

Supplementary Information for:

Nucleosomes inhibit target cleavage by CRISPR-Cas9 in vivo

Robert M. Yarrington, Surbhi Verma, Shaina Schwartz, Jonathan K. Trautman and Dana Carroll*

Corresponding author: Dana Carroll Email: <u>dana@biochem.utah.edu</u>

This PDF file includes:

Figs. S1 to S13 Tables S1 to S4 Reference for SI citation

T7 Endo I	G3 - +	trG3 - +	 +	 +	G10 - +	trG10 - +	G11 - +	trG11 - +	G17 - +	G18 - +	Un - +	
Unedited→		-	-									
Indel	Template	• T1	-	-			-		-	=		
Rank	17 14		5 15	9 8	16 1		15 2		6 3	13 12	Bro Chc	ad opChop
	1		15	3	17		13		14	10	ATU	JM I
	7		2	3	1		6		5	4	Sub	jective

Fig. S1. Ranking and analysis of sgRNAs for targets in human β -globin Exon 1. The top portion of the figure is a T7 endonuclease assay of Cas9 mutagenesis with each of the individual sgRNAs, reprinted with permission from ref. 1. sgRNAs with 20-nt guide sequences are labeled Gn, and truncated versions of some of these are labeled trGn. In the bottom portion, ranks assigned to the full-length sgRNAs by three on-line tools are tabulated. The web sites were given the full Exon 1 sequence. At the very bottom is a subjective assessment of the rank order of observed activities. The web searches were performed in January, 2017. Current web addresses are: Broad,

https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design;

ChopChop, http://chopchop.cbu.uib.no/; ATUM,

https://www.atum.bio/eCommerce/cas9/input. Ranks assigned by the on-line tools do not agree well with each other, and none of them corresponds particularly well to the observed mutagenesis levels.

Fig. S2. Analysis of sgRNA expression. RNA was isolated at the indicated times after induction of sgRNA synthesis with doxycycline (Dox min) and subjected to strand-specific qPCR, using primers for the *HO* 1363 sgRNA. DNA samples from qPCR at saturation were analyzed by electrophoresis in a 1.5 % agarose gel. Cells carried an empty sgRNA vector (EV) or a vector expressing the sgRNA for the 1363 target in the *HO* promoter. Some marker fragment sizes in the NEB Quick-Load 50 bp DNA ladder are shown on the left, in base pairs. Bands were excised from the gel and subjected to DNA sequencing. Bands 1, 2 and 3 from the EV samples were all artifacts with sequences corresponding to portions of the yeast ribosomal precursor RNA. Band 1 from the 1363 samples showed only the expected sgRNA sequence. Values below each lane are the levels of RNA as measured by qPCR relative to the 0 minute time point. Thus, sgRNA was present at a low level prior to induction with doxycycline and was strongly induced at later times.

Fig. S3. Cleavage efficiency does not correlate with the level of Cas9 expression. Galactose-inducible Cas9 was expressed either from a low-copy plasmid (left) or an integrated gene (right). Western blots (top) show time courses of expression of Cas9 protein. Southern blots show cleavage mediated by the *HO* 1339 sgRNA at the same time points. In samples on the left of each image, sgRNA expression was induced by doxycycline addition 60 minutes after Cas9 induction with galactose. In the four samples on the right, doxycycline was added 120 minutes after galactose. Neither the apparent level of Cas9 protein nor the timing of sgRNA induction by doxycycline had a significant effect on cleavage efficiency. The *GAL* promoters on the plasmid and integrated Cas9 genes were essentially identical.

Fig. S4. Comparable levels of cleavage were seen with integrated Cas9 expressed from a *GAL1* promoter and from a constitutive *ADH1* promoter. A Western blot (top) shows expression levels of Cas9 protein after growth in raffinose and at various times after galactose induction (left) and a parallel sample grown in glucose (right). *GAL1*-Cas9 protein shows an increase with time, while the *ADH1*-Cas9 level was constant. The Southern blot (bottom) shows levels of cleavage for comparable samples in a time course after doxycycline induction of the *HO* 1363 sgRNA. Cleavage efficiency was slightly lower with the *ADH1*-Cas9.

Fig. S5. Quantitation of the Southern blots in Figs. 1B (A) and 2C (B) by three methods. In each case, the result of stripping the blot and rehybridizing with a

probe for the *CLN2* promoter is shown. Using Fiji software, rows labeled "% cut" for each lane were quantitated by adding the intensity of the cut band and twice the intensity of the HMW band and dividing by that sum plus the intensity of the uncut band. In the rows labeled "100–% uncut" the ratio of the intensity of the uncut band in each lane was divided by the intensity of the corresponding *CLN2* band and normalized to the 0 minute time point for each target. "qPCR" reflects the loss of amplifiable (i.e., uncut) target DNA, normalized to *RPR1* in each sample and to the 0 minute time point; the EV and 1363 samples were not quantitated by qPCR. Some marker fragment sizes are shown, in base pairs.

