies used quantitative PCR

rather than HTS and found the amount of marker DNA recovered

provided a reasonable indication of biomass ingested (Bowles et al.,

2011; Deagle & Tollit, 2007). A trial with harbour seals by Thomas

et al. (2014) compared HTS data from food tissue (affected by bio-

logical and technical biases) with faecal DNA (affected by digestion

as well). The scale of bias introduced by digestion was generally

smaller than biases observed in undigested fish tissue mix. As diges-

tion bias may be in the same or opposite direction to tissue biases,

the overall effect is expected to increase variance in prey-specific

recovery biases compared to tissue mixes. These seal studies all

excluded prey hard parts from DNA extractions, but in other sys-

tems where this may not be feasible, digestion biases could be lar-

ger. For example, faeces from insectivorous animals often contain

relatively undigested hard body parts (i.e., exoskeleton). The impact

on DNA recovery is difficult to assess: Hard fragments will contain

undigested DNA, but the DNA may not be extracted as efficiently

as DNA present from soft bodied prey (Clare, 2014).

Another approach to understanding how much of a signal is pre-

sent in counts from DNA sequences is to compare results with other

methods of diet analysis. In a study of large mammalian herbivores,

Kartzinel et al. (2015) found a nearly one-to-one correlation between

estimates of C4 grass (family Poaceae) consumption based on stable

isotopes analyses and RRA based on metabarcoding of the chloro-

plast marker (trnL-P6). The use of alternative proxies for diet compo-

sition can also reveal complexities. Craine, Towne, Miller, and Fierer

(2015) used similar protocols to Kartzinel et al. (2015) but found C4

grass RRA to be under-represented compared to measures based on

stable isotopes. They suggested that chloroplast density scales with

foliar nitrogen concentrations so that RRA values could reflect dietary

sources of protein and thus may deviate from dietary sources of bio-

mass as represented by carbon stable isotopes. If RRA values based

on this marker occasionally reflect an animal’s source of protein more

closely than its source of carbon (i.e., biomass), this knowledge can

enable count data to still be interpreted appropriately.

Several studies have used traditional morphological analysis of

food remains to help cross-validate RRA data (Soininen et al., 2009;

Thomas, Nelson, Lance, Deagle, & Trites, 2017). Thomas et al.

(2017) analysed DNA and prey hard parts in a large studies of seal

populations diet over several seasons, while there were minor differ-

ences between methods in prey recovery and taxonomic resolution,

RRA and hard part occurrences provided a very similar picture (Fig-

ure 4c). Cross-validation has the problem that all methods of diet

determination are biased, so if there is disagreement, the correct

answer may be unclear (Soininen et al., 2009). However, congruence

between data sets is reassuring and known biases can be taken into

account when making conclusions (e.g., jellyfish are digested quickly,

so occurrence in faecal DNA but not stomach contents is credible;

Jarman et al., 2013; McInnes, Alderman, Lea, et al., 2017). Large dif-

ferences in results between methods warrant further investigation;

multiple lines of independent evidence provide the strongest support

for any conclusion.

Overall, assessing recovery bias between food taxa is complex,

specific to a study system, and can require significant effort. In some

cases, broad correlations are likely, but this cannot be taken for

granted and very large biases may occur (e.g., Pawluczyk et al.,

2015).

5 | A VIEW OF THE WAY FORWARD IN
INTERPRETING SEQUENCE COUNTS

What should be considered best practice given the potential biases

we have outlined in diet metabarcoding studies? First of all, we

should take a step back and remember that getting estimates of the

true diet of any species using any method is a challenging proposi-

tion—all methods of diet analysis have biases. A well-designed

metabarcoding diet study may provide as accurate an estimate as

any other approach and has the benefits of providing high taxonomic

resolution, detecting rare foods and can potentially solve otherwise

intractable problems (e.g., liquid feeding). We should also remember

that other classic experimental design issues, such as collecting

appropriate sample sizes and getting representative samples, will

potentially have a bigger impact on study outcomes than the diet

estimation method. Furthermore, dietary metabarcoding has a huge

variety of applications, many of which do not require highly accurate

dietary proportions.

