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Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This
challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at
different positions and then propose a novel approach based on multi-frequency complex network to
uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast
Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time
series. We construct complex networks at different frequencies and then detect community structures. Our
results indicate that the community structures faithfully represent the structural features of oil-water flow
patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network
and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield
deep insights into the formation of flow structures. Current results present a first step towards a network
visualization of complex flow patterns from a community structure perspective.

T
he oil-water mixture flow widely exists in oil exploitation and petrochemical industries. The single-phase
flow and two-phase flow are very different and the intrinsic difference lies in the occurrence of flow pattern,
which is defined by temporal-spatial configuration of the immiscible two phases in a pipe. The study of oil-

water flow pattern is crucial for oil industrial processes, e.g., the artificial lift methods in oil wells and flow
equipments design all depend on the flow patterns. Horizontal oil-water flow pattern presents stratified structural
features at low flow rate; with the increase of flow rate, the structural features of stratified with interfacial waves
occurs; At a high flow rate, flow pattern exhibits dispersed flow structure.

The investigation of experimental oil-water flows is a foundational issue of significant importance and it has
drawn much attention from chemical engineering and physical research areas. The experimental observation1,
numerical simulation2, support vector machine3, particle image velocimetry technique4, multivariate recurrence
networks5, wavelet multiresolution technique6 and measurement techniques based on wire-mesh sensor7, optical
probes8, high frequency impedance probe9, and parallel-wire capacitance probe10 have been implemented to the
investigation of oil-water flows. Despite the existing results, how to reveal the complex oil-water flow structure
from experimental signals still represents a significant challenge. Although the traditional single sensor mea-
surement combined with the approaches for analyzing univariate signals, e.g., the conductance ring sensor
combined with fractal analysis, have been successfully introduced into the investigation of gas-liquid flows11,
these analytical frameworks are incapable of revealing the complicated local oil-water flow structures, mainly on
account of the existence of physical foundational differences between these two distinct flow situations. Aiming to
reveal the oil-water flow structure, we need to use distributed sensors to measure the information of local flow
behavior from different positions. Next, how to access to flow structure from the multivariate signals appears as a
key challenge. In this regard, developing an efficient approach to realize information fusion and then to uncover
the horizontal oil-water flow structures would be particularly helpful and necessary.

Complex network has undergone a remarkable development in the last decade and it provides us a powerful
framework for investigating complex systems from different disciplines12–30. Representing system components as
nodes and regarding the interactions between nodes as edges allows us to infer a complex network from a complex
system. For a real complex network, there often exist various community structures: within a community nodes
are densely connected while between communities links are sparse. Community detection is of great importance
for investigating the function and structure of complex networks. Different methods have been put forward for
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efficiently detecting network community31–37. Quite recently, the
complex network theory has greatly contributed to the analysis of
time series38–45, including the research area of climate46–47, gene48,
brain network49, grain networks50, network topology estimation51,
friction networks52, traffic flow53, turbulent heated jets54 and mul-
tiphase flow system55–59, etc. Bridging multivariate data analysis and
complex network allows establishing a novel analytical framework
for realizing multivariate information fusion.

We previously proposed a multivariate recurrence network to
distinguish different horizontal oil-water flow patterns5 and study
dynamical flow behavior underlying oil-water stratified flows57. The
former network methodologies focus on the phase-space reconstruc-
tion and recurrence analysis. As a further study, we in this paper
propose a novel approach to derive multi-frequency complex net-
work from multivariate time series and then visualize and uncover
the complex flow structure in terms of community structure at dif-
ferent frequencies. In particular, we conduct experiments and use our
newly designed distributed conductance sensor to measure local flow

signals at different positions for each flow pattern. Then, we derive
multi-frequency complex networks from multivariate measurements
and detect network communities at different frequencies. The results
suggest that the networks community structures faithfully represent
the structural features of different oil-water flow patterns. Our ana-
lytical framework can be treated as a network visualization of com-
plex flow structures from a community structure perspective. In
order to quantitatively assess the characteristics underlying com-
munity structures, we investigate the network statistic at different
frequencies and find that the frequency clustering coefficient allows
us to uncover the formation and evolution of different oil-water flow
structures.

Results
Experimental design and data acquisition. The experiment was
carried out in the key laboratory of multiphase flow at Tianjin
University. Figure 1 shows experimental flow loop facility and our
newly designed distributed conductance sensor. The inner-diameter

Figure 1 | Experimental flow loop facility. The multivariate signals are measured from the distributed conductance sensor. The high speed camera and

mini-conductance probes are exploited to define oil-water flow patterns and flow structures.