In samples where the % cut is low, the values based on loss of uncut target are variable and sometimes negative. When the % cut is high, the 100–% uncut values are substantially higher. This likely reflects loss of hybridizable material in those samples that cannot be detected as bands. The differences between nucleosome-bound and NDR sites and between WT and Reb1 sites are retained regardless of the quantitation method.

In the right-most lanes in panel B, the failure of the 100–% uncut approach to report higher levels of cleavage may be due to non-uniform hybridization in that region with the *CLN2* probe.

sgRNA Time

Fig. S6. Viability assays. Cultures were treated as for cleavage assays. Cas9 expression was induced in all samples; sgRNAs were induced with doxycycline (Dox) for the times indicated in liquid culture. Zero-time samples received no Dox. Ten-fold dilutions of these cultures were spotted onto the indicated plates: YPAD, rich medium; SC-His + Gal, selects for the sgRNA plasmid and continues Cas9 induction with galactose; SC-His + Gal + Dox, as above, but with continuing induction of sgRNA.

All samples grew well on YPAD (top), but there appears to be a slight deficit in the induced 1339 sgRNA cells, presumably due to the cleavage that had occurred in liquid culture. Given the levels of cleavage measured in those samples (\leq 50%) and the possibility of repair, extensive loss of viability is not expected. When the sgRNA was induced in culture, viability was reduced with the continued expression of Cas9 (middle), presumably due to perdurance of the sgRNA. The effect on viability is more pronounced with the 1339 sgRNA than with the 184 sgRNA. With continued expression of both Cas9 and sgRNA (bottom), all the sgRNA-carrying cells show sharply reduced viability, perhaps somewhat more severe with 1339 sgRNA.

Fig. S7. Biochemical assays of Cas9 cleavage with sgRNAs used in these studies. Cas9 was assembled with each of the indicated sgRNAs and incubated with the appropriate linearized plasmid DNA substrate as described in Materials and Methods. The uncut samples are: Uncut1, wild type *HO* promoter (total length, 8.8 kb); Uncut2, *HO* promoter with the ry substitution at 1339 (8.8 kb); Uncut3, wild type *PHO5* promoter (6.65 kb); Uncut4, *PHO5* promoter with the ry substitution at 1a (6.65 kb). Sizes of marker fragments in the Invitrogen 1 Kb plus ladder are indicated on the left, in kb. The ratio of Cas9-sgRNA to DNA substrate is quite high in these assays, so they do not reflect relative activities of the various sgRNAs. Rather they are intended to show that all of the sgRNAs are functional.

S. cerevisiae chromosome IV: 50,000-47,750

Fig. S8. Nucleosome occupancy at the *HO* promoter determined by micrococcal nuclease mapping. The locations of the translation start (ATG) and the various sgRNA targets are indicated. The NDR in which the 1339 and 1363 targets are located is apparent. The level of nucleosome occupancy at the 875 and 1235 targets is clearly lower than at the other bound sites (184, 689, 1670). Data from McCullough, L, Pham, T.H., Chandrasekharan, M.B., Parnell, T.J., Stillman, D.J., Formosa, T. Manipulation of histone H3-K56 Acetylation reveals transcription-independent roles for FACT in establishing chromatin architecture, manuscript in preparation.

Fig. S9. Enhancement of cleavage at the *HO* 875 and 689 targets in the Reb1 site insertions. (A) Diagram of the paired Reb1 site insertions, each in a separate strain. (B) Southern blot showing Cas9 cleavage at 875 and 689 in wild type and Reb1 strains. Color scheme as in Figs. 1C and 2C. The empty vector samples are, from left to right, for the WT strain, 875 Reb1 and 689 Reb1.

Fig. S10. Southern blot showing cleavage at the *HO* promoter 689, 875, 1235 and 1363 targets in the a3b3 strain, in which natural nucleosome eviction is suppressed by mutation of two Swi5 binding sites. There was little or no effect on the poorly cut 689 target or the robustly cut 1363 target, neither of which is in an area affected by Swi5 binding. Cleavage at both 875 and 1235 was markedly reduced in the a3b3 strain. Color scheme as in Figs. 1C and 2C, plus a3b3 in green.

Fig. S11. Binding of dCas9 to the 184 and 1670 targets without and with Reb1 insertions. Values in the Reb1 strains are presented relative to WT, and error bars represent standard deviations of at least four measurements from two biological replicates.

