
© 2023 Genome Integrity | Published by ScienceOpen1 1

original article

Therapeutic Fractional Doses of Ionizing Radiation 
Promote Epithelial-Mesenchymal Transition, 
Enhanced Invasiveness, and Altered Glycosylation 
in MCF-7 Breast Cancer Cells
Raheem AL-Abedi1, Seda Tuncay Cagatay1, Ammar Mayah1, Susan A Brooks1, Munira Kadhim1*

1Department of  Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK

How to cite this article: Raheem AL-Abedi, Seda Tuncay Cagatay, Ammar Mayah et al. Therapeutic Fractional Doses of  Ionizing Radiation 
Promote Epithelial-Mesenchymal Transition, Enhanced Invasiveness, and Altered Glycosylation in MCF-7 Breast Cancer Cells. Genome Integr 
2023;14:1.0002. DOI: 10.14293/genint.14.1.002

This work has been published open access under Creative Commons Attribution License CC BY 4.0 , which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Published: May 4 2023

*Address for correspondence:
Department of Biological and Medical Sciences, Oxford Brookes 
University, Oxford, OX3 0BP, UK.
E-mail: mkadhim@brookes.ac.uk

The clinical outcome of  radiation therapy is restricted due to the acquired radio-resistance of  a subpopulation of  tumour cells that may cause tumour 
relapse and distant metastasis. While the effects of  ionizing radiation (IR) such as DNA damage and cell stress are well-documented, the potential role of  
IR in inducing invasive potential in cancer cells has not been broadly studied, therefore we aimed to investigate it in this study. MCF-7 cells irradiated with 
0 Gy (control) or 2 Gy X-ray therapeutic doses of  IR were assessed for cell viability, percentage of  apoptotic cells, and reactive oxygen species (ROS) levels, 
DNA fragmentation, Matrigel invasion, assessment of  epithelial–mesenchymal transition (EMT) markers and Helix pomatia agglutinin (HPA) binding at 
30 min, 4- or 24-h post-IR. Reduction in cell viability, increase in apoptotic cells, ROS positive cells, and DNA fragmentation were observed, while functional 
invasiveness and EMT were exacerbated together with altered glycosylation in MCF-7 cells irradiated with 2 Gy X-ray compared to control cells. These 
findings indicate that despite the detrimental effects of  2 Gy X-ray IR on MCF-7 cells, a subpopulation of  cells may have gained increased invasive potential. 
The exacerbated invasive potential may be attributed to enhanced EMT and altered glycosylation. Moreover, deregulation of  transforming growth factor-
beta (TGF-β) following IR may be one of  the elements responsible for these changes, as it lies in the intersection of  these invasion-promoting cell processes.
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Introduction

The vast majority of  cancer patients are treated with 
radiotherapy during the course of  their disease either alone 
or in combination with other modalities including surgery 
and chemotherapy.[1] Despite being a valuable tool in cancer 
therapy, because of  inherent or acquired radioresistance in 
some cancer patients, the benefits of  clinical radiotherapy are 
limited.[2] Radiotherapy resistance occurs frequently in breast 
cancer patients as manifested by tumour recurrence and distant 
metastasis following radiotherapy treatment.[3]

Radiotherapy uses high-energy ionizing radiation (IR) which 
causes DNA damage in irradiated cells[4,5] resulting in cell 
cycle arrest, senescence, and apoptosis as well as chromosomal 
aberrations and genetic mutations.[6–8] IR can also cause 
production of  reactive oxygen species (ROS), which in turn 
promotes oxidative damage to the membrane of  the cells, 
instigating cell stress and apoptotic cell death.[5,9]

Although it is well established that radiation induces cell death, 
radioresistant subpopulations of  tumour cells may cause 
tumour relapse. Theys et al. suggested that IR may exacerbate 
the invasive potential of  tumour cells via the induction 
of  epithelial–mesenchymal transition (EMT),[10] a cellular 
mechanism that allows epithelial cells to lose their epithelial 
characteristics, including cell-to-cell contacts, and acquire a 
migratory mesenchymal phenotype.[11] EMT is a pivotal process 
in cancer cell migration and invasion,[12,13] which is regulated 
through modulatory pathways, which involve transforming 
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growth factor-beta (TGF-β), human snail homolog 1/snail 
homolog 2 (SNAIL/SLUG), twist-related protein 1/twist-
related protein 2 (TWIST1/TWIST2) transcription factors, and 
zinc finger-homeodomain transcription factor family, as well 
as noncoding RNAs.[11] Accumulating evidence indicates that 
EMT can promote radiotherapy resistance as radioresistant 
cancer cells that survive IR have been observed to exhibit 
an EMT-like changes with an up-regulation of  mesenchymal 
markers and a loss of  epithelial markers.[10,14–16]