Figure 2 | Five types of horizontal oil-water flow patterns. (a) Stratified flow (ST); (b) Stratified flow with mixing at an interface (ST&MI); (c) Dispersion

of oil in water and water flow (D O/W&W); (d) Dispersion of water in oil and oil in water flow (D W/O& D O/W); (e) Dispersion of oil in water

flow (D O/W).
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of the horizontal pipe is 20 mm and the media are oil and tap water.
The experimental environment temperature and pressure is 25
degrees Celsius and atmospheric pressure, respectively. We first
input oil and water mixture into a horizontal pipe at a fixed water
flow rate, then gradually change oil flow rate. A flow condition can be
obtained each time when the flow rates of oil and water attain a pre-
defined ratio, and then we acquire the multivariate signals from our
designed distributed conductance sensor. The water flow rate and oil
flow rate can be accurately measured by using electromagnetic flow
meter and turbine flow meter, respectively. The sampling frequency
is 4000 Hz and the measuring time for one measurement is 30 s. We
in the experiment generate five typical horizontal oil-water flow
structures (flow patterns), as shown in Fig. 2, including ST
(stratified flow), ST&MI (stratified flow with mixing at an
interface), D O/W&W (dispersion of oil in water & water flow), D
W/O& D O/W (dispersion of water in oil & dispersion of oil in water
flow), D O/W (dispersion of oil in water flow). The range of Reynold
number is 300 , 6000. The multivariate signals measured from our
distributed sensors consist of four time series, each of which is
obtained with a sector sensor that is placed at different positions of
the horizontal pipe so as to effectively capture the local flow
information.

Network visualization of flow patterns in terms of community
structure. Complex networks usually can be divided into
communities with a large number of internal connections,
interconnected by fewer external edges. The information mined
from the detected community structures is of great values, e.g., the
community structure of brain network allows revealing the
functional connectivity and interaction underlying the complex
brain system. Based on the experimental multivariate signals, we
use our proposed framework to infer numbers of multi-frequency
complex networks for different flow conditions. Then we employ a
fast multi-scale community detection algorithm37 to detect the
network communities associated with flow structures at different
frequencies. In particular, after inferring networks for the
frequency band 0 , 30 Hz, we detect the community structures at
different frequencies for different flow patterns and find that the
modularity of ST, ST&MI, D O/W&W, D W/O& D O/W and D
O/W reaches a stable maximum at the frequency band of 0 ,
20 Hz, 0 , 20 Hz, 5 , 25 Hz, 5 , 25 Hz, 10 , 30 Hz,
respectively. This result can be well supported by the existing
knowledge about the local movement frequencies of different flow
patterns. We show the detected network structures of the maximum
modularity for different flow patterns in Fig. 3.

For the ST flow structure, oil phase and water phase continuously
flow in the upper part and bottom part of the horizontal pipe,
respectively. There exists an oil-water interface without the occur-
rence of droplets, as shown in Fig. 2(a). Correspondingly, the net-
work community structure of ST flow is composed of three
communities, as shown in Fig. 3(a). With an increase in oil flow rate
under an unchanged water flow rate, large amplitude fluctuations
appear and then gradually increase at oil-water interface (Fig. 2(b)),
and correspondingly, liquid droplets of different size occur near
the oil-water interface and the thickness of oil layer becomes
thicker, reflecting the flow structure of the ST&MI flow pattern.
Consequently, the network community structure of ST&MI flow
consists of a very big community and a small community, which is
different to that of ST flow pattern, as can be seen in Fig. 3(b). For the
segregated flows (ST, ST&MI), the separated community that is
represented by yellow triangle results from the bottom local flow

Figure 3 | Community structures of the multi-frequency complex
networks for five horizontal oil-water flow patterns. (a) ST; (b) ST&MI;