Fig. S12. Time course of ZFN cleavage at the *HO* 184 and 1339 targets. Cleavage is seen at 30 minutes after nuclease induction by galactose, sooner than typically observed with Cas9 after sgRNA induction. Digestion of genomic DNA for this blot was done with *Ndel* + *Ngo*MIV rather than *Dra*II. ZFN cutting was stronger in this experiment than in the one shown in Fig. 6C. Two methods of quantitating the level of cleavage are shown.

Fig. S13. Southern blot showing Cas9 and ZFN cleavage at the -1 nucleosome in the PHO5 promoter in low and high phosphate media. The Cas9 results were obtained in a wild type strain; those for the ZFNs in a strain with a ry replacement at the 1a site. Times in minutes are those following doxycycline addition for Cas9 and galactose addition for ZFNs.

Supplementary Tables

Table S1. Yeast strains

otes
1.4
eb1
a h 1
ерт

DCY313	MATa URA3::GALp::yCas9::HphMX HO[-1268 to -1261	MC038	Reb1
	deleted]:TTACCCG HO[-1194 to -1187		
	deleted]:TTACCCG ade2 can1 his3 leu2 trp1 ura3		
FIG 3			
DCY136	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC037	
	leu2 trp1 ura3		
DCY138	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC038	
	leu2 trp1 ura3		
DCY270	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC040	
	leu2 trp1 ura3		
DCY271	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC041	
	leu2 trp1 ura3		
DCY272	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC042	
	leu2 trp1 ura3		
DCY280	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC060	
	leu2 trp1 ura3		
DCY309	MATa URA3::GALp::yCas9::HphMX HO[-240 to -232	MC037	Reb1
	deleted]:TTTACCCG HO[-160 to -152		
	deleted]:TTTACCCG ade2 can1 his3 leu2 trp1 ura3		
DCY311	MATa URA3::GALp::yCas9::HphMX HO[-1708 to -1700	MC042	Reb1
	deleted]:TTTACCCG HO[-1628 to -11620		
	deleted]:TTTACCCG ade2 can1 his3 leu2 trp1 ura3		
DCY313	MATa URA3::GALp::yCas9::HphMX HO[-1268 to -1261	MC038	Reb1
	deleted]:TTACCCG HO[-1194 to -1187		
	deleted]:TTACCCG ade2 can1 his3 leu2 trp1 ura3		
DCY450	MATa URA3::GALp::yCas9::HphMX HO[-1818 to -1812	MC040	a3b3
	deleted]:TATTCC HO[-1309 to -1299		
	deleted]:TCGTATCATT ade2 can1 his3 leu2 trp1 ura3		
DCY452	MATa URA3::GALp::yCas9::HphMX HO[-1818 to -1812	MC060	a3b3
	deleted]:TATTCC HO[-1309 to -1299		
	deleted]:TCGTATCATT ade2 can1 his3 leu2 trp1 ura3		
DCY454	MATa URA3::GALp::yCas9::HphMX HO[-1818 to -1812	MC038	a3b3
	deleted]:TATTCC HO[-1309 to -1299		
	deleted]:TCGTATCATT ade2 can1 his3 leu2 trp1 ura3		
DCY456	MATa URA3::GALp::yCas9::HphMX HO[-1818 to -1812	MC041	a3b3
	deleted]:TATTCC HO[-1309 to -1299		
	deleted]:TCGTATCATT ade2 can1 his3 leu2 trp1 ura3		
DCY460	MATa URA3::GALp::yCas9::HphMX HO[-725 to -717	MC040	a3b3
	deleted]:TTTACCCG HO[-671 to -663		
	deleted]:TTTACCCG ade2 can1 his3 leu2 trp1 ura3		