Still, we will inevitably come to a point in dietary metabarcoding

studies where we need to decide how to interpret sequence counts.
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It is often the case that the overarching views of population-level

diet are consistent regardless of how sequence counts are summa-

rized (i.e., when commonly occurring food items are also represented

by the highest number of sequences). This is most likely to be the

case when faecal samples contain a limited number of food taxa (in

the extreme case where there is only one taxon per sample, occur-

rence and RRA estimates are identical and recovery biases have no

impact). However, some outcomes will depend on how we consider

counts. Occurrence summaries are less affected by differential

recovery of markers from food taxa, but tend to put much more

weight on food consumed in small quantities and potential contami-

nants. RRA can potentially provide a weighting of food present in a

sample based on biomass, but differential recovery of markers (espe-

cially from dominant food taxa) can impact data summaries. Our

strongest recommendation is that if one approach is relied on heav-

ily, some justification should be given for its use, and potential biases

inherent in the method should be acknowledged and taken into

account when drawing conclusions.

5.1 | Using occurrence data

Many future diet studies will have almost no information on the

scale of biases in the recovery of sequences from specific food taxa.

The use of occurrence data may be a sensible approach, but careful

consideration of the impact of this choice is still required and the

bioinformatics steps taken to produce this data set should be docu-

mented. We recommend converting counts to percentages (exclud-

ing nonfood sequences from total count) and then defining a

minimum sequence percentage threshold to determine occurrences.

This will limit the impact of variation in read depth. The threshold is

a trade-off between maximizing inclusion of real diet sequences and

excluding low-level background noise (secondary predation, contami-

nation, sequencing errors). A 1% threshold may be suitable for many

situations, but when diets are extremely diverse with potentially

large recovery biases (e.g., some bat species), then a much lower

threshold may be justified (e.g., 0.01% in Alberdi et al., 2017). In

these cases, ensuring contaminant sequences do not influence

results requires additional vigilance (De Barba et al., 2014; Nguyen,

Smith, Peay, & Kennedy, 2015). Given that many of the issues we

have raised regarding the use of occurrence data stem from the dis-

proportionate influence of rarer sequences, it may seem advanta-

geous to use a higher minimum sequence threshold (e.g., >5%

constitutes occurrence). While this type of summary can provide

insight, rare taxa that make up a small percentage of sequences in

many samples would be missed completely (Alberdi et al., 2017) and

taxa-specific biases in recovery also have a larger impact on these

high threshold occurrence summaries (see simulations in Supporting

Information Figure S1 comparing different threshold levels). As the

purported benefit of occurrence-based approaches is to record food

taxa even when there is strong bias against them, thresholds higher

than 1% cannot be generally recommended.

The sequencing depth required per sample is directly related to

the minimum threshold; in diverse and/or potentially highly biased

situations warranting a very low threshold (e.g., 0.05%), high num-

bers of reads per sample would be needed (e.g., >10000). Lower

read depth is sufficient with a 1% threshold and increasing replica-

tion (biological or technical) would be preferable to having redundant

sequences within samples. Even when sequence counts are not used

directly, it is important that these data are available (and ideally the

sequence reads archived too) with appropriate explanatory files out-

lining potential biases. This allows others to revisit the data and will

allow insight in future comparative meta-analyses.