(c) D O/W&W; (d) D W/O& D O/W; (e) D O/W. The networks from

different flow patterns exhibit distinct community structures and the

community structures faithfully represent the structural features of

different flow patterns.
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structure of water continuous flow, as shown in Fig. 3(a)–(b). D O/
W&W flow structure (Fig. 2(c)) presents the features of oil droplets
dispersedly flowing in a water continuum in the upper and middle
part, and a continuous water layer flowing in the bottom part.
Correspondingly, there exist four network communities underlying
D O/W&W flow structure, as can be seen from Fig. 3(c), wherein the
separated one corresponds to the water layer and the other three
result from the flow behavior of dispersed oil droplets. With the
increase of the oil flow rate, oil droplets disperse into water continu-
ous phase in the bottom part and the flow structure in upper part
evolves into oil containing dispersed water droplets, and flow struc-
ture in the middle part is the stochastic movements of numerous
dispersed water and oil droplets, i.e., the D W/O&D O/W flow pat-
tern occurs (Fig. 2(d)). Since the flow structure becomes more com-
plicated in the transformation from D O/W&W flow to D W/O&D
O/W flow, the community structure of the D W/O&D O/W flow
becomes more complex than that of D O/W&W flow, as can be seen
from Fig. 3(d), and there are four communities and there does not
exist such a separated community shown in Fig. 3(c). The flow struc-
ture will evolve into D O/W at a high water flow rate (Fig. 2(e)), in
which dispersed oil droplets randomly flowing in water continuum
for the whole horizontal pipe, consequently, the dynamic flow beha-
vior and flow structure become very complicated. We can see from
Fig. 3(e) that, the community structure of the D O/W flow is similar
to that of D W/O&D O/W flow, but there exist five communities, i.e.,
number of community is more than that of D W/O&D O/W flow.
Therefore, based on the multivariate signals from distributed con-
ductance sensor, the community structures of multi-frequency com-
plex networks allow us to recognize different flow patterns and
further pave a way for realizing network visualization of complex
flow structures. In the next section, we will use a network statistic to
quantitatively uncover the flow behavior which accounts for the
evolution of flow patterns and formation of flow structures.

Dynamical characterization of flow pattern transitions. Our
methodology allows mapping multivariate signals acquired from
our distributed sensors into a multi-frequency complex network in
the frequency range of 0 , 30 Hz. We derive multi-frequency
complex networks from experimental measurements for different
flow patterns. Then we exploit the network frequency clustering
coefficient to quantitatively assess the characteristics of each
derived network. The clustering coefficient proposed by Watts et
al.60 measures denseness of connections among the neighbors of a
given node, which allows us to access to the local topological
connections underlying a complex network. In particular, for our
multi-frequency complex network, a clustering coefficient of a
node v at frequency f, i.e., Cv(f), can be calculated as follows:

Cv(f )~
2Ev(f )

kv(f ):(kv(f ){1)
~

P
j,m Aij(f )Aim(f )Amj(f )

kv(f ):(kv(f ){1)
ð1Þ

where Ev(f) is the number of closed triangles containing node v at
frequency f and kv(f) is the degree of the node v at frequency f, which
is defined as the number of connections to node v at frequency f. The
frequency clustering coefficient for the network at frequency f can
then be obtained by

C(f )~
1
N

XN

v~1

Cv(f ) ð2Þ

where N is the total number of nodes. In our multi-frequency
complex network analysis, we focus on the frequency bands within
which the modularity is larger than 0.1, and then calculate the
frequency clustering coefficients C(f) at these frequency bands and
correspondingly calculate the mean value and standard deviation of
C(f) for different frequencies (for one flow condition). We in Fig. 4
present mean values ,C(f). and standard deviations (error bars) of

C(f)for different flow conditions arising from five different flow
structures.

The ST flow and ST&MI flow are sorted into segregated flow, in
which the oil phase and water phase locate in the upper and bottom
part, respectively, and the two phases are separated. As can be seen,
the frequency clustering coefficients for ST flow and ST&MI flow

Figure 4 | Distributions of frequency clustering coefficients and number
of communities for the transitions of different horizontal oil-water flow
patterns. The square symbols represent the distributions of frequency

clustering coefficients and the circular symbols represent the number of

communities for different flow patterns.
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locate in two different regions. A characteristic change of ,C(f).
occurs when the flow structure evolves from ST type to ST&MI type.
ST flow structure occurs at low water and low oil flow rates, and
under these flow conditions the momentum instabilities remain
minimal and the gravity plays a dominated role. So the ST flow
structure is usually steady and its interfacial wave behavior is not
obvious. With an increase in oil flow rate under an unchanged water
flow rate, the relative movement between water phase and oil phase
increases, which contribute to the appearance and growth of inter-
facial waves. This is an onset of ST&MI flow structure, in which drag
force enhanced by the increased relative movements overcomes the
surface tension force, resulting in the deformation of oil-water inter-
facial wave and formation of liquid droplets. In particular, in ST&MI
flow, the hydrodynamics forces the liquid drops to distribute on pipe
cross-section, while meantime the buoyancy reacts on the drops to
resist the downtrend caused by gravity. By further increasing the flow
rate, the interfacial wave propagation is greatly strengthened, and
eventually leads to the formation of more liquid drops at oil-water
interface. From Fig. 4(a) we can see that, ,C(f). for ST flow are of
small values, but with the increase of oil flow rate, e.g., Uso 5