Aberrant glycosylation is another hallmark of  cancer that 
has been linked to invasion and metastasis and can be 
detected using lectin histochemistry.[17] An increased display 
of  N-acetylgalactosamine (GalNAc), detected by the lectin 
Helix pomatia agglutinin (HPA) binding, has been linked 
to poor prognosis and an elevated metastatic capacity in a 
wide variety of  cancers, including those of  the breast.[18–21] 
Previously it was suggested that atypical glycans as well as the 
altered expression of  glycosylation related genes may have 
implications in cells undergoing EMT. Maupin et al. showed 
that O-glycosylation, the sulfation of  GAGs, changes to 
matrix components, mannose receptors, and specific sialylated 
structures characterize pancreatic cancer EMT.[22] In addition, 
a growing number of  studies have demonstrated that aberrant 
glycosylation may be associated with treatment failure in 
patients following radiotherapy.[23–25] For example, another 
study showed that altered core 1-type O-glycans expression was 
correlated with advanced tumour stage, metastasis, and poor 
survival of  laryngeal carcinoma patients.[26]

TGF-β, an EMT-promoting cytokine, can promote cancer 
progression by instigating EMT directly through the activation 
of  EMT transcription factors.[27] Interestingly, Freire-de-Lima 
et al. have shown that TGF-β can also induce the up-regulation 
of  a site-specific O-glycosylation in the IIICS (type III 
connecting segment) domain of  human oncofetal fibronectin, 
which is one of  the core components of  the extracellular matrix 
expressed by cancer cells as well as in embryonic tissues.[28]

Although the DNA damaging and cell-killing effects of  IR are 
well understood, the role of  IR in the induction of  EMT and 
glycosylation have not been broadly studied. Therefore, this 
study aimed to investigate the effects of  a 2 Gy X-ray therapeutic 
level of  IR on markers of  EMT, altered GalNAc glycosylation 
and the invasive potential of  MCF-7 breast cancer cells.

Materials and Methods

Cell culture
MCF-7 breast cancer cells were kindly provided by Dr. Joestein 
Dahle (Institute for Cancer Research, Oslo, Norway). The 
MCF-7 cells were maintained in Dulbecco’s Modified Eagle 
Medium/Nutrient Mixture F-12 Ham (DMEM/F12) media 
(D6421, Sigma, St. Louis, MO, USA) supplemented with 10% 
fetal bovine serum (FBS) (F7524, Sigma, St. Louis, MO, USA), 
2 mM L-glutamine (25030149, Gibco, Invitrogen, Paisley, UK), 

1% 250 ng/mL insulin (BioXtra, Sigma, 19278, St. Louis, MO, 
USA), and 1% (v/v) penicillin/streptomycin (P0781, Sigma, 
St. Louis, MO, USA). Cells were cultured in a humidified 
incubator in the presence of  5% carbon dioxide (CO2) at 37°C.

Irradiation
MCF-7 cells (70% confluency) were irradiated with therapeutic 
dose of  2 Gy X-ray utilizing an MXR321 X-ray machine 
operating at 250 kV constant potential, 14 mA, with a dose rate 
of  0.53 Gy/min for 3.56 min. Cells were also sham irradiated 
with 0 Gy X-ray as a control group. All irradiation experiments 
were conducted at the MRC Oxford Institute for Radiation 
Oncology, University of  Oxford, UK.

Cell viability assay
Cell viability of  irradiated and control cells at 4 h following 
irradiation was assayed using a Muse™ Count and Viability Cell 
Dispersal Reagent and Muse™ Cell Analyzer (MCH100107 
and 0500-3115, Merck Millipore, Kenilworth, NJ, USA) as 
previously described in detail.[29]

Reactive oxygen species assay
The population of  cells undergoing oxidative stress was 
measured using a Muse Oxidative Stress kit (MCH100111, 
Merck Millipore, Kenilworth, NJ, USA). ROS in irradiated and 
control cells were detected at 30 min following irradiation as 
previously described in detail.[30] Briefly, cells were harvested in 
1X assay buffer and mixed with 190 μl oxidative stress reagent 
working solution. Following 30 min of  incubation at 37°C, 
Merck Muse cell analyser was used to analyse cells as ROS- (live 
cells) and ROS+ (cells exhibiting ROS).

