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ABSTRACT

Microbial natural products represent a rich resource
of pharmaceutically and industrially important com-
pounds. Genome sequencing has revealed that the
majority of natural products remain undiscovered,
and computational methods to connect biosynthetic
gene clusters to their corresponding natural prod-
ucts therefore have the potential to revitalize nat-
ural product discovery. Previously, we described
PRediction Informatics for Secondary Metabolomes
(PRISM), a combinatorial approach to chemical struc-
ture prediction for genetically encoded nonriboso-
mal peptides and type I and II polyketides. Here,
we present a ground-up rewrite of the PRISM struc-
ture prediction algorithm to derive prediction of nat-
ural products arising from non-modular biosynthetic
paradigms. Within this new version, PRISM 3, natural
product scaffolds are modeled as chemical graphs,
permitting structure prediction for aminocoumarins,
antimetabolites, bisindoles and phosphonate natu-
ral products, and building upon the addition of ribo-
somally synthesized and post-translationally mod-
ified peptides. Further, with the addition of clus-
ter detection for 11 new cluster types, PRISM 3 ex-
pands to detect 22 distinct natural product cluster
types. Other major modifications to PRISM include
improved sequence input and ORF detection, user-
friendliness and output. Distribution of PRISM 3 over
a 300-core server grid improves the speed and ca-
pacity of the web application. PRISM 3 is available at
http://magarveylab.ca/prism/.

INTRODUCTION

Microbial secondary metabolism has historically repre-
sented a rich resource of evolved, bioactive small molecules,
which form the foundations of many therapeutic regimens
(1). Despite a decline in natural product discovery from a
‘golden age’ in the middle of the 20th century, genome se-
quencing indicates that the majority of genetically encoded
natural products remain unknown (2,3). Methods that con-
nect biosynthetic gene clusters to their corresponding natu-
ral products therefore have the potential to facilitate the tar-
geted discovery of genetically encoded compounds. In this
context, a central challenge is to define the structures of ge-
netically encoded natural products and not solely the clus-
ters themselves. Meeting this challenge requires the devel-
opment of cheminformatic algorithms capable of account-
ing for the complete catalog of chemical reactions promoted
by enzymatic catalysts. Nonetheless, early methods were
designed primarily to facilitate detection of biosynthetic
gene clusters (4–11), whereas few methods exist to facilitate
the prediction of natural product structures from microbial
genomes (6,11).

Central to the challenge of finding new chemical enti-
ties is to create accurate algorithms that can predict genet-
ically encoded molecular structures from detected biosyn-
thetic genes. In 2015, we presented PRISM (PRediction
Informatics for Secondary Metabolomes), a Java applica-
tion and web server for the chemical structure prediction
of genetically encoded nonribosomal peptides (NRPs) and
type I and II polyketides (PKs) (12). PRISM takes as in-
put a microbial nucleotide sequence in FASTA or Gen-
Bank format, searches the sequence with a library of hid-
den Markov models (HMMs) associated with secondary
metabolism, clusters the identified biosynthetic genes and
leverages identified biosynthetic information for structure
prediction (Figure 1A). Because the exact site of tailoring
reactions is not always unambiguously predictable, PRISM
generates combinatorial libraries of predicted structures to
account for variability in the action of tailoring enzymes
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Figure 1. (A) Schematic overview of microbial secondary metabolome prediction in PRISM 3. Following ORF detection in a microbial genome sequence,
protein sequences are analyzed and clustered using a library of hidden Markov models for secondary metabolite biosynthesis genes. Identified biosynthetic
information is subsequently leveraged for combinatorial prediction of secondary metabolite chemical structures. (B) Overview of chemical graph-based
secondary metabolite structure prediction in PRISM 3. Modeling a natural product as a chemical graph, rather than a linear permutation of monomers,
facilitates manipulation of the predicted structure at the level of individual atoms or bonds rather than at the level of the monomers. In PRISM 3, individual
sets of atoms, rather than individual sets of modules, are tagged as potential sites of tailoring reactions before combinatorialization. Linkages between
residues within the same subgraph are indicated as dashed lines. (C) Examples of new virtual reactions facilitated by graph-based structure prediction in
PRISM 3.

or in the permutation of monomers that forms the natural
product backbone. We have additionally detailed the exten-
sion of structure prediction to ribosomally synthesized and
post-translationally modified peptides (RiPPs) (13) and de-
scribed the addition of a library of 257 HMMs to identify
genes associated with antimicrobial resistance (14).

