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Carbapenems, once considered the last line of defense against of serious infections
with Enterobacteriaceae, are threatened with extinction. The increasing isolation of
carbapenem-resistant Gram-negative pathogens is forcing practitioners to rely on uncertain
alternatives. As little as 5 years ago, reports of carbapenem resistance in Enterobacte-
riaceae, common causes of both community and healthcare-associated infections, were
sporadic and primarily limited to case reports, tertiary care centers, intensive care units, and
outbreak settings. Carbapenem resistance mediated by β-lactamases, or carbapenemases,
has become widespread and with the paucity of reliable antimicrobials available or in
development, international focus has shifted to early detection and infection control.
However, as reports of Klebsiella pneumoniae carbapenemases, New Delhi metallo-β-
lactamase-1, and more recently OXA-48 (oxacillinase-48) become more common and with
the conveniences of travel, the assumption that infections with highly resistant Gram-
negative pathogens are limited to the infirmed and the heavily antibiotic and healthcare
exposed are quickly being dispelled. Herein, we provide a status report describing the
increasing challenges clinicians are facing and forecast the “stormy waters” ahead.
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Carbapenems are potent and broad-spectrum β-lactam antibi-
otics traditionally reserved for the treatment of the most serious
infections (El-Gamal and Oh, 2010). The emergence and dis-
semination of carbapenem-resistant Gram-negative pathogens
including Pseudomonas aeruginosa, Acinetobacter baumannii, and
Enterobacteriaceae is a significant contributor to patient mor-
bidity and mortality (Patel et al., 2008; Schwaber et al., 2008;
Lautenbach et al., 2009, 2010; Marchaim et al., 2011). Despite
radical efforts in infection control (Schwaber et al., 2011) and
improvements in rapid molecular diagnostics (Centers for Dis-
ease Control and Prevention, 2009; Nordmann et al., 2012c),
carbapenem-resistant Gram-negative bacilli remain a formidable
threat as few antimicrobial agents are reliably active and very little
is expected to be available in the near future.

Clinicians hold that the increasing prevalence of extended-
spectrum β-lactamases (ESBLs) among Klebsiella pneumoniae and
Escherichia coli in the 1980s and 1990s contributed to the increased
consumption of carbapenems. Experience implied that delayed
administration of carbapenems in at-risk patients led to poor
clinical outcomes (Paterson and Bonomo, 2005; Endimiani and
Paterson, 2007). Thus, carbapenems (i.e., imipenem, meropenem,
ertapenem, and doripenem) became vital tools in the treatment of
healthcare-associated and severe community-acquired infections.
Despite heavy reliance on these agents, carbapenem resistance
in Enterobacteriaceae, common causes of both community and
healthcare-associated infections, remained rare until the past
decade.

Carbapenem resistance among Gram-negative bacteria results
from one or more of the following mechanisms: (i) hyperpro-
duction or derepression of Ambler class C β-lactamases (AmpC
β-lactamases) or ESBLs (e.g., sulfhydryl variable (SHV), temoneira
(TEM), cefotaxime (CTX-M) type β-lactamases) with loss or alter-
ation in outer membrane porins; (ii) augmented drug efflux; (iii)
alterations in penicillin binding proteins (PBPs); (iv) carbapen-
emase production (Patel and Bonomo, 2011). Carbapenemases
belong to three molecular classes of β-lactamases, Ambler class
A, B, and D (Ambler, 1980; Bush and Jacoby, 2010). Our aim
is to provide a status report of the molecular diversity and
epidemiology of carbapenemases as well as current and future
therapeutics. The increasing public safety concerns associated with
organisms harboring these enzymes has created significant tur-
moil. Regrettably, the situation is critical and our patients are in
peril.

AMBLER CLASS A CARBAPENEMASES
Few Ambler class A β-lactamases demonstrate carbapenem-
hydrolyzing activity and, up until a decade ago, these were
rarely recovered. Class A carbapenemases include: K. pneumoniae
carbapenemase (KPC), Guiana extended-spectrum (GES), non-
metallo-carbapenemase-A (Nmc-A)/imipenem-resistant (IMI),
Serratia marcescens enzyme (SME), serratia fonticola carbapen-
emase (SFC), and BIC β-lactamases (Table 1; Walther-Rasmussen
and Høiby, 2007). With the notable exception of KPCs, the clinical
isolation of these types of carbapenemases is relatively limited.
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Table 1 | Class A carbapenemases*.

Enzyme Year isolated

or described

Organism(s) Origin and geographic

distribution

Location Reference

Nmc-A 1990 Enterobacter cloacae France, Argentina, USA Chromosomal Nordmann et al. (1993)

IMI-1 1984 Enterobacter cloacae USA Chromosomal Rasmussen et al. (1996)

IMI-2 1999 Enterobacter asburiae, Enterobacter

cloacae

USA†, China Plasmid Aubron et al. (2005), Yu et al. (2006)

SME-1 1982 S. marcescens UK, USA Chromosomal Naas et al. (1994)

SME-2 1992 S. marcescens USA, Canada,

Switzerland

Chromosomal Deshpande et al. (2006a),

Poirel et al. (2007), Carrer et al. (2008)

SME-3 2003 S. marcescens USA Chromosomal Queenan et al. (2006)

SFC-1 2003 S. fonticola Portugal† Chromosomal Henriques et al. (2004)

GES-2 2000 P. aeruginosa South Africa Plasmid Vourli et al. (2004)

GES-4 2002 K. pneumoniae Japan Plasmid Wachino et al. (2004)

GES-5 2001 K. pneumoniae, E. coli, P. aeruginosa Greece, Korea, worldwide Plasmid Jeong et al. (2005), Viau et al. (2012)

GES-6 2003 K. pneumoniae Greece Plasmid Viau et al. (2012)

GES-11 2008 Acinetobacter baumannii France Plasmid Moubareck et al. (2009)

GES-14 2010 A. baumannii France Plasmid Bogaerts et al. (2010)

KPC-1‡ 1996 K. pneumoniae USA Plasmid Yigit et al. (2001)

KPC-2 1998 Enterobacteriaceae, P. aeruginosa,

Acinetobacter spp.

USA and worldwide Plasmid§ Yigit et al. (2001)

KPC-3 2000 Enterobacteriaceae, Acinetobacter spp. USA and worldwide Plasmid Woodford et al. (2004)

KPC-4 2003 Enterobacter cancerogenus, K.

pneumoniae, Acinetobacter spp.