Comet assay
A comet assay was carried out with both irradiated and 
control cells at 4 h following irradiation as explained in detail 
previously.[29] Briefly, cells were mixed with 200 μl of  0.6% low 
melting point agarose (LMPA) (BP165-25, Fisher Scientific, 
Pittsburgh, PA, USA) and put on 1% normal melting point 
agarose (NMPA) (A9539, Sigma, St Louis, MO, USA) coated 
microscope slides. The slides were then kept in cold alkaline lysis 
buffer at 4°C overnight. Next slides were electrophoresed at 
4°C, 19 V, and 300 A, for 30 min. Finally, following neutralizing 
slides with neutralizing buffer, and washing steps, cells on 
slides were stained with Diamond Nucleic Acid Dye (H1181, 
Promega, Madison, MA, USA). Analysis of  tail intensities of  
cells was carried out using fluorescent microscopy and Comet 
Assay IV Image Analysis Software (Perceptive Instruments, 
Bury St Edmunds, UK).

Apoptosis
Irradiated and control cells were harvested and centrifuged 
at 300 × g at 4 h following irradiation. After fixing cells in 
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3:1 methanol: acetic acid, they were stained with Prolong 
Gold anti-fade reagent with DAPI (Invitrogen, Waltham, 
Massachusetts, USA, P36931). Analysis of  apoptotic cells 
were carried out under a Zeiss Axioplan 2 upright light/
fluorescence microscope (Zeiss, Jena, Germany) and 
ProgRes C3 camera (Jenoptik, Jena, Germany) under 400× 
magnification by counting 500 cells/replicate.

Invasion assay
In order to measure the functional invasiveness of  cells, an 
invasion assay was carried out at 24 h following irradiation 
as explained in detail previously.[31] In brief, irradiated and 
control cells were seeded on Matrigel-coated inserts in serum-
free media, and incubated at 37°C. At the end of  24 h, the 
Matrigel and the media were removed and the membranes 
were washed with phosphate-buffered saline (PBS) solution. 
Then membranes were fixed in 3:1 methanol:acetic acid and 
stained with haematoxylin and eosin before being mounted on 
microscope slides. An Axioplan Light Microscope (Zeiss) with 
a colour camera (ProgRes), under 200× magnification was used 
to score total number of  invaded cells.

Immunocytochemistry and lectin 
cytochemistry

Irradiated and control cells were analysed by 
immunocytochemistry for EMT markers E-cadherin and 
vimentin, and by HPA lectin cytochemistry for GalNAc 
glycosylation at 24 h post-IR, as explained in detail previously.[31] 

Briefly, cells were fixed with 4% formaldehyde (P1851, Sigma, 
St. Louis, MO, USA) at 4°C for 15 min and permeabilized with 
0.1% v/v Triton X-100 (T9284, Sigma, St. Louis, MO, USA). 
Following the washing steps, and blockage of  endogenous 
peroxidase using 3% v/v methanol/hydrogen peroxide, the 
cells were washed three times with 1X Tris buffered saline 
(TBS). Subsequently, cells were blocked with 3% w/v bovine 
serum albumin (BSA) for 30 min. For detection of  vimentin 
and E-cadherin, cells were incubated with either 0.5 μg/ml of  
rabbit monoclonal anti-E-cadherin antibody (ab76319, Abcam, 
Cambridge, UK) or 2 μg/ml of  rabbit polyclonal anti-vimentin 
antibody (ab137321, Abcam, Cambridge, UK) at 4°C overnight 
which was followed by washing steps and incubation with 4 
μg/ml donkey anti-rabbit IgG H&L horseradish peroxidase 
(HRP) (ab6802, Abcam, Cambridge, UK) for 1 h. In order to 
detect altered glycosylation, cells were incubated with 10 μg/ml 
biotinylated HPA (L6512, Sigma, St. Louis, MO, USA) for 
3 min, which is followed by incubation with 5 μg/ml avidin 
peroxidase (A3151, Sigma, St. Louis, MO, USA) for 30 min. 
Cells were finally incubated with DAB peroxidase substrate 
(SK-4100, Vector Laboratories, Burlingame, CA, USA) and 
counterstained with haematoxylin. Dehydrated and mounted 
samples were visualised using an Axioplan Light Microscope 
(Zeiss) with a colour camera (ProgRes), under 400× 

magnification. Quantification of  labelled cells were done by use 
of  Image J software.