Summaries of data based only on occurrence information will

remain appropriate in many situations, simply because these are

more predictably inaccurate and less impacted by recovery bias. This

includes dietary metabarcoding studies that use DNA from food

remains in gut contents since differences in time as ingestion will

have a major impact on the relative number of reads recovered per

taxon (Egeter, Bishop, & Robertson, 2015; Greenstone, Payton,

Weber, & Simmons, 2014). In studies using faecal samples, occur-

rence summaries will often be appropriate when food is clearly dif-

ferentially digested, the sequence recovery bias is known to be high

(e.g., many animals with an insectivorous diet), or this bias is

unknown and results cannot be cross-validated. Note that this

appropriateness may differ between dietary analyses of relatively

similar consumers. For example, most bat diet studies only analyse

occurrence data, but the bat population shown in Figure 1 has rela-

tively low diet richness compared to other bats and RRA may be

suitable (Vesterinen et al., 2016).

5.2 | Using RRA

Incorporation of RRA into analyses will have the most benefit when

individual faecal samples contain several food taxa and the same

food taxa occur across many samples. In these cases, occurrence

summaries may provide very inaccurate summaries (Figure 2). Unfor-

tunately RRA-based summaries from these types of samples can be

most affected by recovery biases (Figure 2) and careful decisions

about how to interpret data are required. When there is uncertainty

surrounding which method will be more accurate, presentation of

results summarized with both methods is recommended. Conclusions

relying heavily on RRA should include justification as to why the

counts are expected to contain a roughly accurate signature. One

way to justify interpretations based on RRA is through cross-valida-

tion of the diet data with alternative methods, and this is recom-

mended whenever possible (see Figure 4). Alternatively, mock

community experiments and/or feeding trials can be carried out, but

this is feasible in a limited number of situations. In study systems

where diet is relatively well known, examining biases in a small num-

ber of dominant food taxa can ensure they are not drastically over

or underestimated and will lend support to using RRA information.

The dominant diet items have by far the strongest impact on RRA

diet summaries as significant shifts in percentages of these species

will adjust percentages of all food taxa (i.e., unit sum constrained

data must sum to 100%). One question that inevitably arises is, at

what point does “semi-quantitative” RRA information stop being
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useful? Our simulations indicate that even in scenarios with 209

overestimation of some food and 209 underestimation of others

(i.e., in 50:50 mixtures, this could lead to 400-fold recovery bias), the

population-level RRA summaries often still provide a more accurate

view of diet compared to POO (Figure 2). But the limits of useful-

ness will depend on the application. It is probable that comparisons

between closely related food taxa will provide more reliable RRA

data, because biological differences should be smaller and technical

biases less pronounced (e.g., animal COI primer binding sites will be

more conserved, or length differences in the plant trnL-P6 marker

will be low). However, it is risky to make generalizations and to

transfer specific methodological findings between study systems.

Further refinements to increase confidence in RRA dietary

metabarcoding data are possible. Because conversion to occurrence

data sets has been seen as a necessary remedy for biases in sequence

recovery, there has been less incentive for researchers to test new

protocols and evaluate markers on their ability to obtain accurate RRA

data. While it is sensible to use standard DNA barcode markers, by

ignoring information in RRA during marker development we might

have inadvertently imposed limitations on the field. Fortunately, we

are starting to move towards a point where markers used in different

applications are better understood and alternative

less-biased approaches are being explored. This includes the use of

multiple target markers (Stat et al., 2017) and PCR-free approaches

(Srivathsan, Ang, Vogler, & Meier, 2016) that can be combined with

prey DNA enrichment (Krehenwinkel, Kennedy, Pek�ar, & Gillespie,

2017). Inclusion of control materials in sequencing runs can also

ensure consistency between experiments (Hardwick, Deveson, &

Mercer, 2017). For the most accurate diet estimates, correction fac-

tors can be developed to take into account known biological differ-

ences between taxa in mixtures (e.g., gene copy number differences;

Angly et al., 2014; Vasselon et al., 2018). Such species-specific cor-

rection factors have been developed for fish, with the intent of apply-

ing them in field-collected seal diet samples (Thomas et al., 2016).