Scotland, Puerto Rico Plasmid Palepou et al. (2005),

Robledo et al. (2007)

KPC-5 2006 P. aeruginosa Puerto Rico Plasmid Wolter et al. (2009)

KPC-6 2003 K. pneumoniae Puerto Rico Plasmid Bartual et al. (2005), Robledo et al. (2008)

KPC-7 2007 K. pneumoniae USA Plasmid Perez et al. (2010a)

KPC-8 2008 K. pneumoniae Puerto Rico Plasmid Diancourt et al. (2010)

KPC-9 2009 E. coli Israel Plasmid Grosso et al. (2011)

KPC-10 2009 Acinetobacter spp. Puerto Rico Plasmid Robledo et al. (2010)

KPC-11 2009 K. pneumoniae Greece Unknown Da Silva et al. (2004)

KPC-12 2010 E. coli China Unknown

KPC-13 2010 Enterobacter cloacae Thailand Unknown

BIC-1 2009 P. fluorescens France† Chromosomal Girlich et al. (2010)

* Adapted from Walther-Rasmussen and Høiby (2007).
†Environmental isolates.
‡KPC-1 was later found to be the same enzyme as KPC-2 (Higgins et al., 2012a).
§Chromosomal expression of blaKPC−2 has been described in P. aeruginosa (Villegas et al., 2007).

Non-metallo-carbapenemase-A is a chromosomal carbapen-
emase originally isolated from Enterobacter cloacae in France
(Nordmann et al., 1993). Currently, reports of this particular
β-lactamase are still rare (Pottumarthy et al., 2003; Castanheira
et al., 2008; Osterblad et al., 2012). IMI-1 was initially recov-
ered from the chromosome of an Enterobacter cloacae isolate
in the southwestern USA (Rasmussen et al., 1996). A variant of
IMI-1, IMI-2, has been identified on plasmids isolated from en-
vironmental strains of Enterobacter asburiae in USA rivers (Aubron
et al., 2005).

SME-1 (S. marcescens enzyme) was originally identified in an
isolate of S. marcescens from a patient in London in 1982 (Yang
et al., 1990). SME-2 and SME-3 were subsequently isolated in the
USA, Canada, and Switzerland (Naas et al., 1994; Queenan et al.,
2000, 2006; Deshpande et al., 2006b; Poirel et al., 2007; Carrer
et al., 2008). Chromosomally encoded SME-type carbapenemases
continue to be isolated at a low frequency in North America
(Deshpande et al., 2006a,b; Fairfax et al., 2011; Mataseje et al.,
2012). Both SFC-1 and BIC-1 are chromosomal serine carbapen-
emases recovered from environmental isolates. The former from
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a S. fonticola isolate in Portugal (Henriques et al., 2004) and the
latter from Pseudomonas fluorescens isolates recovered from the
Seine River (Girlich et al., 2010).

The GES-type β-lactamases are acquired β-lactamases recov-
ered from P. aeruginosa, Enterobacteriaceae, and A. baumannii
(Poirel et al., 2000a; Castanheira et al., 2004a). The genes encoding
these β-lactamase have often, but not exclusively, been identified
within class 1 integrons residing on transferable plasmids (Bon-
nin et al., 2013; Walther-Rasmussen and Høiby, 2007). GES-1 has
a similar hydrolysis profile to other ESBLs, although they essen-
tially spare monobactams. Several GES β-lactamases are described
with six (i.e., GES-2, GES-4, GES-5, GES-6, GES-11, and GES-14),
demonstrating detectable carbapenemase activity in the setting of
amino acid substitutions at their active sites (specifically at residue
104 and 170; Walther-Rasmussen and Høiby, 2007; Kotsakis et al.,
2010). These GES-type carbapenemases have been described in
Europe, South Africa, Asia, and the Middle East (Poirel et al., 2002;
Jeong et al., 2005; da Fonseca et al., 2007; Moubareck et al., 2009;
Bonnin et al., 2011, 2013).

Currently, most carbapenem resistance among Enterobacteri-
aceae in the USA and Israel is attributed to plasmid-mediated
expression of a KPC-type carbapenemase (Endimiani et al., 2009b;
Nordmann et al., 2009; Gupta et al., 2011; Schwaber et al., 2011).
KPC-producing Enterobacteriaceae are considered endemic to
Greece along with other carbapenemases, specifically VIM-type
[Verona integron-encoded metallo-β-lactamases (MBLs); Canton
et al., 2012]. KPCs efficiently hydrolyze carbapenems as well as
penicillins, cephalosporins, and aztreonam and are not overcome
in vitro by clinically available β-lactamase inhibitors (i.e., clavu-
lanic acid, sulbactam, tazobactam – in fact these are hydrolyzed).
These enzymes have been identified in several genera of Enterobac-
teriaceae as well as Pseudomonas spp. and A. baumannii (Miriagou
et al., 2003; Yigit et al., 2003; Bratu et al., 2005; Villegas et al., 2007;
Cai et al., 2008; Rasheed et al., 2008; Tibbetts et al., 2008; Robledo
et al., 2010; Mathers et al., 2011; Geffen et al., 2012).

Carbapenem resistance secondary to KPC production was first
described in a K. pneumoniae recovered in North Carolina in 1996
(Yigit et al., 2001). To date 12 KPC subtypes (KPC-2 to KPC-13;
Robledo et al., 2008; Kitchel et al., 2009a; Navon-Venezia et al.,
2009; Wolter et al., 2009; Gregory et al., 2010) have been reported
with the vast majority of analyzed isolates expressing either KPC-2
or KPC-3.

The blaKPC gene has been mapped to a highly conserved
Tn3-based transposon, Tn4401 (Figure 1A), and five isoforms
of Tn4401 are described (Naas et al., 2008; Cuzon et al., 2010;
Kitchel et al., 2010). Plasmids carrying blaKPC are of various
sizes and many carry additional genes conferring resistance to
fluoroquinolones and aminoglycosides thus limiting the antibi-
otics available to treat infections with KPC-producing pathogens
(Endimiani et al., 2008; Rice et al., 2008). blaKPC has rarely
been mapped to a chromosomal location (Villegas et al., 2007;
Castanheira et al., 2009).

A predominant strain of K. pneumoniae appears responsible for
outbreaks and the international spread of KPC-producing K. pneu-
moniae (Woodford et al., 2008; Kitchel et al., 2009a; Samuelsen
et al., 2009). Congruent pulsed-field gel electrophoresis (PFGE)
patterns also suggest a clonal relationship between outbreak-
associated strains of KPC-producing K. pneumoniae recovered
from different areas that are endemic (Navon-Venezia et al., 2009;
Woodford et al., 2011). The Centers for Disease Control and Pre-
vention (CDC) performed PFGE and multilocus sequence typing
(MLST) on isolates submitted to their reference laboratory from
1996 to 2008. A dominant PFGE pattern was observed and noted to
be of a specific MLST type, ST 258 (Kitchel et al., 2009a). A second
sequence type, ST 14, was common in institutions in the Midwest
(Kitchel et al., 2009b). These findings implied that certain strains
of K. pneumoniae may be more apt to obtain and retain the blaKPC

gene. Another study, however, analyzing 16 KPC-2 producing K.
pneumoniae isolates from different geographic regions demon-
strated diverse PFGE patterns and MLST types. This included four

FIGURE 1 | Basic genetic construct of select carbapenemase genes. (A)