DCY464	MATa URA3::GALp::yCas9::HphMX HO[-913 to -905	MC060	Reb1
	deletedJ:TTTACCCG HO[-838 to -830		
	deletedJ:TTTACCCG_ade2 can1 his3 leu2 trp1 ura3		
FIG 4	AAATa UDAQuCALawuCasoullabAAY adaQ aaa1 bigQ		
DCY146	leu2 trp1 ura3	MC051	
DCY148	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC050	
	leu2 trp1 ura3		
DCY201	MATa ade2 can1 his3 leu2 trp1 ura3	MC036	
DCY202	MATa ade2 can1 his3 leu2 trp1 ura3	MC036	
FIG 5			
DCY203	MATa PHO85(F82G) ade2 can1 his3 leu2 trp1 ura3	MC036	
DCY204	MATa PHO85(F82G) ade2 can1 his3 leu2 trp1 ura3	MC036	
DCY233	MATa URA3::GALp::yCas9::HphMX PHO85(F82G) ade2	MC036	pho85
	can1 his3 leu2 trp1 ura3		(F82G)
DCY239	MATa URA3::GALp::yCas9::HphMX PHO85(F82G) ade2	MC049	pho85
	can1 his3 leu2 trp1 ura3		(F82G)
DCY241	MATa URA3::GALp::yCas9::HphMX PHO85(F82G) ade2	MC048	pho85
	can1 his3 leu2 trp1 ura3		(F82G)
DCY243	MATa URA3::GALp::yCas9::HphMX PHO85(F82G) ade2	MC051	pho85
	can1 his3 leu2 trp1 ura3		(F82G)
DCY245	MATa URA3::GALp::yCas9::HphMX PHO85(F82G) ade2	MC050	pho85
	can1 his3 leu2 trp1 ura3		(F82G)
FIG 6			
DCY142	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC036	
	leu2 trp1 ura3		
DCY157	MATa HO[-202 to -178	M3844,	ry
	deletedJ:AGCTACTACACGAATGGCGCGTGGGA ade2	MC036	
	can1 his3 leu2 trp1 ura3		
DCY159	MATa HO[-202 to -178	MC030,	ry
	deletedJ:AGCTACTACACGAATGGCGCGTGGGA ade2	MC031	
	can1 his3 leu2 trp1 ura3		
DCY161	MATa HO[-1346 to -1322	M3844,	ry
	deleted]:AGCTACTACACGAATGGCGCGTGGGA ade2	MC036	
	can1 nis3 leu2 trp1 ura3		
DCY163	MAIa HU[-1346 to -1322	MC030,	ry
	deletedJ:AGCTACTACACGAATGGCGCGTGGGA ade2	MC031	
	can1 his3 leu2 trp1 ura3		

DCY434	MATa URA3::GALp::yCas9::HphMX HO[-202 to -178	MC044	ry
	deleted]:AGCTACTACACGAATGGCGCGTGGGA ade2		
	can1 his3 leu2 trp1 ura3		
DCY438	MATa URA3::GALp::yCas9::HphMX HO[-202 to -178	MC036	ry
	deleted]:AGCTACTACACGAATGGCGCGTGGGA ade2		
	can1 his3 leu2 trp1 ura3		
DCY440	MATa URA3::GALp::yCas9::HphMX HO[-1346 to -1322	MC044	ry
	deleted]:AGCTACTACACGAATGGCGCGTGGGA ade2		
	can1 his3 leu2 trp1 ura3		
DCY444	MATa URA3::GALp::yCas9::HphMX HO[-1346 to -1322	MC036	ry
	deleted]:AGCTACTACACGAATGGCGCGTGGGA ade2		
	can1 his3 leu2 trp1 ura3		
DCY446	MATa URA3::GALp::yCas9::HphMX HO[-1268 to -1261	MC036	Reb1
	deleted]:TTACCCG HO[-1194 to -1187		
	deleted]:TTACCCG ade2 can1 his3 leu2 trp1 ura3		
FIG 7			
DCY408	MATa PHO85(F82G) ade2 can1 his3 leu2 trp1 ura3	M3844,	pho85
		MC036	(F82G)
DCY410	MATa PHO85(F82G) ade2 can1 his3 leu2 trp1 ura3	M3844,	pho85
		MC036	(F82G)
DCY412	MATa PH085(F82G) PH05:[-68 to -	M3844,	ry
	92}::AGCTACTACACGAATGGCGTGGGA ade2 can1 his3	MC036	pho85
	leu2 trp1 ura3		(F82G)
DCY414	MATa PH085(F82G) PH05:[-68 to -	M3844,	ry
	92}::AGCTACTACACGAATGGCGTGGGA ade2 can1 his3	MC036	pho85
	leu2 trp1 ura3		(F82G)
DCY416	MATa PHO85(F82G) PHO5:[-68 to -	MC030,	ry
	92}::AGCTACTACACGAATGGCGTGGGA ade2 can1 his3	MC031	pho85
	leu2 trp1 ura3		(F82G)
DCY549	MATa URA3::GALp::yCas9::HphMX PHO85(F82G)	MC036	ry
	PHO5:[-68 to -92}::AGCTACTACACGAATGGCGTGGGA		pho85
	ade2 can1 his3 leu2 trp1 ura3		(F82G)
DCY551	MATa URA3::GALp::yCas9::HphMX PHO85(F82G)	MC050	ry
	PHO5:[-68 to -92}::AGCTACTACACGAATGGCGTGGGA		pho85
	ade2 can1 his3 leu2 trp1 ura3		(F82G)
DCY553	MATa URA3::GALp::yCas9::HphMX PHO85(F82G)	MC044	ry
	PHO5:[-68 to -92}::AGCTACTACACGAATGGCGTGGGA		pho85
	ade2 can1 his3 leu2 trp1 ura3		(F82G)
FIG S2			
DCY142	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC036	
	leu2 trp1 ura3		