0.2947 m/s, the ,C(f). will increase from 0.773 to 0.886, indicating
interfacial wave behavior becomes enhanced and unstable and at the
meantime the liquid droplets are formed at the interface.

Besides the ST and ST&MI flow, the other three flows are classified
into dispersed flows. The typical features of dispersed flows lie in the
existence of one dispersed phase. D O/W&W flow structure appears
at high water flow rates and middle oil flow rates. As the oil flow rate
further increases, the density of oil phase increases and the tur-
bulence energy of the mixture flow also increases. Consequently, in
the upper part the local flow structure evolves from oil in water form
to water in oil form and local flow structure in the bottom part is
numerous dispersed oil droplets flowing in water continuum, indi-
cating the occurrence of D W/O&D O/W flow structure. In D W/
O&D O/W flow structure, the dispersed water/oil droplets randomly
flow in the continuous oil/water phase in the upper/bottom part of
the horizontal pipe. Correspondingly, as can be seen from Fig. 4(b),
the values of ,C(f). for D O/W&W flow structure are relative large
(but smaller than that of ST flow structure and ST&MI flow struc-
ture), and it decreases in the transition to D W/O&D O/W flow
structure, indicating the stochastic flow of plenty of oil drops induced
by the increase of oil flow rate. When the water flow rate is very high,
the D O/W flow pattern occurs, in which the cross-sectional area of
the pipe is occupied by water containing dispersed oil droplets. The
dynamic behaviors underlying the motions of massive dispersed oil

droplets are rather stochastic. Correspondingly, the ,C(f). for D O/
W flow structure is rather small (Fig. 4(c)), which is similar to that of
D W/O&D O/W flow but different to other flow patterns. Therefore,
the frequency clustering coefficient from multi-frequency complex
network enables to efficiently characterize the evolution of oil-water
flow structures. For instance, when an evolution in oil-water flow
structure occurs, a characteristic change in ,C(f). arises. In addi-
tion, we can see that, the values of ,C(f). for different flow struc-
tures are distinct, except for D W/O&D O/W flow and D O/W flow.
But the number of communities (community structure) for D W/
O&D O/W flow structure and D O/W flow structure is different,
which provides complementary information for the frequency clus-
tering coefficient. Combining the frequency clustering coefficient
and the number of communities provide us a reference frame for
recognizing flow structures and characterizing flow behavior. All
these findings suggest that the analytical framework of multi-fre-
quency complex network is an efficacious and intuitionistic method
for uncovering complex oil-water flow structures.

Discussions
The investigation of complex oil-water flow structures is a fun-
damental issue eliciting a great deal of interest and attention from
different research fields. We have proposed a framework of multi-
frequency complex network to visualize horizontal oil-water flow
structures and then investigated the evolution of different flow struc-
tures from experimental multivariate signals. The basic idea is to
construct multi-frequency complex network from experimental
multivariate measurements and then to detect the network com-
munities associated with flow structures and finally to extract net-
work statistic at different frequencies for quantitatively uncovering
the flow characteristics in the evolution of flow patterns. Our findings
indicate that the community structures faithfully represent the struc-
tural features of different flow patterns and the frequency clustering
coefficients cast light on the local flow behaviors governing the
formation and transition of flow structures. Our analytical frame-
work paves the way towards the network visualization of complex
flow structures arising from multiphase flow, and also establishes a
novel method for analyzing multivariate time series.