Both accurate chemical structure predictions and com-
parison of genetically encoded chemistry to known com-
pounds are required to reveal which evolved natural prod-
ucts should be targeted for isolation and testing. Re-
cently, we described GARLIC, an algorithm to compare
known and genetically encoded non-ribosomal peptides
and polyketides (15). As an immediate next step, we sought
to expand cluster detection and structure prediction within
PRISM to a wider collection of natural product classes,
with an eye toward further definition of clusters encoding
novel products. A ground-up rewrite of the PRISM struc-
ture prediction algorithm was envisioned to permit predic-
tion of more diverse reaction sequences and to effect the
transformations that occur within natural product biosyn-
thetic pathways. Here, we describe major improvements to

the biosynthetic scope and functionality of PRISM in ver-
sion 3 of the PRISM web server, permitting the prediction
of non-modular natural product assemblies and a broader
set of natural product tailoring enzymes.

CHEMICAL GRAPH-BASED STRUCTURE PREDIC-
TION IN PRISM 3

The original iteration of the PRISM web server was de-
signed to predict the structures of modular genetically en-
coded secondary metabolites: in particular, thiotemplated
natural products (NRPs and type I PKs) (12,16). In these
natural products, operational modules composed of multi-
ple domains are responsible for extending the growing nat-
ural product by addition of a single residue. For example, in
NRPSs, the prototypical module is composed of a conden-
sation domain, an adenylation domain and a thiolation do-
main. These domains work in concert to elongate the grow-
ing peptide chain. This approach permitted increased pre-
dictive accuracy relative to existing software (12). However,
this framework represented a barrier to extending PRISM
to non-modular classes of natural products.
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We therefore undertook a ground-up rewrite of the
PRISM structure prediction algorithm, modeling the struc-
ture of the natural product scaffold as a chemical graph,
rather than a linear permutation of modules (Figure 1B).
In this paradigm, individual residues, or combinations of
residues with a fixed pattern of connectivity (such as amino
acids activated by adjacent modules on a NRPS), are rep-
resented as subgraphs within a complete chemical graph.
Functional moieties introduced by tailoring enzymes, such
as methyl groups added by methyltransferases, are also
modeled as subgraphs. Each tailoring enzyme is associated
with a reaction that adds or removes one or more bonds be-
tween or within subgraphs: for instance, a methyltransferase
adds a bond between the carbon atom in the methyl sub-
graph and a methylation site on another subgraph within
the natural product. For modular natural products, linkages
between backbone residues are additionally created based
on the biosynthetically rational permutations of the iden-
tified modules, as previously described (12). This approach
facilitates manipulation of predicted structures at the level
of individual bonds or atoms, rather than at the level of the
monomer.

PRISM 3 demonstrates the utility of this approach by
extending structure predictions to four classes of natu-
ral products which cannot be effectively modeled as a
linear sequence of residues: aminocoumarins, bisindoles,
phosphonate-containing natural products and antimetabo-
lites (including 3-methylarginine, bacilysin/anticapsin, cy-
closerine, dapdiamide and indolmycin) (Table 1). We com-
piled 145 new HMMs and developed 131 new virtual re-
actions to comprehensively enable structure prediction for
natural products of these biosynthetic classes. Supplemen-
tary Table S1 describes the rules for cluster detection of the
new families in PRISM 3, while Supplementary Data S1
provides all HMMs and virtual tailoring reactions added
in PRISM 3. We validated structure predictions by cal-
culating the Tanimoto coefficient (Tc) of predicted struc-
tures to the known products of 31 biosynthetic gene clus-
ters, using the ECFP6 fingerprint (17). Because more than
one structure may be generated for each input biosynthetic
gene cluster, we calculated both the median and maximum
Tc within each predicted structure library. PRISM 3 struc-
ture libraries had an average median Tc of 0.67 (Figure 2A)
and an average maximum Tc of 0.81 (Supplementary Figure
S1A) to the corresponding known cluster products. This is
comparable to the average median Tc of 0.69 reported for
RiPPs (13) and considerably higher than the average median
Tc of ∼0.25 for thiotemplated natural products (12).