Schematic representation of Tn4401 type of transposon associated with
blaKPC which includes a transposase gene (tnpA), a resolvase gene (tnpR), as
well as insertion sequences, ISKpn6 and ISKpn7 (Cuzon et al., 2010). (B) The
blaNDM−1 construct demonstrates ISAba125 insertion sequence(s) upstream

of the blaNDM−1 and a novel bleomycin resistance gene, bleMBL,
downstream (Dortet et al., 2012). (C) blaOXA−48 is often mapped to a Tn1999
composite transposon where it is bracketed between two copies of the same
insertion sequence, IS1999. Downstream of blaOXA−48 lies a lysR gene
which encodes for a regulatory protein (Poirel et al., 2012b).
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different MLST types in Colombia (ST 14, ST 337, ST 338, and ST
339) and two in Israel (ST 227 and ST 340). Although this study
analyzed a smaller number of isolates, these findings suggest that
the global propagation of KPC-2 is more complicated than the suc-
cessful expansion of a fixed number of clones (Cuzon et al., 2010;
Qi et al., 2011). More recently, a study evaluating the MLST types
associated with widespread KPC-2 production in K. pneumoniae
in Greece suggested that although ST 258 predominates at least 10
additional sequence types were found to carry blaKPC−2. Of note
three (i.e., ST 147, ST 323, and ST 383) carried both KPC-2 as well
as genes encoding VIM-type MBLs (Giakkoupi et al., 2011; Wood-
ford et al., 2011). A retrospective study in Cleveland documented
the presence of ST 36 in a long-term care facility for children
(Viau et al., 2012).

Klebsiella pneumoniae carbapenemases-production can confer
variable levels of carbapenem resistance with reported minimum
inhibitory concentrations (MICs) ranging from susceptible to
≥16 μg/mL. Analysis of isolates displaying high-level carbapenem
resistance demonstrated that increased phenotypic resistance may
be due to increased blaKPC gene copy number or the loss of an outer
membrane porin, OmpK35 and/or OmpK36. The highest level of
imipenem resistance was seen with isolates lacking both porins and
with augmented KPC enzyme production (Kitchel et al., 2010).

AMBLER CLASS B CARBAPENEMASES:
METALLO-β-LACTAMASES
Class B β-lactamases (Table 2) are referred to as MBLs and require
a metal ion, usually zinc, for β-lactam hydrolysis (Walsh et al.,
2005). Due to the dependence on Zn2+, catalysis is inhibited in the
presence of metal-chelating agents like ethylenediaminetetraacetic
acid (EDTA). MBL expression in Gram-negative bacteria confers

resistance to penicillins, cephalosporins, and carbapenems. MBLs
are not inhibited by the presence of commercially available
β-lactamase inhibitors and susceptibility to monobactams (e.g.,
aztreonam) appears to be preserved in the absence of con-
comitant expression of other resistance mechanisms (e.g., ESBL
production). The more geographically widespread MBLs include
IMP (imipenem-resistant), VIM, and New Delhi metallo-β-lacta
mase (NDM).

Chromosomal MBLs were the first to be identified and are
the cause of carbapenem resistance observed in Bacillus cereus,
Aeromonas spp., and Stenotrophomonas maltophilia (Walsh et al.,
2005). However, of growing concern are the “mobile” MBLs that
have been reported since the mid-1990s. Although most frequently
found in carbapenem-resistant isolates of P. aeruginosa and occa-
sionally Acinetobacter spp., there is growing isolation of these
enzymes in Enterobacteriaceae.

Prior to the description of NDM-1, frequently detected MBLs
include IMP-type and VIM-type with VIM-2 being the most
prevalent. These MBLs are embedded within a variety of genetic
structures, most commonly integrons. When these integrons
are associated with transposons or plasmids they can readily be
transferred between species.

In 1991, IMP-1, a plasmid-mediated MBL, was identified in
an isolates of S. marcescens from Japan (Ito et al., 1995). Since
then plasmid-mediated carbapenem resistance secondary to IMP-
1 spread widely in Japan, Europe, Brazil, and other parts of Asia
and in several species of Gram-negative bacilli including Acineto-
bacter spp. and Enterobacteriaceae. At the present time, 42 variants
of IMP have been identified with most cases of IMP-mediated
carbapenem resistance being reported from Asia and among P.
aeruginosa (Bush and Jacoby, 2010).

Table 2 | Metallo-β-lactamases.

Enzyme Year isolated

or described

Organism(s) Geographic

distribution

Location Reference

IMP-1 to IMP-42 1988 Enterobacteriaceae, Pseudomonas spp.,

Acinetobacter spp.

Worldwide Plasmid or

chromosomal

Osano et al. (1994),

Riccio et al. (2000)

VIM-1 to VIM-37 1997 Enterobacteriaceae, Pseudomonas spp.,

Acinetobacter spp.

Worldwide Plasmid or

chromosomal

Lauretti et al. (1999),

Poirel et al. (2000b)

SPM-1 2001 P. aeruginosa Brazil* Chromosomal Toleman et al. (2002)

GIM-1 2002 P. aeruginosa Germany Plasmid Castanheira et al. (2004b)

SIM-1 2003–2004 A. baumannii Korea Chromosomal Lee et al. (2005)

NDM-1 to NDM-7 2006 Enterobacteriaceae, Acinetobacter spp.,

Vibrio cholerae

Worldwide Plasmid or

chromosomal

Yong et al. (2009), Kaase et al. (2011),

Nordmann et al. (2012a)

AIM-1 2007 P. aeruginosa Australia Chromosomal Yong et al. (2007)

KHM-1 1997 C. freundii Japan Plasmid Sekiguchi et al. (2008)

DIM-1 2007 P. stutzeri Netherlands Plasmid Poirel et al. (2010c)

SMB-1 2010 S. marcescens Japan Chromosomal Wachino et al. (2011)

TMB-1 2011 Achromobacter xylosoxidans Libya Chromosomal El Salabi et al. (2012)

FIM-1 2007 P. aeruginosa Italy Chromosomal Pollini et al. (2012)

*Single report of SPM-1 in Europe linked to healthcare exposure in Brazil (Salabi et al., 2010).
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A more commonly recovered MBL is the VIM-type enzyme.
VIM-1 was first described in Italy in 1997 in P. aeruginosa (Lau-
retti et al., 1999). VIM-2 was next discovered in southern France
in P. aeruginosa cultured from a neutropenic patient in 1996
(Poirel et al., 2000b). Although originally thought to be limited to
non-fermenting Gram-negative bacilli, VIM-type MBLs are being
increasingly identified in Enterobacteriaceae as well (Giakkoupi
et al., 2003; Kassis-Chikhani et al., 2006; Morfin-Otero et al., 2009;
Canton et al., 2012). To date, 37 variants of VIM have been
described with VIM-2 being the most common MBL recovered
worldwide.