DCY271	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC041	
	leu2 trp1 ura3		
FIG S3			
DCY266	MATa ade2 can1 his3 leu2 trp1 ura3	MC014,	
		MC039	
DCY267	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	M3844,	
	leu2 trp1 ura3	MC039	
FIG S4			
DCY142	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC036	
	leu2 trp1 ura3		
DCY271	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC041	
	leu2 trp1 ura3		
DCY298	MATa URA3::ADH1::yCas9::HphMX ade2 can1 his3	MC036	
	leu2 trp1 ura3		
DCY300	MATa URA3::ADH1::yCas9::HphMX ade2 can1 his3	MC041	
	leu2 trp1 ura3		
FIG S5			
DCY136	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC037	
	leu2 trp1 ura3		
DCY138	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC038	
	leu2 trp1 ura3		
DCY140	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC039	
	leu2 trp1 ura3		
DCY142	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC036	
	leu2 trp1 ura3		
DCY271	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC041	
	leu2 trp1 ura3		
DCY272	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC042	
	leu2 trp1 ura3		
DCY309	MATa URA3::GALp::yCas9::HphMX HO[-240 to -232	MC037	Reb1
	deletedj:111ACCCG H0[-160 to -152		
50/044	deletedj:111ACCCG ade2 can1 his3 leu2 trp1 ura3		
DCY311	MATa URA3::GALp::yCas9::HphMX HO[-1708 to -1700	MC042	Reb1
	deleted]:111ACCCG H0[-1628 to -11620		
DCV212	deletedj: 111ACCCG daez can1 nis3 leuz trp1 urd3	N4C020	Dah1
DC1313	IVIATA UKAS::GALP::yCas9::HPNIVIX HU[-1268 to -1261		керт
	deleted]: ITACCCG ada2 and bio2 low2 trad war2		
FIG 30			

DCY466	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC063	
	leu2 trp1 ura3		
DCY468	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC064	
	leu2 trp1 ura3		
DCY470	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC065	
	leu2 trp1 ura3		
FIG S9			
DCV142	MATa IIRA3GAI nvCas9HnhMX ade2 can1 his3	MC036	
Deriaz	leu2 trp1 ura3	Wiebso	
DCY270	MATa URA3::GALp::vCas9::HphMX_ade2 can1 his3	MC040	
0012/0	leu2 trp1 ura3		
DCY271	MATa URA3::GALp::vCas9::HphMX ade2 can1 his3	MC041	
_	leu2 trp1 ura3		
DCY280	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC060	
	leu2 trp1 ura3		
DCY458	MATa URA3::GALp::yCas9::HphMX HO[-725 to -717	MC036	Reb1
	deleted]:TTTACCCG HO[-671 to -663		
	deleted]:TTTACCCG ade2 can1 his3 leu2 trp1 ura3		
DCY460	MATa URA3::GALp::yCas9::HphMX HO[-725 to -717	MC040	Reb1
	deleted]:TTTACCCG HO[-671 to -663		
	deleted]:TTTACCCG ade2 can1 his3 leu2 trp1 ura3		
DCY462	MATa URA3::GALp::yCas9::HphMX HO[-913 to -905	MC036	Reb1
	deleted]:TTTACCCG HO[-838 to -830		
	deleted]:TTTACCCG ade2 can1 his3 leu2 trp1 ura3		
DCY464	MATa URA3::GALp::yCas9::HphMX HO[-913 to -905	MC060	Reb1
	deleted]:TTTACCCG HO[-838 to -830		
	deleted]:TTTACCCG ade2 can1 his3 leu2 trp1 ura3		
FIG S10			
DCY138	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC038	
	leu2 trp1 ura3		
DCY142	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC036	
	leu2 trp1 ura3		
DCY270	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC040	
	leu2 trp1 ura3		
DCY271	MATa URA3::GALp::yCas9::HphMX ade2 can1 his3	MC041	
	leu2 trp1 ura3		
DCY280	MATa URA3::GALp::yCas9::HphMX_ade2_can1 his3	MC060	
	ieuz trp1 ura3		
DCY348	MAIa UKA3::GALp::yCas9::HphMX HO[-1818 to -1812 deletedl:TATTCC HO[-1200 to _1200	MC036	a3b3
	deleted].TGTATCATT ade2 can1 his2 leu2 trn1 ura2		
1	acielicaj. i contrictar i adez cunt niss leaz li pi di as		l