While the effort needed to justify the RRA approach may be chal-

lenging, the possibility of obtaining more accurate diet estimates will

make it worthwhile in many situations. We have seen such effort

undertaken in papers addressing broad ecological questions (Kartzinel

et al., 2015; Willerslev et al., 2014), and in diet studies of marine

predators, where population consumption has significant fisheries

management implications (Ford et al., 2016; Thomas et al., 2017). This

approach should also be possible in monitoring programmes, such as

those carried out on seabird diet (Jarman et al., 2013; Sydeman et al.,

2017), where the long-term investment warrants the development of

robust DNA-based methods that provide the best possible data.

5.3 | Outstanding issues

There are a number of issues in the diet metabarcoding literature

that have an impact on both occurrence and RRA summaries that

have yet to be clearly addressed. Appropriate statistical analysis of

metabarcoding data is one area that needs more development, in

particular how to deal with unit sum constrained data that is biased

(i.e., POO and RRA summaries add to 100%; therefore, any biases

will impact the magnitudes of the other diet components). This

becomes particularly confusing when comparisons are made

between populations eating some different food taxa, as relative

comparisons are difficult, and biases may only impact one population

(Aizpurua et al., 2018).

Another issue is the impact of collecting data with markers that

have low taxonomic resolution (McInnes, Alderman, Lea, et al., 2017)

or collating data at higher taxonomic levels to increase certainty in

taxonomic assignment (Biffi et al., 2017). Depending on how broad

the groupings are, occurrence summaries may not be very informa-

tive as many occurrences are potentially pooled. For RRA, it is

unclear whether pooling counts from multiple taxa will nullify fine-

scale stochasticity in recovery biases, or magnify lineage-specific

biases. A related issue is how to summarize data from diet metabar-

coding studies using multiple markers. When markers are targeting

the same food taxa, either additive (i.e., include detections by any

marker) or restrictive strategies (only include food detected by all

markers) could be logically applied in occurrence and RRA summaries

(Alberdi et al., 2017). The situation is even more complex when a

“universal” primer set is used to define the broad diet and group-

specific primers subsequently improve taxonomic resolution for par-

ticular groups (e.g., a marker targeting all plants together with several

that offer greater resolution for specific plant families). Errors based

on the universal marker will be propagated when attempting to

incorporate data from the other primer sets (i.e., if the grass family is

estimated to be 20% of a diet instead of the true 40%, then the per-

ceived importance of each grass species is reduced).This problem

can be avoided to some extent by reporting each component sepa-

rately, but this provides an unsatisfactory synthesis for omnivorous

and other species with a very diverse diet that can only be charac-

terized with several markers (De Barba et al., 2014). Studies that use

a marker capturing only one component of the diet need to be very

clear that the results comprise an unknown amount of the total diet.

Simulations such as the ones outlined in this article can help

establish which scenarios are most sensitive to biases from alternate

summaries (either occurrence or RRA). When informed by experi-

mental work to assign an error range to each parameter, and com-

bined with sensitivity analysis, this can identify which sources of

bias have the largest impact on conclusions. There are many down-

stream applications, and we have not considered impacts in specific

situations. For example, it would be very interesting to see how

switching between occurrence and RRA data sets affects outputs in

the context of quantitative food web studies (Banasek-Richter et al.,

2009; Roslin & Majaneva, 2016).

The ultimate test for how to deal with sequence counts in HTS

diet analyses will remain in empirical studies. We hope this opinion

piece will be a starting point to highlight the need to consider all

sources of bias and to justify the methods used when confronting

count data in metabarcoding studies. We also hope that this critique

is not discouraging to researchers approaching this new and rapidly

developing area of research, as no single study should be rightly

expected to address all issues arising from DNA-based diet analyses.
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Instead, our aim is to encourage researchers to continue addressing

methodological challenges and acknowledge unanswered questions

to help spur future investigations. As the field matures, we envisage

publication standards will emerge to provide the most robust diet

data and provide an accurate indication of the uncertainty associated

with dietary assessments.
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