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ABSTRACT
In the last several decades, there have been significant advances in anticancer 

therapy. However, the development of resistance to cancer drugs and the lack 
of specificity related to actively dividing cells leading to toxic side effects have 
undermined these achievements. As a result, there is considerable interest in 
alternative drugs with novel antitumor mechanisms. In addition to the recent 
approach using immunotherapy, an effective but much cheaper therapeutic option 
of pharmaceutical drugs would still provide the best choice for cancer patients as the 
first line treatment. Ribosomally synthesized cationic antimicrobial peptides (AMPs) or 
host defense peptides (HDP) display broad-spectrum activity against bacteria based 
on electrostatic interactions with negatively charged lipids on the bacterial surface. 
Because of increased proportions of phosphatidylserine (negatively charged) on the 
surface of cancer cells compared to normal cells, cationic amphipathic peptides could 
be an effective source of anticancer agents that are both selective and refractory to 
current resistance mechanisms. We reviewed herein the prospect for AMP application 
to cancer treatment, with a focus on modes of action of cationic AMPs.

INTRODUCTION

Despite unprecedented successes in the field of 
medicine in the last fifty years, cancer remains a serious 
threat to human survival [1–4]. Chemotherapeutics, 
in combination with or in addition to surgery and 
radiotherapy, play an important role in increasing life 
expectancy of cancer patients [5–9]. Tumors are clones of 
rapidly dividing cells unregulated by normal mechanisms 
of growth suppression. Chemotherapy aims at interfering 
with this uncontrolled process of cell division [10, 11]. 
However, many cancer drugs typically lack specificity to 
transformed cells [12–14]. Consequently, they also kill 
healthy cells undergoing rapid proliferation resulting in 
toxic side effects. Another limitation of chemotherapy is 
the development of resistance by tumor cells [15–17].  
Thus, a more effective alternative could be other 
classes of drugs with the property to specifically target 
cancer cells without toxicity to normal cells. One more 
requirement is a lower tendency for development of 

resistance against such drugs compared to conventional 
chemotherapeutics. AMPs are an untapped resource 
with low propensity to elicit development of resistance 
by its target and to display toxicity to healthy cells 
undergoing rapid proliferation [18–20]. AMPs are 
an essential component of the host innate immunity  
[21–23]. Although they display considerable diversity 
in both primary and secondary structures, [24–27] the 
cationic amphipathic motif is a typical structural feature 
of AMPs and an important determinant of antimicrobial 
functions [28–31]. While AMP investigations have 
been largely focused on antimicrobial properties, there 
is increasing evidence that AMPs display antitumor 
functions, perhaps in the context of a multifunctional 
host defense system of multicellular organisms. 
Alternatively, the antitumor property could be a “side-
activity” not necessarily implicated in the natural 
selection of the common cationic amphipathic structure 
of AMPs. We reviewed herein the potential of AMPs for 
application to antitumor therapy as anticancer peptides 
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(ACPs) with novel mechanisms. Broad structural and 
functional properties of AMPs not pertaining to selective 
action against cancer cells and antitumor efficacy are 
reviewed elsewhere [32–39].

Basis for antitumor property of AMPs: selective 
recognition of cancer cells via electrostatic 
interactions

Most AMPs are short (typically 10 to 50 residues 
long) cationic peptides with an amphipathic structure 
[40–48]. They are structurally diverse in both amino acid 
compositions and secondary structures (α-helix, β-sheets, 
extended helix, and loop) (Figure 1). There are multiple 
reviews of AMP structures, [49–52] which we do not 
discuss here. AMPs generally recognize their target via 
electrostatic interactions with negatively charged lipids on 
cell membranes [53–56]. Because these interactions are 
not mediated by specific receptors, conversion of L to D 
enantiomers does not necessarily disrupt the binding capacity 
of AMPs as shown by Papo and others [57–59]. AMPs 
display strong interactions with bacterial membranes due 
to high density of electronegative charges on the bacterial 
surface, such as lipopolysaccharide (LPS) on the outer 
membrane of gram-negative bacteria [60–63] or lipoteichoic 
acid (LTA) on gram-positive bacterial membranes [64–68]. 
Of note, there is no consensus sequence for binding activities, 
as cationic AMPs (typical charge of +2 or more) of all types 
of secondary structures (α-helix, β-sheets, loop alone or 
in combination; Figure 1) and diverse primary sequences 
with different positive charges are able to recognize their 
microbial targets [69–73]. It is, therefore, evident that the 
cationic amphipathic motif is the main requirement for 
activity whereas the primary sequence determines specificity 
or spectrum of activity. While AMPs may display toxicity to 
mammalian cells, toxic concentrations are commonly one 
log of magnitude higher compared to minimum inhibitory 
concentrations against bacteria [74, 75]. Hence, it is logical 
to predict that AMPs with promising pre-clinical data will 
display a minimum therapeutic index (maximum tolerated 
dose/minimum therapeutic dose) required for efficacy in 
specific applications.