DCY450	MATa URA3::GALp::yCas9::HphMX HO[-1818 to -1812	MC040	a3b3
DOV452	deletedj: ICGTATCATT ddez cant niss ledz trp1 urds	NACOCO.	- 2 - 2
DC1452	MATa UKAS::GALP::yCas9::Hpnivix HU[-1818 (0-1812	IVICUBU	8303
	deletedj:ICGTATCATT ade2 can1 his3 leu2 trp1 ura3		
DCY454	MATa URA3::GALp::yCas9::HphMX HO[-1818 to -1812	MC038	a3b3
	deleted]:TATTCC HO[-1309 to -1299		
	deleted]:TCGTATCATT_ade2 can1 his3 leu2 trp1 ura3		
DCY456	MATa URA3::GALp::yCas9::HphMX HO[-1818 to -1812	MC041	a3b3
	deleted]:TATTCC HO[-1309 to -1299		
	deleted]:TCGTATCATT ade2 can1 his3 leu2 trp1 ura3		
FIG S11			
DCY561	MAT a ade2 can1 his3 leu2 trp1 ura3	M5771,	
		MC036	
DCY562	MATa HO[–1708 to –1700 deleted]:TTTACCCG	M5771,	Reb1
	HO[-1628 to -11620 deleted]:TTTACCCG ade2 can1	MC042	
	his3 leu2 trp1 ura3		
DCY563	MATa ade2 can1 his3 leu2 trp1 ura3	M5771,	
		MC036	
DCY564	MATa HO[-240 to -232 deleted]:TTTACCCG HO[-160	M5771,	Reb1
	to -152 deleted]:TTTACCCG ade2 can1 his3 leu2 trp1	MC037	
	ura3		
FIG S12			
DCY157	MATa HO[–202 to –178	M3844,	ry
	deleted]:AGCTACTACACGAATGGCGCGTGGGA ade2	MC036	
	can1 his3 leu2 trp1 ura3		
DCY159	MATa HO[-202 to -178	MC030,	ry
	deleted]:AGCTACTACACGAATGGCGCGTGGGA ade2	MC031	,
	can1 his3 leu2 trp1 ura3		
DCY161	MATa HO[-1346 to -1322	M3844.	rv
	deleted1:AGCTACTACACGAATGGCGCGTGGGA ade2	MC036	- 1
	can1 his3 leu2 tro1 ura3		
DCY163	MATa HO[-1346 to -1322	MC030	rv
201103	deleted]:AGCTACTACACGAATGGCGCGTGGGA ade?	MC031	.,
	can1 his3 leu2 trn1 ura3	MCCOT	
FIG \$13			
DCV111	MATa LIBA3"GAL n"V(asq"HphMX ade? can1 his?	MC040	
001144	leu2 trp1 ura3	1010043	

DCY167	MATa PHO5:[-68 to -	MC030,	ry
	92}::AGCTACTACACGAATGGCGTGGGA ade2 can1 his3	MC031	
	leu2 trp1 ura3		

Plasmid Yeast ORI Selection Description M2817 3.5kb HO promoter sequence cloned into pUC18 N/A Amp pRS415-Gal1 plasmid M3844 CEN LEU2 Adh1p:proteinA:dCas9 fusion expression vector M5771 2μ TRP1 MC030 URA3 Galp:RyA yeast plasmid CEN MC031 Galp:RyB yeast plasmid CEN LEU2 MC032 Galp:yCas9 integrating plasmid at URA3 N/A KanMx MC036 Tet-ON guide RNA plasmid, used as EV CEN URA3 MC037 Tet-ON guide RNA plasmid targeting HO -184 CEN URA3 MC038 Tet-ON guide RNA plasmid targeting HO -1235 CEN URA3 MC039 Tet-ON guide RNA plasmid targeting HO -1339 URA3 CEN MC040 Tet-ON guide RNA plasmid targeting HO -706 URA3 CEN MC041 Tet-ON guide RNA plasmid targeting HO -1363 CEN URA3 MC042 URA3 Tet-ON guide RNA plasmid targeting HO -1670 CEN MC044 Tet-ON guide RNA plasmid targeting ry sequence CEN URA3 URA3 MC048 Tet-ON guide RNA plasmid targeting PHO5 1b CEN MC049 Tet-ON guide RNA plasmid targeting PHO5 1a URA3 CEN MC050 Tet-ON guide RNA plasmid targeting PHO5 2b CEN URA3 MC051 Tet-ON guide RNA plasmid targeting PHO5 2a CEN URA3 MC058 PHO5 promoter cloned into pCR4-TOPO N/A Amp MC059 Nsil to AflII HO promoter sequence containing 1339 N/A Amp ry sequence cloned into M2817 Tet-ON guide RNA plasmid targeting HO -875 URA3 MC060 CEN MC061 PHO5 promoter with -1 ry cloned into pCR4-TOPO N/A Amp MC063 Tet-ON guide RNA plasmid, used as EV CEN HIS3 Tet-ON guide RNA plasmid targeting HO -184 MC064 CEN HIS3 MC065 Tet-ON guide RNA plasmid targeting HO -1339 CEN HIS3