Other more geographically restricted MBLs include SPM-
1 (Sao Paulo MBL), which has been associated with hospital
outbreaks in Brazil (Toleman et al., 2002; Rossi, 2011); GIM-1
(German imipenemase) isolated in carbapenem-resistant P. aerug-
inosa isolates in Germany (Castanheira et al., 2004b); SIM-1 (Seoul
imipenemase) isolated from A. baumannii isolates in Korea (Lee
et al., 2005); KHM-1 (Kyorin Health Science MBL) isolated from
a C. freundii isolate in Japan (Sekiguchi et al., 2008); AIM-1
(Australian imipenemase) isolated from P. aeruginosa in Aus-
tralia (Yong et al., 2007); DIM-1 (Dutch imipenemase) isolated
from a clinical P. stutzeri isolate in the Netherlands (Poirel et al.,
2010c); SMB-1 (S. marcescens MBL) in S. marcescens in Japan
(Wachino et al., 2011); TMB-1 (Tripoli MBL) in Achromobacter
xylosoxidans in Libya (El Salabi et al., 2012), and FIM-1 (Flo-
rence imipenemase) from a clinical isolate of P. aeruginosa in Italy
(Pollini et al., 2012). With the notable exception of SPM-1, these
MBLs have remained confined to their countries of origin (Salabi
et al., 2010).

NDM-1 was first identified in 2008. Due to its rapid interna-
tional dissemination and its ability to be expressed by numerous
Gram-negative pathogens, NDM is poised to become the most
commonly isolated and distributed carbapenemase worldwide.
Initial reports frequently demonstrated an epidemiologic link
to the Indian subcontinent where these MBLs are endemic
(Kumarasamy et al., 2010). Indeed, retrospective analyses of stored
isolates suggest that NDM-1 may have been circulating in the sub-
continent as early as 2006 (Castanheira et al., 2011). Despite initial
controversy, the Balkans may be another area of endemicity for
NDM-1 (Struelens et al., 2010; Jovcic et al., 2011; Livermore et al.,
2011c; Halaby et al., 2012). Sporadic recovery of NDM-1 in the
Middle East suggests that this region may be an additional reser-
voir (Poirel et al., 2010a, 2011d; Nordmann et al., 2011; Ghazawi
et al., 2012).

Like KPCs, the conveniences of international travel and medi-
cal tourism have quickly propelled this relatively novel MBL into
a formidable public health threat. Gram-negative bacilli harbor-
ing blaNDM have been identified worldwide with the exception of
Central and South America.

NDM-1 was first identified in Sweden in a patient of Indian
descent previously hospitalized in India (Yong et al., 2009). The
patient was colonized with a K. pneumoniae and an E. coli
carrying blaNDM−1 on transferable plasmids. In the UK, an
increase in the number of clinical isolates of carbapenem-resistant
Enterobacteriaceae was seen in both 2008 and 2009. A UK ref-
erence laboratory reported that at least 17 of 29 patients found
to be harboring NDM-1 expressing Enterobacteriaceae had a

history of recent travel to the Indian subcontinent with the
majority having been hospitalized in those countries (Kumarasamy
et al., 2010).

European reports suggest that horizontal transfer of blaNDM−1

exists within hospitals outside endemic areas. Of overwhelm-
ing concern are the reported cases without specific contact with
the healthcare system locally or in endemic areas suggesting
autochthonous acquisition (Kumarasamy et al., 2010; Kus et al.,
2011; Arpin et al., 2012; Borgia et al., 2012; Nordmann et al.,
2012b).

Surveillance of public water supplies in India indicates that
exposure to NDM-1 may be environmental. Walsh et al. (2011)
analyzed samples of public tap water and seepage water from
sites around New Delhi. The results were disheartening in that
blaNDM−1 was detected by PCR in 4% of drinking water samples
and 30% of seepage samples. In this survey, carriage of blaNDM−1

was noted in 11 species of bacteria not previously described,
including virulent ones like Shigella boydii and Vibrio cholerae.

The rapid spread of NDM-1 highlights the fluidity and rapid-
ity of gene transfer between bacterial species. Although blaNDM−1

was initially and repeatedly mapped to plasmids isolated from
carbapenem-resistant E. coli and K. pneumoniae, reports of both
plasmid and chromosomal expression of blaNDM−1 has been
noted in other species of Enterobacteriaceae as well as Acineto-
bacter spp. and P. aeruginosa (Moubareck et al., 2009; Bogaerts
et al., 2010; Bonnin et al., 2011; Nordmann et al., 2011; Patel and
Bonomo, 2011). Recently, bacteremia with a NDM-1 expressing
V. cholerae has been described in a patient previously hospitalized
in India colonized with a variety of Enterobacteriaceae previously
known to be capable of carrying plasmids with blaNDM−1 (Darley
et al., 2012).

In contrast to KPCs, the presence of a dominant clone among
blaNDM−1 carrying isolates remains elusive (Poirel et al., 2011c).
NDM-1 expression in E. coli has been noted among sequence types
previously associated with the successful dissemination of other
β-lactamases including ST 101 and ST 131 (Mushtaq et al., 2011).
Mushtaq et al. (2011) analyzed a relatively large group of blaNDM−1

expressing E. coli from the UK, Pakistan, and India in order to
potentially identify a predominant strain responsible for the rapid
and successful spread of NDM-1. The most frequent sequence
type identified was ST 101. Another study examining a collection
of carbapenem-resistant Enterobacteriaceae from India demon-
strates the diversity of strains capable of harboring blaNDM−1.
Carriage of blaNDM−1 was confirmed in 10 different sequence
types of K. pneumoniae and 5 sequence types of E. coli (Lascols
et al., 2011). This multiplicity was confirmed in a study looking
at a collection of blaNDM−1 expressing Enterobacteriaceae from
around the world (Poirel et al., 2011c). Of most concern is that
NDM-1 has been identified in E. coli ST 131, the strain of E. coli
credited with the global propagation of CTX-M-15 ESBLs (Mush-
taq et al., 2011; Peirano et al., 2011; Pfeifer et al., 2011b; Woodford
et al., 2011). Similar to KPCs, NDM-1 expression portends vari-
able levels of carbapenem resistance and there is often concomitant
carriage of a myriad of resistance determinants including other β-
lactamases and carbapenemases as well as genes associated with
resistance to fluoroquinolones and aminoglycosides (Nordmann
et al., 2011).
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NDM-1 shares the most homology with VIM-1 and VIM-2. It
is a 28-kDa monomeric protein that demonstrates tight binding to
both penicillins and cephalosporins (Zhang and Hao, 2011). Bind-
ing to carbapenems does not appear to be as strong as other MBLs,
but hydrolysis rates appear to be similar. Using ampicillin as a
substrate, allowed for detailed characterization of the interactions
between NDM’s active site and β-lactams as well as improved eval-
uation of MBLs unique mechanism of β-lactam hydrolysis. More
recent crystal structures of NDM-1 reveal the molecular details of
how carbapenem antibiotics are recognized by dizinc-containing
MBLs (King et al., 2012).

To date, NDM-1 remains the most common NDM variant iso-
lated. Seven variants (NDM-1 to NDM-7) exist (Kaase et al., 2011;
Nordmann et al., 2012a). It is currently held that blaNDM−1 is a
chimeric gene that may have evolved from A. baumannii (Toleman
et al., 2012). Contributing to this theory is the presence of com-
plete or variations of the insertion sequence, ISAba125, upstream
to the blaNDM−1 gene in both Enterobacteriaceae and A. bauman-
nii (Pfeifer et al., 2011a; Poirel et al., 2011a; Dortet et al., 2012;
Toleman et al., 2012). This insertion sequence has primarily been
found in A. baumannii.