Methods
Multi-frequency complex network from multivariate time series. The construction
of multi-frequency complex network is based on the Fast Fourier transform (FFT),
which allows computing the discrete Fourier transform (DFT) in a much faster way. It
is obtained by decomposing a series of values into components of different
frequencies as follows:

Figure 5 | Schematic diagram for the construction of multi-frequency complex network.
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X(f )~
XN{1

n~0

x(n)e{i2p
N nf ð3Þ

where f is the frequency and X(f) is the spectrum value. We now start with the
construction of multi-frequency complex network. For a multivariate time series, e.g.,
the experimental signals MA, MB, MC, MD measured from our distributed
conductance sensor, we first partition each time series into 15 segments with an equal
length of 16000. As shown in Fig. 5, for one time series, the segment slides with the
time from left to right by a step of 6000. By this operation we can obtain totally 60
segments from our four experimental signals. Then we perform the fast Fourier
transform on the 60 segments to obtain the corresponding 60 frequency spectrums by
equation (3). The results indicate that the frequency spectrums of the segments from
our experimental signals mainly focus on 0 , 30 Hz, as shown in Fig. 5. We denote
the mean value of spectrum for 0 , 1 Hz, 1 , 2 Hz, …, 29 , 30 Hz of segment i as Xi

(1), Xi (2), …, Xi (30), respectively, i 5 1,2,…,60. Thus we can obtain Xi (f), f 5 1 , 30,
i 5 1 , 60, where f is the frequency and i is the label of segment. Finally, for a certain
frequency f, we infer complex network by regarding Xi(f) (i 5 1 , 60) as a node and
determining a connection between node i and j by

dij(f )~ Xi(f ){Xj(f )
�� ��, 1ƒi=jƒ60 ð4Þ

Specifically, for an unweighted network, we need to select a threshold to determine
whether there exists an edge between two nodes. Here we realize this and then obtain
an adjacency matrix for a network at frequency f as follows:

Aij(f )~

1, if dij(f )ƒe: max
1ƒi=jƒ60

Xi(f ){Xj(f )
�� ��

0, if dij(f )we: max
1ƒi=jƒ60

Xi(f ){Xj(f )
�� ��

8<
: ð5Þ

Note that the parameter e here is chosen to make the constructed network have a high
and steady-state modularity value in the sense that we expect to arrive at a reliable
result of network communities associated with flow structures. The modularity can be
evaluated by

Q~
X

i

(eii{ai
2) ð6Þ

where eij is the fraction of edges that connect nodes within community i to the nodes
within community j, ai 5 Sj eij. Therefore, the above framework allows us to derive a
series of complex networks at different frequencies, i.e., multi-frequency complex
network, from multivariate time series.
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37. Arenas, A., Fernández, A. & Gómez, S. Analysis of the structure of complex

networks at different resolution levels. New J. Phys. 10, 053039 (2008).
38. Zhang, J. & Small, M. Complex network from pseudoperiodic time series:

topology versus dynamics. Phys. Rev. Lett. 96, 238701 (2006).
39. Lacasa, L., Luque, B., Ballesteros, F., Luque, J. & Nuno, J.-C. From time series to

complex networks: The visibility graph. Proc. Natl. Acad. Sci. USA 105,
4972–4975 (2008).

40. Xu, X., Zhang, J. & Small, M. Superfamily phenomena and motifs of networks
induced from time series. Proc. Natl. Acad. Sci. USA 105, 19601–19605 (2008).

41. Li, X., Yang, D., Liu, X. & Wu, X. M. Bridging time series dynamics and complex
network theory with application to electrocardiogram analysis, IEEE circuits and
systems magazine, 12, 33–46 (2012).

42. Gao, Z.-K. & Jin, N.-D. A directed weighted complex network for characterizing
chaotic dynamics from time series. Nonlinear Analysis-Real World Applications
13, 947–952 (2012).

43. Donges, J.-F., Heitzig, J., Donner, R.-V. & Kurths, J. Analytical framework for
recurrence network analysis of time series. Phys. Rev. E 85, 046105 (2012).

44. Huang, L., Lai, Y.-C. & Harrison, M. A. F. Probing complex networks from
measured time series. Int. J. Bifurcat. Chaos 22, 1250236 (2012).

45. Iwayama, K. et al. Characterizing global evolutions of complex systems via
intermediate network representations. Sci. Rep. 2, 423 (2012).

46. Donges, J.-F. et al. Nonlinear detection of paleoclimate-variability transitions
possibly related to human evolution. Proc. Natl. Acad. Sci. USA 108, 20422–20427
(2011).

47. Steinhaeuser, K., Ganguly, A. R. & Chawla, N. V. Multivariate and multiscale
dependence in the global climate system revealed through complex networks.
Climate Dynamics 39, 889–895 (2012).