Table S2. Plasmids

Promoter	Target	Target sequence	PAM	Strand
НО	184	GCTATTGCTACTCAAATG	AGG	top
	689	TGGTAGACGTGTGTGTCTCA	TGG	top
	875	TGAACCTGGTACGTATATTG	TGG	bottom
	1235	GATTATTTGATACCCCTTT	GGG	bottom
	1339	GATGTATCTCATCGCAGGCA	CGG	bottom
	1363	CAGTACAGTGCCCTGAGCGT	AGG	bottom
	1670	TGTTCTGGAGGCTTTACAAA	AGG	top
PHO5	1a	GCTGATGTTTTGCTAAGTCG	AGG	top
	1b	TTGCTAAGTCGAGGTTAGTA	TGG	top
	2a	GTCCCACGTGTGAGTGCCA	AGG	bottom
	2b	CAACCTTGGCACTCACACGT	GGG	top
ry target	ry1	AGCTACTACACGAATGGCGT	GGG	top

Table S3. Target sequences for sgRNAs

Table S4. PCR Primers

			Position
Oligo	Description	Sequence	Relative to ATG
PCR oligos			
	Forward primer for		
DC089	CLN2 Southern Probe	GGGTATCTGCGAATTGGAAA	-1568 to -1550
	Reverse primer for		
DC090	CLN2 Southern Probe	AGGAGCATAGAGGCGAATGA	-1100 to -1081
	Forward primer for		
DC096	PHO5 Southern Probe	GTTCCTTGGTTATCCCATCG	-990 to -971
	Reverse primer for		
DC097	PHO5 Southern Probe	CGTTGACATATTTGCGCATT	-571 to -498
	Forward primer for HO		
DC116	Southern Probe	TTCAAAAGACGGTGCCATTA	-2273 to -2254
	Reverse primer for HO		
DC117	Southern Probe	GGCACAATTTTACGTTGGAA	-1853 to -1834
	Forward primer for HO		
DC235	-1339 ry cloning	CACGTAGTTCTTACTGGCAAAG	-1929 to -1908
	Reverse primer for HO		
DC236	-1339 ry cloning	GTTACATCACTTTTCGTGACACA	-603 to -581
	Forward primer for MX		
F3248	cassette conversion	GACATGGAGGCCCAGAATAC	
	Reverse primer for MX		
F3249	cassette conversion	CGACAGCAGTATAGCGACCA	
RT-qPCR			
oligos			
	Forward primer for		
DC136	sgRNA qPCR	ACTCGGTGCCACTTTTTCAA	
	Reverse primer for		
DC241	sgRNA qPCR	CAGTACAGTGCCCTGAGCGT	
	Forward primer for		
F1860	qPCR at HO -184	TGAATTGTACTACCGCTGGG	-287 to -268
	Reverse primer for		
F1862	qPCR at HO -184	CGAAAAGTTCAACATAACTT	-247 to -228
	Forward primer for		
F2087	qPCR at <i>HO</i> -1670	AAAGGCGGATCAAGATGTATGAAAG	-1742 to -1717
	Reverse primer for		4530
F2088	qPCR at <i>HO</i> -1670	GGAACCATGTGATCTTACGTTGATATG	-1578 to -1551
50007	Forward primer for		
F2091	qPCR at <i>HO</i> -1339	AAGCTAAGAATTTCACATGTTGTTG	-1471 to -1446