A recent evaluation of the genetic construct associated with
blaNDM−1 (Figure 1B) has lead to the discovery of a new
bleomycin resistance protein, BRPMBL. Evaluation of 23 isolates
of blaNDM−1/2 harboring Enterobacteriaceae and A. bauman-
nii noted that the overwhelming majority of them possessed a
novel bleomycin resistance gene, bleMBL (Dortet et al., 2012).
Co-expression of blaNDM−1 and bleMBL appear to be mediated
by a common promoter (PNDM−1) which includes portions of
ISAba125. It is postulated that BRPMBL expression may contribute
some sort of selective advantage allowing NDM-1 to persist in the
environment.

A contemporary evaluation of recently recovered NDM-1 pro-
ducing A. baumannii isolates from Europe demonstrates that
blaNDM−1 and blaNDM−2 genes are situated on the same chro-
mosomally located transposon, Tn125 (Bonnin et al., 2012).
Dissemination of blaNDM in A. baumannii seems be due to dif-
ferent strains carrying Tn125 or derivatives of Tn125 rather than
plasmid-mediated or clonal (Bonnin et al., 2013; Poirel et al.,
2012a).

CARBAPENEM-HYDROLYZING CLASS D β-LACTAMASES
Oxacillinases comprise a heterogeneous group of class D β-
lactamases which are able to hydrolyze amino- and carboxypeni-
cillins (Poirel et al., 2010b). The majority of class D β-lactamases
are not inhibited by commercially available β-lactamase inhibitors
but are inhibited in vitro by NaCl. Over 250 types of oxacilli-
nases are reported with a minority demonstrating low levels of
carbapenem-hydrolyzing activity. This select group of enzymes
is also referred to as the carbapenem-hydrolyzing class D β-
lactamases (CHDLs; Table 3). CHDLs have been identified most
frequently in Acinetobacter spp., however, there has been increas-
ing isolation among Enterobacteriaceae, specifically OXA-48
(oxacillinase-48; Lascols et al., 2012; Mathers et al., 2012).

With the exception of OXA-163 (Poirel et al., 2011b), CHDLs
efficiently inactivate penicillins, first generations cephalosporins,
and β-lactam/β-lactamase inhibitor combinations, but spare

extended-spectrum cephalosporins. Carbapenem hydrolysis effi-
ciency is lower than that of other carbapenemases, including the
MBLs, and often additional resistance mechanisms are expressed
in organisms demonstrating higher levels of phenotypic car-
bapenem resistance. These include expression of other carbapen-
emases, alterations in outer membrane proteins (e.g., CarO,
OmpK36; Perez et al., 2007; Gülmez et al., 2008; Pfeifer et al.,
2012), increased transcription mediated by IS elements function-
ing as promoters, increased gene copy number, and amplified drug
efflux (Poirel and Nordmann, 2006; Perez et al., 2007). Many sub-
groups of CHDLs have been described. We will focus on those
found in A. baumannii and Enterobacteriaceae: OXA-23 and OXA-
27; OXA-24/40, OXA-25, and OXA-26; OXA-48 variants; OXA-51,
OXA-66, OXA-69; OXA-58, and OXA-143.

CHDLs can be intrinsic or acquired. A. baumannii does have
naturally occurring but variably expressed chromosomal CHDLs,
OXA-51, OXA-66, and OXA-69 (Brown et al., 2005; Héritier et al.,
2005b). For the most part, in isolation the phenotypic carbapenem
resistance associated with these oxacillinases is low. However, levels
of carbapenem resistance appear to be increased in the pres-
ence of specific insertion sequences promoting gene expression
(Figueiredo et al., 2009; Culebras et al., 2010). Additional resis-
tance to extended-spectrum cephalosporins can be seen in the
setting of co-expression of ESBLs and/or other carbapenemases
(Castanheira et al., 2011; Mathers et al., 2012; Pfeifer et al., 2012;
Voulgari et al., 2012; Potron et al., 2013).

The first reported “acquired” oxacillinase with appreciable
carbapenem-hydrolyzing activity was OXA-23. OXA-23, or ARI-
1, was identified from an A. baumannii isolate in Scotland in
1993 (the isolate was first recovered in 1985; Paton et al., 1993).
Subsequently, OXA-23 expression has been reported worldwide
(Mugnier et al., 2010) and both plasmid and chromosomal car-
riage of blaOXA−23 are described. The OXA-23 group includes
OXA-27, found in a single A. baumannii isolate from Singapore
(Afzal-Shah et al., 2001). With the exception of an isolate of Proteus
mirabilis identified in France in 2002, this group of β-lactamases
has been exclusively recovered from Acinetobacter species (Bonnet
et al., 2002). Increased expression of OXA-23 has been associated
with the presence of upstream insertion sequences (e.g., ISAba1
and ISAba4) acting as strong promoters (Corvec et al., 2007).

Another group of CHDLs include OXA-24/40, OXA-25, and
OXA-26 (Bou et al., 2000b; Afzal-Shah et al., 2001). OXA-24 and
OXA-40 differ by a few amino acid substitutions and OXA-25 and
OXA-26 are point mutation derivatives of OXA-40 (Afzal-Shah
et al., 2001). Although primarily linked with clonal outbreaks in
Spain and Portugal (Bou et al., 2000a; Lopez-Otsoa et al., 2002; Da
Silva et al., 2004; Acosta et al., 2011), OXA-24/40 β-lactamases has
been isolated in other European countries and the USA (Lolans
et al., 2006). OXA-40 was in fact the first CHDL documented in
the USA (Lolans et al., 2006).

OXA-58 has also only been detected in Acinetobacter spp. ini-
tially identified in France (Héritier et al., 2005a; Poirel et al., 2005),
OXA-58 has been associated with institutional outbreaks and has
been recovered from clinical isolates of A. baumannii worldwide
(Coelho et al., 2006; Mendes et al., 2009; Gales et al., 2012).

As civilian and military personnel began returning from
Afghanistan and the Middle East, practitioners noted increasing
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Table 3 | Carbapenem-hydrolyzing class D β-lactamases.