48. Hempel, S., Koseska, A., Kurths, J. & Nikoloski, Z. Inner composition alignment
for inferring directed networks from short time series. Phys. Rev. Lett. 107, 054101
(2011).

49. Chavez, M., Valencia, M., Navarro, V., Latora, V. & Martinerie, J. Functional
modularity of background activities in normal and epileptic brain networks. Phys.
Rev. Lett. 104, 118701 (2010).

50. Walker, D.-M., Tordesillas, A., Nakamura, T. & Tanizawa, T. Directed network
topologies of smart grain sensors. Phys. Rev. E 87, 032203 (2013).

51. Wang, W.-X., Yang, R., Lai, Y.-C., Kovanis, V. & Grebogi, C. Predicting
catastrophes in nonlinear dynamical systems by compressive sensing. Phys. Rev.
Lett. 106, 154101 (2011).

52. Ghaffari, H.-O. & Young, R.-P. Acoustic-friction networks and the evolution of
precursor rupture fronts in laboratory earthquakes. Sci. Rep. 3, 1799 (2013).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8222 | DOI: 10.1038/srep08222 6



53. Tang, J.-J., Wang, Y.-H., Wang, H., Zhang, S. & Liu, F. Dynamic analysis of traffic
time series at different temporal scales: A complex networks approach. Physica A
405, 303–315 (2014).

54. Charakopoulos, A., Karakasidis, T.-E., Papanicolaou, P.-N. & Liakopoulos, A. The
application of complex network time series analysis in turbulent heated jets. Chaos
24, 024408 (2014).

55. Gao, Z.-K. & Jin, N.-D. Flow-pattern identification and nonlinear dynamics of
gas-liquid two-phase flow in complex networks. Phys. Rev. E 79, 066303 (2009).

56. Gao, Z.-K., Jin, N.-D., Wang, W.-X. & Lai, Y.-C. Motif distributions in phase-
space networks for characterizing experimental two-phase flow patterns with
chaotic features. Phys. Rev. E 82, 016210 (2010).

57. Gao, Z.-K. et al. Recurrence networks from multivariate signals for uncovering
dynamic transitions of horizontal oil-water stratified flows. Europhys. Lett. 103,
50004 (2013).

58. Gao, Z.-K. et al. Recurrence network analysis of experimental signals from bubbly
oil-in-water flows. Phys. Lett. A 377, 457–462 (2013).

59. Gao, Z.-K., Fang, P. C., Ding, M. S. & Jin, N.-D. Multivariate weighted complex
network analysis for characterizing nonlinear dynamic behavior in two-phase
flow. Experimental Thermal and Fluid Science 60, 157–164 (2015).

60. Watts, D.-J. & Strogatz, S.-H. Collective dynamics of ’small-world’ networks.
Nature 393, 440–442 (1998).

Acknowledgments
Z. K. Gao was supported by National Natural Science Foundation of China under Grant
Nos. 61473203 and 61104148, Specialized Research Fund for the Doctoral Program of

Higher Education of China under Grant No. 20110032120088, Elite Scholar Program of
Tianjin University. N. D. Jin was supported by National Natural Science Foundation of
China under Grant No. 41174109, and National Science and Technology Major Project of
China under Grant No. 2011ZX05020-006. C. Y. Xia was supported by National Natural
Science Foundation of China under Grant No. 61374169.

Author contributions
Z.K.G. and N.D.J. devised the research project. Z.K.G., N.D.J., P.C.F. and L.D.H. conducted
the experiment. Z.K.G., Y.X.Y., P.C.F. and L.D.H. performed numerical simulations.
Z.K.G., Y.X.Y., N.D.J. and C.Y.X. analyzed the results and wrote the paper.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Gao, Z.-K. et al. Multi-frequency complex network from time series
for uncovering oil-water flow structure. Sci. Rep. 5, 8222; DOI:10.1038/srep08222 (2015).

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International License. The images or other third party material in
this article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative
Commons license, users will need to obtain permission from the license holder
in order to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8222 | DOI: 10.1038/srep08222 7

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Title
	Figure 1 Experimental flow loop facility.
	Figure 2 Five types of horizontal oil-water flow patterns.
	Figure 3 Community structures of the multi-frequency complex networks for five horizontal oil-water flow patterns.
	Figure 4 Distributions of frequency clustering coefficients and number of communities for the transitions of different horizontal oil-water flow patterns.
	Figure 5 Schematic diagram for the construction of multi-frequency complex network.
	References