Flow cytometry
Investigation of  the EMT marker protein expression of  
irradiated and control cells was also carried out by flow 
cytometry, as described in detail previously.[31] Briefly, following 
permeabilizing cells with 1% Triton X-100 for 10 min, they were 
incubated with rabbit monoclonal anti-E-cadherin (ab76319, 
Abcam) or 2 µg/ml rabbit polyclonal anti-vimentin antibody 
(ab137321, Abcam) for 1 h at room temperature. After the 
washing steps, cells were incubated with 2 μg/ml AlexaFluor® 
488-conjugated polyclonal goat anti-rabbit IgG (ab150077, 
Abcam, Cambridge, UK) for 30 min at room temperature. 
Analysis of  cell suspensions was carried out using a Cytoflex 5 
flow cytometer and CytExpert 2.1 software (Beckman Coulter, 
Brea, CA, USA). The data were presented as a histogram of  
vimentin and E-cadherin positive cells.

Reverse transcription (RT) and quantitative 
polymerase chain reaction (QPCR)

RT-QPCR was carried out on irradiated and control cells as 
previously described[31] using the primers listed in Table 1, 
in order to assess the EMT markers and EMT-associated 
transcription factors mRNA levels and internal gene control.

Western blot
Western blots were performed with the cell lysates derived from 
control cells and irradiated cells, at 24 h post-IR as described 
in detail previously.[31] Briefly, 20 µg of  whole-cell lysates were 
separated in Mini-PROTEAN® TGX Stain-Free™ Protein 

Table 1: Forward and reverse primer sequences used for qPCR 
detection.

Target gene   Primer sequence (5′–3′)

Vimentin   F: ATGGCTCGTCACCTTCG
  R: AGTTTCGTTGATAACCTGTCC

E-cadherin   F: ACGCATTGCCACATACA
  R: CGTTAGCCTCGTTCTCA

TGFβ-1   F: TAAAGGGTCTAGGATGCGCG
  R: GACTTTTCCCCAGACCTCGG

SLUG   F: AGCAGTTGCACTGTGATGCC
  R: ACACAGCAGCCAGATTCCTC

SNAIL   F: AATCGGAAGCCTAACTACAGCG
  R: GTCCCAGATGAGCATTGGCA

ZEB1   F: TCCCTGCCAAGAACAATGATCA
  R: AGGTGATGGGGATGGTGTACTA

Twist   F: ACAGCCGCAGAGACCTAAAC
  R: GGCCTGTCTCGCTTTCTCTT

Act-β-1   F: TGACCCAGATCATGTTTGAGA
  R: TACGGCCAGAGGCGTACAGC

F: Forward; R: Reverse.
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Gels (456-8126, Bio-Rad, Hercules, CA, USA) and transferred 
onto an Amersham™ Hybond™ polyvinylidene difluoride 
(PVDF) membrane (10600090, GE Healthcare, Little Chalfont, 
UK). Next, 5% BSA was used to block the membranes, which 

were then incubated with rabbit polyclonal anti-vimentin 
(ab137321, Abcam), rabbit monoclonal anti-E-cadherin 
antibody (ab76319, Abcam) or anti-TGFβ-1 (ab179695, Abcam, 
Cambridge, UK), at 1:500 dilution, overnight. Following the 
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Figure 1: Cell viability, ROS positivity, DNA damage, and apoptosis percentages at 30 min and 4 h following 2 Gy X-ray or sham irradiation of 
MCF-7 cells. The data are presented as the percentage of (A) cell viability, (B) ROS+ cells, (C) apoptotic cells, (D) DNA damage via the comet 
assay. The error bars represent the SD of cell viability, ROS+, DNA damage and apoptosis (*P ≤ 0.05, ***P ≤ 0.0001). The experiments were 
carried out in triplicate.
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washing steps, membranes were incubated with goat polyclonal 
antibody to rabbit IgG-H&L (Alexa Fluor® 488, Abcam) for 
1 h at 1:1000 dilution. Visualization was achieved via the use of  
the Chemi™Doc MP Imaging system (Bio-Rad, Hercules, CA, 
USA) and analysis was carried out by Image Lab 4.1 software.