Enzyme group Year isolated

or described

Organism(s) Geographic distribution Location Reference

OXA-23/27 1985/– Acinetobacter baumannii,

Proteus mirabilis*

Europe, USA, Middle East,

Asia, Australia

Plasmid, chromosomal Afzal-Shah et al. (2001),

Gogou et al. (2011)

OXA-24/40 1997 A. baumannii Europe and USA Plasmid, chromosomal Bou et al. (2000b),

Lopez-Otsoa et al. (2002)

OXA-25 – A. baumannii Spain Chromosomal Afzal-Shah et al. (2001)

OXA-26 1996 A. baumannii Belgium Chromosomal Afzal-Shah et al. (2001)

OXA-48 2001 K. pneumoniae,

Enterobacteriaceae

Turkey, Middle East,

Northern Africa, Europe,

India, USA

Plasmid Poirel et al. (2004b)

OXA-51/66/69 1993 A. baumannii Worldwide Chromosomal Brown et al. (2005),

Evans et al. (2007)

OXA-58 2003 A. baumannii Europe, USA, Middle East,

South America

Plasmid Poirel et al. (2005)

OXA-143 2004 A. baumannii Brazil Plasmid Higgins et al. (2009)

OXA-162 2008 Enterobacteriaceae Germany Plasmid Pfeifer et al. (2012)

OXA-163 2008 K. pneumoniae, E. coli Argentina and Egypt Plasmid Poirel et al. (2011b),

Abdelaziz et al. (2012)

OXA-181 2006 K. pneumoniae, E. coli India Plasmid Castanheira et al. (2011)

OXA-204 2012 K. pneumoniae Tunisia Plasmid Potron et al. (2013)

OXA-232 2012 K. pneumoniae France Plasmid Poirel et al. (2012c)

*Single isolate described in France.

recovery of A. baumannii from skin and soft tissue infections.
Drug resistance was associated with expression of both OXA-23
and OXA-58 (Hujer et al., 2006; Scott et al., 2007; Perez et al.,
2010b). Many isolates carrying the blaOXA−58 gene concurrently
carry insertion sequences (e.g., ISaba1, ISAba2, or ISAba3) asso-
ciated with increased carbapenemase production and thus higher
levels of carbapenem resistance. In one report increased gene copy
number was also associated with a higher level of enzyme pro-
duction and increased phenotypic carbapenem resistance (Bertini
et al., 2007).

Spread of OXA-type carbapenemases among A. baumannii
appears to be clonal and in depth reviews of the molecular
epidemiology and successful dissemination of these clones have
been published (Woodford et al., 2011; Zarrilli et al., 2013). Two
MLST schemes with three loci in common exist for A. bauman-
nii – the PubMLST scheme (Bartual et al., 2005) and the Pasteur
scheme (Diancourt et al., 2010). Both schemes assign different
sequence types into clonal complexes (CC). Sequence types and
CC from both schemes can be further categorized into the inter-
national (European) clones I, II, and III. It should be noted,
however, that the molecular taxonomy of A. baumannii con-
tinues to evolve (Higgins et al., 2012a). OXA-23 producing A.
baumannii predominantly belong to international clones I and
II with a notable proportion being part of CC92 (PubMLST;
Mugnier et al., 2010; Adams-Haduch et al., 2011). Similarly, A.
baumannii isolates associated with epidemic spread of OXA-24/40

in Portugal and Spain appear are incorporated in international
clone II (Da Silva et al., 2004; Grosso et al., 2011) and ST 56
(PubMLST; Acosta et al., 2011). OXA-58 expressing A. baumannii
have been associated with international clones I, II, and II and a
variety of unrelated sequence types (Di Popolo et al., 2011; Gogou
et al., 2011).

OXA-48 was originally identified in a carbapenem-resistant iso-
late of K. pneumoniae in Turkey (Poirel et al., 2004c). Early reports
suggested that this enzyme was geographically restricted to Turkey.
In the past few years, however, the enzyme has been recovered from
variety of Enterobacteriaceae and has successfully circulated out-
side of Turkey with reports of isolation in the Middle East, North
Africa, Europe (Carrer et al., 2010), and most recently the USA
(Lascols et al., 2012; Mathers et al., 2012). The Middle East and
North Africa may be secondary reservoirs for these CHDLs (Hays
et al., 2012; Poirel et al., 2012c). Indeed, the introduction of OXA-
48 expressing Enterobacteriaceae in some countries has been from
patients from the Middle East or Northern Africa (Decre et al.,
2010; Adler et al., 2011; Poirel et al., 2011e; Canton et al., 2012). In
the USA, the first clinical cases were associated with ST 199 and
ST 43 (Mathers et al., 2012).

At least six OXA-48 variants (e.g., OXA-48, OXA-162, OXA-
163, OXA-181, OXA-204, and OXA-232) have been identified.
OXA-48 is by far the most globally dispersed and its epidemiology
has been recently reviewed (Poirel et al., 2012c). Unlike KPCs and
NDM-1 which have been associated with a variety of plasmids, a
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single 62 kb self-conjugative IncL/M-type plasmid has contributed
to a large proportion of the distribution of blaOXA−48 in Europe
(Potron et al., 2011a). Sequencing of this plasmid (pOXA-48a)
notes that blaOXA−48 had been integrated through the acquisi-
tion of a Tn1999 composite transposon (Figure 1C; Poirel et al.,
2012b) blaOXA−48 appears to be associated with a specific insertion
sequence, IS1999 (Poirel et al., 2004c, 2012b). A variant of Tn1999,
Tn1999.2, has been identified among isolates from Turkey and in
Europe (Carrer et al., 2010; Potron et al., 2011a). Tn1999.2 har-
bors an IS1R element within the IS1999. OXA-48 appears to have
the highest affinity for imipenem of the CHDLs specifically those
harboring blaOXA−48 within a Tn1999.2 composite transposon
(Docquier et al., 2009). Three isoforms of the Tn1999 transposon
have been described (Giani et al., 2012).

Although much of the spread of OXA-48 is attributed to a spe-
cific plasmid, outbreak evaluations demonstrate that a variety of
strains have contributed to dissemination of this emerging car-
bapenemase in K. pneumoniae. The same K. pneumoniae sequence
type, ST 395, harboring blaOXA−48 was identified in Morocco,
France, and the Netherlands (Cuzon et al., 2011; Potron et al.,
2011a). ST 353 was associated with an outbreak of OXA-48 pro-
ducing K. pneumoniae in London (Woodford et al., 2011) and ST
221 with an outbreak of OXA-48 in Ireland (Canton et al., 2012).
OXA-48 production in K. pneumoniae, like KPC-expressing K.
pneumoniae, has also been associated with ST 14 (Poirel et al.,
2004c) and a recent outbreak in Greece was associated with ST 11
(Voulgari et al., 2012).

blaOXA−48 is remarkably similar to blaOXA−54, a β-lactamase
gene intrinsic to Shewanella oneidensis (Poirel et al., 2004a). She-
wanella spp. are relatively ubiquitous waterborne Gram-negative
bacilli and are proving to be a potential environmental reservoir
for OXA-48 like carbapenemases as well as other resistance deter-
minants (Héritier et al., 2004; Poirel et al., 2004b; Potron et al.,
2011b).

OXA-163, a single amino acid variant of OXA-48, was iden-
tified in isolates of K. pneumoniae and Enterobacter cloacae from
Argentina and is unique in that it has activity against extended-
spectrum cephalosporins (Poirel et al., 2011b). OXA-163 also has
been identified in Egypt, which has a relatively prevalence of OXA-
48, in patients without epidemiologic links to Argentina (Abdelaziz
et al., 2012).