We additionally validated structure prediction for a sec-
ond set of 54 biosynthetic gene clusters which were ex-
cluded during the development of structure prediction al-
gorithms. For antimetabolites, bisindoles and phosphonate-
containing natural products, we conducted a homology-
based search using the JGI-IMG browser (18) and man-
ually generated structure predictions based on homology
to known clusters. For aminocoumarins, we included three
clusters whose biosynthesis is incompletely understood
(cacibiocin, rubradirin and simocyclinone) and which were
therefore excluded during the development of structure pre-
diction. PRISM 3 predicted structure libraries for this test
dataset had an average median Tc of 0.75 (Figure 2B) and an

Table 1. Summary of biosynthetic analyzes included in PRISM 3

Structure prediction
Non-ribosomal peptides
Type I polyketides

except iterative type I polyketides, enediynes
Type II polyketides
Ribosomally synthesized and post-translationally modified peptides
(RiPPs)
Deoxy and hexose sugar moieties
Aminocoumarins
Antimetabolites
Bisindoles
Phosphonate-containing natural products

Biosynthetic gene cluster detection
Type I polyketides

iterative type I polyketides, enediynes
Acyl homoserine lactone
Aryl polyene
Butyrolactone
Ectoine
Furan
Isopropylstilbene
Ladderane
Melanin
Phenazine
Phosphoglycolipid
Resorcinol

Gene detection
Resistance genes
Rare monomer biosynthesis genes

average maximum Tc of 0.87 (Supplementary Figure S1B);
the average Tc is likely higher for this dataset due to the in-
clusion of a greater number of antimetabolite biosynthetic
gene clusters, which display relatively less chemical diversity
than the other three classes. Thus, the design of a chemical
graph-based algorithm for structure prediction in PRISM
3 enables accurate prediction of four new classes of natu-
ral products, which cannot accurately be modeled as linear
permutations of monomers.

OTHER NEW FEATURES IN PRISM 3

The rapid uptake of the PRISM web application by the
natural products and microbial genomics communities ex-
ceeded the capacity of the original PRISM server, leading
to server downtime and restricting access for users without
the technical proficiency to run PRISM on a local Tomcat
server or from the command line. Consequently, we have
undertaken modifications to the algorithm to permit distri-
bution of PRISM over a 300-core server grid. We anticipate
that this major investment in the infrastructure underlying
the PRISM 3 web server will improve the speed and capac-
ity of the web application.

We benchmarked the speed of PRISM by using the pro-
gram to analyze 2314 prokaryotic genomes from the Hu-
man Microbiome Project, with all searches enabled and de-
fault parameters. Figure 3 displays the amount of time ded-
icated to each of the major steps of the PRISM algorithm
for each of the 2314 genomes (open reading frame (ORF)
detection, domain and cluster detection, and structure pre-
diction). The median PRISM 3 runs on a microbial genome
finished in 58.8 min (interquartile range, 29.1–107.8 min).
A small number of outliers (161 genomes or 7.0%) required
more than 4 h to process. The longest step was domain and
cluster detection (median CPU time 57.5 min), with ORF
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Figure 2. Validating the accuracy of genomic structure predictions for four new classes of natural products in PRISM 3. (A) Median Tanimoto coefficients
(Tc) within predicted structure libraries for clusters associated with the biosynthesis of known natural products (training set). (B) Median Tc within
predicted structure libraries for clusters excluded from the training set (test set).

Figure 3. Benchmarking the speed of PRISM 3. Total CPU time required for the three major components of the PRISM algorithm (ORF finding, domain
and cluster detection and structure prediction) for analysis of 2314 prokaryotic genomes is shown.

detection accounting for a median CPU time of 0.72 min.
Structure prediction in PRISM 3 was highly efficient, with
a median CPU time of only 0.70 s. PRISM 3 thus produces
genome-wide analyzes of secondary metabolism and struc-
ture predictions for select classes of secondary metabolites
within a reasonable computational time; users who wish
to expedite analysis may wish to disable select libraries of
HMMs in the web application interface.