Statistical analysis
For HPA binding and EMT marker assays, the significance 
of  the ratio of  the percentage of  labelled cells to total cells 
was subjected to Fisher’s exact test. An invasion assay was also 
evaluated by Fisher’s exact test. The significance of  apoptosis 
assay data was evaluated by Student’s t-test. For viability, a ROS 
assay and comet assays statistical significance was determined 
via the Mann–Whitney U test. Western blot band intensities 
and RT-QPCR results were represented as mean ± standard 
deviation (SD). Experiments were carried out in triplicate. Data 
were accepted statistically significant for P-values lower than 
0.05 (*P < 0.05, **P < 0.001, ***P < 0.0001).

Results

In order to investigate the DNA damaging and cell-killing 
effects of  IR on breast cancer cells, MCF-7 cells irradiated 
with 0 Gy (control) or 2Gy X-ray were assessed for cell 
viability, percentage of  apoptotic cells, ROS+ cells, and DNA 
fragmentation either at 30 min and 4 h post-IR.

A viability assay demonstrated a significant reduction in 
the percentage of  viable cells in 2Gy irradiated MCF-7 cells 
compared to a sham irradiated control group as shown in 
Figure 1(A). The percentage of  ROS+ cells was increased in 
MCF-7 cells group irradiated with 2 Gy X-ray compared to 
the control cells as detailed in Figure 1(B). Parallel with these 

findings, the percentage of  apoptotic cells was increased in cells 
irradiated with 2 Gy X-ray compared to the sham irradiated 
cells [Figure 1(C)]. Total DNA damage was investigated via 
the comet assay, where the percentage of  DNA in the comet 
tail indicating DNA damage was increased significantly in the 
2 Gy X-ray irradiated cells compared to the control group as 
depicted in Figure 1(D).

The impact of  the 2 Gy X-ray therapeutic level of  IR on the 
invasive potential of  MCF-7 cells was investigated using Matrigel 
invasion and assessment of  EMT marker, and HPA binding 24 
post-IR, where functional invasiveness, expression of  EMT 
markers, and the glycosylation status of  the cells were evaluated, 
respectively. Data showed a significant increase in the number 
of  invaded MCF-7 cells through the Matrigel transmembrane 
system after IR exposure as presented in Figure 2. HPA labelling 
demonstrated a significant increase in the percentage of  HPA 
positive MCF-7 cells when they were irradiated with 2 Gy 
X-ray compared to sham-irradiated control cells. Moreover, 
MCF-7 cells irradiated with 2 Gy X-ray showed a significantly 
increased vimentin immunopositivity and reduced E-cadherin 
immunopositivity indicating an increase in EMT-like changes.

Next, in order to confirm the augmentation of  EMT-like 
changes in irradiated MCF-7 cells that were observed with EMT 
marker assay, we investigated expressional changes in EMT 
markers and transcription factors following 24 h of  irradiation. 
qPCR and Western blot analysis results both showed that there 
was a significant upregulation of  vimentin both at RNA and 
protein levels, whereas E-cadherin was downregulated in 2Gy 
X-ray irradiated MCF-7 cells compared to sham irradiated 
MCF-7 cells [Figure 3(A), (B)]. Similarly, flow cytometry analysis 
results [(Figure 3(C)] showed a significantly increased vimentin 
immunopositivity and reduced E-cadherin immunopositivity in 
the 2 Gy X-ray irradiated MCF-7 cells compared to the sham 
irradiated MCF-7 cells.

The expression of  selected EMT-associated transcription 
factors was investigated at the mRNA level. qPCR analysis 
showed that SNAIL, SLUG, (Zinc finger E-box binding 
homeobox 1) ZEB1, and TWIST were all significantly increased 
24 h after 2 Gy X-ray irradiation compared to sham-irradiated 
MCF-7 cells, as depicted in Figure 4.

Finally, observation of  a consistent change in EMT markers 
and EMT promoting transcription factors in MCF-7 cells has 
driven us to investigate the expression of  TGF-β, which is also 
an important cytokine and reported to influence glycosylation. 
qPCR analysis and the Western blot analysis [Figure 5(A) and 
(B), respectively] showed that the TGF-β mRNA and protein 
expressions were increased in the 2 Gy X-ray irradiated MCF-7 
cells compared to the sham-irradiated MCF-7 cells.

Discussion

Clinical radiotherapy shows limited benefit in some cancer 
patients due to inherent or acquired radioresistance,[2] while 
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radiotherapy resistance is also common in breast cancer patients 
as evidenced by tumour relapse and distant metastasis.[3] 
Therefore, investigation of  the mechanisms driving tumour 
relapse following radiotherapy has critical importance in order 
to overcome the failure in radiotherapy in breast cancer and 
improve disease outcomes and increase survival benefit.