OXA-181 was initially identified among carbapenem-resistant
Enterobacteriaceae collected from India (Castanheira et al., 2011).
OXA-181 differs from OXA-48 by four amino acids, however,
appears to be nestled in an entirely different genetic platform. The
blaOXA−181 gene has been mapped to a different group of plas-
mids, the ColE family, and has been associated with an alternative
insertion sequence, ISEcp1. The latter insertion sequence has been
associated with the acquisition of other β-lactamases including
CTX-M-like ESBLs. Like, OXA-48, it appears that OXA-181 may
have evolved from a waterborne environmental species Shewanella
xiamenensis (Potron et al., 2011b).

OXA-204 differs from OXA-48 by a two amino acid substitu-
tion. It was recently identified in a clinical K. pneumoniae isolate
from Tunisia (Potron et al., 2013). Its genetic construct appears to
be similar to that of OXA-181. OXA-232 was recently identified
among K. pneumoniae isolates in France (Poirel et al., 2012c).

OXA-143 is a novel plasmid-borne carbapenem-hydrolyzing
oxacillinase recovered from clinical A. baumannii isolates in Brazil
(Higgins et al., 2009). Information regarding its significance and
prevalence continues to evolve (Antonio et al., 2010; Werneck et al.,
2011; Mostachio et al., 2012).

AVAILABLE AGENTS AND DRUGS IN DEVELOPMENT
Few antimicrobials are currently available to treat infections with
carbapenemase-producing Gram-negative bacteria. Carriage of
concurrent resistance determinants can result in decreased sus-
ceptibility non-β-lactams including the fluoroquinolones and
aminoglycosides thus further compromising an already limited
antimicrobial arsenal. What frequently remains available are
the polymyxins (including colistin), tigecycline, and fosfomy-
cin but susceptibilities to these agents are unpredictable (Falagas
et al., 2011).

The reintroduction of polymyxins, both polymyxin B and
colistin overlaps with the evolution of carbapenem resistance
among Gram-negative bacilli. The clinical “resurgence” of these
agents is well documented (Falagas and Kasiakou, 2005; Li et al.,
2006a; Landman et al., 2008). Some experts advocate for the use
of polymyxins in combination with other agents like rifampicin
(Hirsch and Tam, 2010; Urban et al., 2010). In vitro evaluations
of different combinations including carbapenems, rifamycins,
and/or tigecycline demonstrate variable results (Bercot et al.,
2011; Biswas et al., 2012; Deris et al., 2012; Jernigan et al., 2012).
Most evaluations of the clinical outcomes or “effectiveness” of
combination therapies have been retrospective (Qureshi et al.,
2012; Tumbarello et al., 2012). Prospective clinical trials evalu-
ating the superiority of colistin-based combination therapy over
monotherapy are in their infancy. A real interest in combination
therapy persists due to the concern of hetero-resistance (Li et al.,
2006b; Poudyal et al., 2008; Lee et al., 2009; Yau et al., 2009; Meletis
et al., 2011).

Early evaluations of the glycylcycline, tigecycline, demonstrated
favorable in vitro activity against ESBL-producing Enterobacteri-
aceae and specific isolates of carbapenem-resistant A. baumannii
and Enterobacteriaceae (Bratu et al., 2005; Fritsche et al., 2005;
Noskin, 2005; Castanheira et al., 2008; Wang and Dowzicky, 2010).
Tigecycline remains untested in prospective trials and reports of
resistance are increasing (Navon-Venezia et al., 2007; Anthony
et al., 2008; Wang and Dowzicky, 2010; Sun et al., 2012). The role of
tigecycline in treating primary bloodstream infections or urinary
tract infections remains undefined due less than therapeutic con-
centrations of drug achieved in the serum (Rodvold et al., 2006)
and urine (Satlin et al., 2011). We also note that meta-analyses
of pooled data from trials evaluating the use of tigecycline for a
variety of indications suggest there is a excess mortality associ-
ated with the use of tigecycline over comparator regimens (Cai
et al., 2011; Tasina et al., 2011; Yahav et al., 2011; Verde and Curcio,
2012). However, in the absence of other tested regimens tige-
cycline may be an appropriate or perhaps the only therapeutic
option.

Growing resistance to both the polymyxins and tigecycline has
resulted the revisiting of older drugs including chloramphenicol,
nitrofurantoin, and temocillin (Livermore et al., 2011d). Fos-
fomycin is also one of these earlier antibiotics being reassessed
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(Falagas et al., 2008). In an in vitro evaluation of 68 KPC-
expressing K. pneumoniae isolates, fosfomycin demonstrated in
vitro activity against 87% of tigecycline and/or polymyxin non-
susceptible isolates and 83% of isolates that were resistant to both
(Endimiani et al., 2010b). Fosfomycin may be a potential thera-
peutic option for patients infected with carbapenemase-producing
Enterobacteriaceae if the infection is localized to the genitourinary
tract. Unfortunately, fosfomycin does not demonstrate reliable
activity against non-urinary pathogens. Fosfomycin demonstrated
activity against only 30.2% of 1693 multidrug-resistant (MDR)
P. aeruginosa isolates and 3.5% of 85 MDR A. baumannii isolates
(Falagas et al., 2009). The individual studies included in this review
did not employ uniform MDR definitions or consistent suscepti-
bility breakpoints. Moreover, access to the parenteral fosfomycin
is limited and the threshold for resistance is low (Rodriguez-Rojas
et al., 2010; Karageorgopoulos et al., 2012). Concerns regarding the
emergence of resistance have lead to an increasing interest in the
utility of combination therapy (Michalopoulos et al., 2010; Bercot
et al., 2011; Souli et al., 2011).

Few agents are in the advanced stages of development with
demonstrable in vitro activity against carbapenemase-producing
organisms. These include β-lactamase inhibitors, aminoglycoside
derivatives, polymyxin derivatives, and novel monobactams and
monobactams-β-lactamase inhibitor combinations.

Avibactam, or NXL104, is a β-lactamase inhibitor which has
been tested in combination with ceftazidime, ceftaroline, and
aztreonam against several carbapenemase-producing Enterobac-
teriaceae with impressive decreases in MICs (Livermore et al.,
2008, 2011b; Endimiani et al., 2009a; Mushtaq et al., 2010c).
Cephalosporin–avibactam combinations do not inhibit MBLs.
Avibactam in combination with aztreonam, however, does seem
to demonstrate activity against isolates harboring a variety of
carbapenem resistance mechanisms including MBLs (Livermore
et al., 2011b). Regrettably, the avibactam and aztreonam com-
bination is not currently in clinical trials. The combination
of ceftazidime–avibactam has been evaluated against collec-
tions of non-fermenting Gram-negative pathogens and its role
remains undefined (Mushtaq et al., 2010b). In some evalua-
tions of ceftazidime non-susceptible isolates of P. aeruginosa
decrease MICs were noted with the addition of avibactam
(Mushtaq et al., 2010b; Walkty et al., 2011; Crandon et al.,
2012; Levasseur et al., 2012). The combinations of ceftaroline–
avibactam and ceftazidime–avibactam are currently in clinical
trials.