		1	
	Reverse primer for		
F2092	qPCR at <i>HO</i> -1339	GTTGAGGTCTTTTCTATTTCTGATTG	-1276 to -1250
	Forward primer for		
F2093	qPCR at <i>HO</i> -1235	AATGCTGGAGCAAAAATTTCAATCAG	-1295 to -1269
	Reverse primer for		
F2094	qPCR at <i>HO</i> -1235	GGAGCCCCTCAGACATTAGCC	-1142 to -1121
	Forward primer for		
F2153	qPCR of PHO5 ORF	TTATTCTCGTGGTGTGCATTT	+775 to +795
	Reverse primer for		
F2154	qPCR of PHO5 ORF	CTTTAATAATTTGACTGAGGCATTG	+942 to +966
	Forward primer for		
F2430	qPCR of <i>RPR1</i>	CACCTATGGGCGGGTTATCAG	
	Reverse primer for		
F2431	qPCR of <i>RPR1</i>	CCTAGGCCGAACTCCGTGA	
ChIP-qPCR			
oligos			
	Forward primer for		
	ChIP at PHO5 -2		
DC160	nucleosome	TTTCGCATAGAACGCAACTG	-357 to -338
	Reverse primer for		
	ChIP at PHO5 -2		
DC161	nucleosome	ATGCCTTGCCAAGTAAGGTG	-171 to -152
	Forward primer for		
	ChIP at <i>PHO5</i> -56 to -		
DC213	278	GAATCGATACAACCTTGGCACT	-277 to -256
	Reverse primer for		
56244	ChIP at <i>PHO5</i> -56 to -		70. 50
DC214	2/8	IGAAGCCATACTAACCTCGACTT	-78 to -56
	Forward primer for		
54200	ChiP at IG-V control		
F1399	region Devenue ariman for	GGCTGTCAGAATATGGGGGCCGTAGTA	
	Reverse primer for		
F1 400	ChiP at IG-V control	CACCCCCAACCTCCTTCACAATAC	
F1400			
E1960	Forward primer for $Chip at HO = 184$	TCAATTCTACTACCCCCCCC	297 +0 269
LTODO	CIIIP dl HU -184		-287 10-208
E1001	Chip at UO 184		207 + 2 100
LT00T	Altornata Davaraa		-207 10-188
	Allemale Reverse		
E1000		COTTOATCATCOTTOAACAA	167 to 149
ΓΙΟΟΟ	104	GUITCATCATGUITCAACAA	10/ נ0 -148

	Forward primer for		
F1908	ChIP at <i>HO</i> -1670	CGGATCAAGATGTATGAAAG	-1737 to -1718
	Reverse primer for		
F1928	ChIP at <i>HO</i> -1670	GGATAAGATCGCACCTAACA	-1657 to -1638
	Forward primer for		
F1960	ChIP at <i>HO</i> -875	AAAATATACACAAACGCCAC	-897 to -878
	Reverse primer for		
F1983	ChIP at <i>HO</i> -875	AATCGACGACGGTCACATTA	-817 to -798
	Forward primer for		
F1966	ChIP at <i>HO</i> -689	ATCTGACAACATGGTAGACG	-717 to -698
	Reverse primer for		
F1989	ChIP at <i>HO</i> -689	CCCTTAAGCCCTGTGTAGGA	-637 to -618
	Forward primer for		
F2001	ChIP at <i>HO</i> -1235	CCTCAACAGTAATTAACCCA	-1257 to -1238
	Reverse primer for		
F2005	ChIP at <i>HO</i> -1235	TTTTACGCGATTCGGCCCAA	-1177 to -1158
	Forward primer for		
	dCas9 ChIP at HO -		
F2087	1670	AAAGGCGGATCAAGATGTATGAAAG	-1742 to -1717
	Reverse primer for		
	dCas9 ChIP at HO -		
F2088	1670	GGAACCATGTGATCTTACGTTGATATG	-1578 to -1551
	Forward primer for		
F2091	ChIP at <i>HO</i> -1339	AAGCTAAGAATTTCACATGTTGTTG	-1471 to -1446
	Reverse primer for		
F2092	ChIP at <i>HO</i> -1339	GTTGAGGTCTTTTCTATTTCTGATTG	-1276 to -1250
	Forward primer for		
F2119	dCas9 ChIP at HO -184	ACCATTGGTACCTACTACTTTGAAT	-307 to -282
	Reverse primer for		
F2120	dCas9 ChIP at HO -184	GCCATTTAGAATAGGAATTGAATAC	-100 to -75
	Forward primer for		
	ChIP at PHO5 -1		
F2647	nucleosome	CACCTTACTTGGCAAGGCATA	-171 to -150
	Reverse primer for		
	ChIP at PHO5 -1		
F2648	nucleosome	GTAATCTCGAATTTGCTTGCTCTATT	-28 to -2
	Forward primer for		
	ChIP at IG-1 control		
F3201	nucleosome	TGTCACGTAGGTAAAACACTTGC	
	Reverse primer for		
	ChIP at IG-1 control		
F3202	nucleosome	CCTTGATGGCGTGCTTAACT	

Reference

1. DeWitt MA, *et al.* (2016) Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. *Science translational medicine* 8(360):360ra134.