In the current study, as expected, we observed that a 2 Gy 
therapeutic dose of  IR had significant DNA damaging and 
cell-killing effects, as manifested by the results of  cell viability, 
percentage of  apoptotic cells, ROS positivity, and the comet 
assay in MCF-7 cells at 30 min and 4 hpost-irradiation 
(Figure 1). Despite the cell-killing effects of  IR, previous 
data suggest that the invasive potential of  tumour cells can 
be enhanced by IR exposure.[10,32] Therefore, we also aimed 
to investigate the invasive potential of  MCF-7 cells following 
2 Gy X-ray irradiation. Interestingly, our findings indicated 
that cancer cells that survived X-ray treatment demonstrated 
a significant change in their invasive potential, as depicted in 
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Figure 2. Cells were significantly more invasive following 2 Gy 
X-ray irradiation compared to the sham irradiated counterparts.

Aberrant glycosylation, demonstrated by binding of  the 
lectin HPA, is linked to invasion and poor prognosis in many 
human cancers, including breast cancer.[21] Importantly, a 
growing number of  studies have demonstrated that aberrant 
glycosylation may be associated with treatment failure in patients 
following radiotherapy.[23,24] As shown in Figure 2, we observed 
that cells exposed to IR have increased HPA immunopositivity. 
Besides, we observed a shift to an EMT-like profile as the cells 
showed a reduction in E-cadherin but an increase in vimentin 
immunopositivity, shown by the EMT marker assay (Figure 2) 
and also Western blot analysis and flow cytometry [Figure 3(B) 
and (C), respectively]. The same trend was confirmed with 
qPCR showing the change in expression of  these two markers 
is at the mRNA level [Figure 3(A)].

Our findings regarding reduction in E-cadherin are not only 
important because it is a key EMT marker, but also because of  
its central importance in radiation response. Theys et al. showed 
that sparsely seeded MCF-7 are more radioresistant compared 
to dense MCF-7 cultures following IR treatment and that 
mesenchymal MDA-MB 231 cells could be radio-sensitized by 
the reconstitution of  E-cadherin expression.[10]

The loss of  EMT epithelial gene expression and activation 
of  a mesenchymal phenotype involves the core set of  EMT-
coupled transcription factors, SNAIL, SLUG, TWIST, and 
ZEB1.[33] SNAIL and SLUG are known as strong repressors 
of  E-cadherin expression.[34] TWIST has been shown to bind 
to the E-cadherin promoter, regulating E-cadherin promoter 
activity and its expression shown to have inverse correlation 
with E-cadherin expression in clinical breast cancer samples.[35] 
ZEB1 represses EB1 transcription of  E-cadherin through 
E-box sequences in its promoter region.[36] In the study 
reported here, as shown in Figure 4, SNAIL, SLUG, TWIST, 
and ZEB1 are all upregulated at 24 h following 2 Gy X-ray 
irradiation of  MCF-7 cells, which might have contributed to 
the downregulation of  E-cadherin in those cells compared to 
sham-irradiated cells.

EMT-promoting cytokine TGF-β expression was enhanced at 
mRNA [Figure 5(A)] and protein [Figure 5(B)] levels following 
irradiation with 2 Gy X-ray in MCF-7 cells. TGF-β plays a 
prevalent role in EMT regulation[27] and the EMT-like changes 
observed in MCF-7 cells following X-ray irradiation in this 
study may be partially attributed to this upregulation. Besides, 
the EMT programme has been linked to increased resistance 
to ionizing radiation via complex molecular mechanisms. IR 
activates the TGF-β pathway through tyrosine kinase activation 
of  TGF-β receptor I and II, which in turn phosphorylates 
Smad2/3 promoting EMT and radioresistance.[37,38]

Overall, in this study, we have shown that although the 2 Gy 
X-ray therapeutic level of  IR has detrimental effects on MCF-7 
cells including DNA damage and apoptosis, there may be a 
subpopulation of  cells that have gained increased invasive 

potential. The exacerbated invasive potential may be the 
collective result of  enhanced EMT and altered glycosylation. 
Moreover, deregulation of  TGF-β following IR may be one 
of  the elements responsible for these changes, as it lies in 
the intersection of  these invasion-promoting cell processes. 
These findings may have important implications in terms of  
understanding radiation therapy resistance and developing new 
treatment strategies in breast cancer.
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