In addition to generating genomic structure predictions
for four new classes of natural products, PRISM 3 extends
cluster detection (but not structure prediction) to 11 new

classes, including acyl homoserine lactones, aryl polyenes,
butyrolactones, ectoines, furans, isopropylstilbenes, ladder-
anes, melanins, phenazines, phosphoglycolipids and resor-
cinols (Supplementary Table S1). Thus, the biosynthetic
scope of the application has been expanded in PRISM 3
from the original three classes to predict eight and detect 22,
in addition to detecting resistance genes (Table 1). We have
also developed an additional 61 HMMs for the identifica-
tion of antibiotic resistance determinants (Supplementary
Data S1).
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PRISM 3 includes several improvements to sequence in-
put and ORF detection. An improved sequence file parser,
implemented in BioJava (19), automates sequence file type
detection and facilitates GBFF file input. In addition to
finding all possible coding sequences between start and stop
codons, the option to read ORFs directly from a GenBank
file is provided. PRISM 3 also implements Prodigal (20) for
prokaryotic gene recognition. All options for ORF identi-
fication are enabled by default. When ORFs identified by
more than one method overlap, coordinates read from Gen-
Bank are prioritized over Prodigal, which are in turn priori-
tized over potential coding sequences. The option to upload
open reading frame coordinates in GTF format is also pro-
vided. PRISM output in JSON format has been adjusted
to reflect the changes to the web application since its incep-
tion and to provide compatibility with downstream analysis
platforms, including GRAPE and GARLIC (15).

The user-friendliness of the PRISM interface has also
been improved in an effort to make the web application fully
accessible to users without any experience in bioinformatics
or sequence analysis. A redesigned home page features ‘one-
click’ submission, making PRISM analysis accessible to any
user wishing to analyze a microbial genome sequence. Al-
ternatively, a sample input can be automatically loaded. Ad-
vanced settings are hidden by default, but remain accessible
to users with specific needs: in particular, users have the op-
tion to adjust the base pair window for cluster detection (set
by default to 10 000), adjust the maximum size of combina-
torial structure libraries generated by PRISM (set by de-
fault to 50) and adjust the methods for open reading frame
prediction or input (as described above). Users additionally
have the option of disabling HMM searches for individual
families of biosynthetic or resistance domains. PRISM 3 in-
cludes a module to render libraries of predicted SMILES for
each cluster within the browser using RDKit, increasing the
accessibility of chemical structure predictions to users with-
out use of desktop structure rendering software. Finally, a
more clear and concise help page is included within PRISM
3, in addition to a fully annotated sample output from a
PRISM search to facilitate result interpretation.

Some limitations of PRISM 3 should be highlighted.
PRISM relies on homology to known biosynthetic gene
clusters and enzymes whose biosynthetic transformations
are experimentally characterized and therefore cannot iden-
tify novel biosynthetic paradigms or predict unknown
enzymatic reactions. PRISM was designed primarily for
prokaryotic genome analysis and consequently cannot
identify biosynthetic gene clusters for families of secondary
metabolites thought to be specific to eukaryotes. Finally, de-
spite the expansion of structure prediction in PRISM 3, it
is not yet possible to predict a chemical structure for every
known biosynthetic pathway type.

CONCLUSION

With the development of a chemical graph-based paradigm
for structure prediction and extension to eight classes of
natural products, PRISM 3 represents a uniquely compre-
hensive resource for automated prediction of the chemi-
cal structures of genetically encoded secondary metabo-
lites. However, despite the increased biosynthetic scope of

PRISM 3, the chemical structures of a considerable range
of microbial secondary metabolites remain difficult to pre-
dict except via manual annotation by specialists. Future im-
provements to PRISM will leverage chemical graph-based
prediction to extend structure prediction to new classes of
genetically encoded secondary metabolites, with the ulti-
mate goal of integrating all available biosynthetic knowl-
edge concerning secondary metabolism into a single frame-
work.
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Supplementary Data are available at NAR Online.
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