Methylidene penems (penem-1 and penem-2) are β-lactamase
inhibitors and appear to be potent inhibitors of KPC-2 (Papp-
Wallace et al., 2010). The combination of cefepime with penem-1
demonstrated lower cefepime MICs in 88.1% of the 42 KPC-
producing K. pneumoniae isolates evaluated (Endimiani et al.,
2010a). MK-7655 is a novel β-lactamase being evaluated in
combination with imipenem against carbapenem-resistant Gram-
negative bacilli (Hirsch et al., 2012).

ME1071, formerly CP3242 (Bassetti et al., 2011), is a maleic
acid derivative that competitively inhibits MBLs. Earlier studies
demonstrated concentration-dependent decreases in carbapenem
MICs in MBL-producing P. aeruginosa (Ishii et al., 2010), A.
baumannii, and select Enterobacteriaceae (Shahid et al., 2009) A

contemporary pre-clinical evaluation of ME1071 in combination
with various type 2 carbapenems (i.e., biapenem, doripenem,
meropenem, imipenem) confirms remarkable decreases in the
carbapenem MICs for Enterobacteriaceae and A. baumannii har-
boring IMP, VIM, and NDM-type MBLs (Livermore et al., 2013).
Irrespective of the candidate carbapenem, ME1071 activity against
NDM MBLs was less than that of VIM-type and IMP-type MBLs.
Of note, biapenem was the carbapenem with the lowest baseline
MICs to the MBLs, but it is commercially unavailable in many
countries including the USA. Other MBL-specific inhibitors are in
pre-clinical development (Chen et al., 2012).

Plazomicin (ACHN-490) is an aminoglycoside derivative with
potent activity against some carbapenem-resistant Gram-negative
bacilli (Zhanel et al., 2012). Studies have noted that susceptibilities
to aminoglycosides vary among KPC-producing K. pneumoniae.
In one evaluation, 48% of 25 tested isolates were susceptible
to amikacin, 44% to gentamicin, and 8% to tobramycin. Pla-
zomicin demonstrated an MIC90 significantly lower than that
of amikacin (Endimiani et al., 2009c). In vitro studies also indi-
cate that depending on the aminoglycoside resistance mechanisms
present, Plazomicin may have activity against select isolates
of P. aeruginosa and A. baumannii (Aggen et al., 2010; Land-
man et al., 2011). Susceptibility to plazomicin in the setting
of resistance to other aminoglycosides appears to be depen-
dent on the mechanism of aminoglycoside resistance (Livermore
et al., 2011a).

NAB739 and NAB7061 are polymyxin derivatives that may
be less nephrotoxic than commercially available polymyxins.
In a small in vitro study, NAB739 displayed activity against
nine carbapenemase-producing polymyxin-susceptible isolates of
Enterobacteriaceae (Vaara et al., 2010). A contemporary eval-
uation of NAB739 demonstrated higher MICs compared to
those of polymyxin B in a collection of polymyxin-susceptible
and non-susceptible Enterobacteriaceae, P. aeruginosa, and A.
baumannii (Vaara et al., 2012). NAB7061 when used in combina-
tion with rifampicin or clarithromycin demonstrated synergistic
activity against seven strains of carbapenemase-producing Gram-
negative bacilli including one polymyxin-resistant strain (Vaara
et al., 2010). It remains unclear what role these agents will
play in the setting the increasing burden of infections with
carbapenemase-producing Enterobacteriaceae.

The activity of the siderophore monosulfactam, BAL30072, has
been against non-fermenting carbapenemase-producing Gram-
negative bacilli (Page et al., 2010). In one study, susceptibility to
BAL30072 was noted in 73% of 200 isolates of carbapenemase-
producing A. baumannii, the majority of which were of the
same OXA-23 producing clone (Mushtaq et al., 2010a). In that
same study, smaller percentages of susceptibility were noted in
a selection of carbapenem-resistant Burkholderia cepacia and P.
aeruginosa isolates. Recent evaluations of BAL30072 confirm that
there may be a role for this agent in the treatment of resis-
tant A. baumannii infections (Russo et al., 2011; Higgins et al.,
2012b). BAL 30376 is a combination of a siderophore monobac-
tam with clavulanic acid. In two studies, this combination
demonstrated reasonable in vitro activity against CHDL, including
OXA-48, and MBLs but not KPCs (Livermore et al., 2010; Page
et al., 2011).
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CONCLUDING REMARKS
In the last 5 years, we have witnessed the global spread of car-
bapenem resistance among Gram-negative organisms. The notion
that multidrug resistance among these pathogens is limited to
isolated outbreaks among the critically ill has met the ultimate
challenge with NDM-1 (Kumarasamy et al., 2010). The conve-
niences of travel and medical tourism have introduced resistance
mechanisms across states, countries, and even continents at an
alarming rate (Rogers et al., 2011; van der Bij and Pitout, 2012).
Rates of resistance in some countries may be underestimated due
to the lack of organized reporting structures and limited resources.
Long-term healthcare facilities are now recognized reservoirs for
the continued propagation of MDR organisms (Urban et al., 2008;
Aschbacher et al., 2010; Perez et al., 2010a; Ben-David et al., 2011;
Prabaker et al., 2012; Viau et al., 2012).

Until the introduction of accurate, affordable, and readily
accessible diagnostics and reliably effective antimicrobials a major
focus remains containment and eradication of these organisms
within the healthcare environment. Many cite a “bundle” type
approach that includes administrative support, active surveillance,
antimicrobial stewardship, and augmented infection control prac-
tices (Centers for Disease Control and Prevention, 2009; Schwaber
et al., 2011; Snitkin et al., 2012). Just as with drug development
(Tillotson, 2010), the future savings of investing in prevention is
not as tangible as the immediate capital investment required to
allot appropriate resources including advanced laboratory plat-
forms, experienced laboratory personnel, dedicated nursing staff,
and infection control personnel (Bilavsky et al., 2010). Expanding
these efforts to non-acute healthcare settings is recommended to
begin to stem the evolving pandemic of carbapenem resistance
(Gupta et al., 2011).

The prudent use of antibiotics is essential in combating the
continuing evolution of resistance (Marchaim et al., 2012). This
may be even more crucial in areas where non-prescription antimi-
crobial use is common and continues to be unregulated. In an age
where multidrug resistance is so widespread, even the appropriate
use of broad-spectrum antibiotics has contributed to our current
state.

Research funding and support for the description of resistance
mechanisms, validation of current infection control practices,
and antimicrobial development must be prioritized. Institutions
supporting infection control, state of the art microbiology labo-
ratories, and antimicrobial stewardship programs should receive
recognition and incentives for their foresight. Despite these
continuing challenges, considerable progress has been made to
identify at-risk populations and to describe resistance determi-
nants. Collaborative efforts (Kitchel et al., 2009a; Struelens et al.,
2010; Canton et al., 2012) have led to a better understanding and
awareness of the epidemiology and the contribution of antimicro-
bial use and the environment to the propagation of antimicrobial
resistance. These joint efforts have proven crucial for the prop-
agation of information about carbapenemases. Continuing to
encourage these partnerships is imperative in the ongoing strug-
gle against antimicrobial resistance and to prevent antimicrobials
from essentially becoming obsolete.
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