Some AMPs specifically target tumor or cancer 
cells because transformed cells generally incorporate 
phosphatidylserine (PS, 3–9% of the total amount of 
phospholipids) in the outer leaflet of the plasma membrane 
(Figure 2) [76–78]. PS is usually found on the inner leaflet 
of the cytoplasmic membrane of normal mammalian cells. 
However, it can be transferred to the outer leaflet of the 
plasma membrane of cells undergoing apoptosis, which 
disrupts the asymmetry observed for normal mammalian 
cell membranes [79, 80]. Hence, this change in asymmetry 
is typically shared by both apoptotic cells and several types 
of cancer cells and facilitates recognition and clearance 
of these cells by monocytes [81–83]. Other factors that 
may contribute to elevated negative charges on cancer 

cells include heparin sulfates, [84–86] and O-glycosylated 
mucins on the surface of tumor cells [87–90]. However, 
the density of electronegative charge (due to a single 
phosphate group on PS) on cancer cells is relatively lower 
compared to negative charges (due to multiple phosphate 
groups on LPS, LTA, in addition a phosphate group on 
PS) on bacterial cell membranes. As a result, AMP affinity 
for cancer cells is inherently weaker than the affinity for 
bacteria. Of note, electronegative charges do not always 
enhance activity. As shown by Fadnes et al. (2009), 
Cell surface heparin sulfate inhibits the bovine AMP 
lactoferricin by sequestering the peptide away from the 
lipid membrane [91]. Cancer cell membranes display other 
properties that may facilitate killing by AMPs compared 
to normal cell membranes. Some transformed cells may 
incorporate lower levels of cholesterol in their membranes, 
enhancing fluidity. For instance, cell membranes of human 
leukemia and lung cancers display increased fluidity 
due to a lower level of cholesterol in their membranes 
compared to membranes of normal leukocytes and 
pulmonary cells [92–94]. This increase in membrane 
fluidity may potentiate lytic effects of AMPs as in the case 
of cecropins and other peptides [95–97]. Conversely, some 
cancer cells incorporate elevated cholesterol levels as part 
of lipid rafts (e.g., prostate cancer) in their membranes 
compared to normal cell membranes [98, 99]. Therefore, 
the role of cholesterol content in cationic ACP activity 
against cancer cells remains unclear. For instance, some 
enveloped viruses are susceptible to AMPs (e.g., LL37 
activity against herpes simplex and influenza viruses) 
although they incorporate high cholesterol content (lipid 
rafts) in their membranes [100, 101]. Another interesting 
property of cancer cells, which may enhance AMP 
binding, is the increase in surface area with increasing 
number of microvilli [102, 103]. Upon binding to cancer 
cells, AMPs may either disrupt the membrane or penetrate 
the cell and attack the mitochondria leading to apoptosis. 
The defensins (29–45 amino acids long), an important 
class of Cys-rich antimicrobial peptides (β-sheets, 
Figure 1), were among the first AMPs to be discovered 
and to demonstrate antitumor activity. Although these 
AMPs have been isolated from different species including 
plants, [104, 105] the α-(Cys1-Cys6, Cys2-Cys4 and 
Cys3-Cys5 bridges, with Cys residues numbered based 
on location from the N-terminus) and β-defensins (Cys1-
Cys5, Cys2-Cys4 and Cys3-Cys6 bridges) synthesized in 
humans are the most studied defensins to date [104–109].  
Antitumor activities of α-defensins, notably the human 
neutrophil peptides (HNP) 1–3, have been demonstrated 
via both membranolytic and apoptotic mechanisms as 
well as inhibition of neovascularization required for 
tumor growth [110, 111]. However, the HNPs also kill 
normal cells such as fibroblasts, epithelial cells, and 
leucocyte. Similarly, the plant defensins also display a 
lack of selectivity towards tumor cells [112–115]. As 
a result, the defensins are generally not efficient ACP 
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therapeutics, or they require structural optimization to 
achieve antitumor selectivity. We examined hereafter the 
antitumor properties of AMPs derived from animals based 
on two sets of mechanisms, selective plasma membrane 
disruption or non-membranolytic cytotoxicity.

Evidence for selective membrane disruption

One of the earliest indications that AMPs may be a 
source of anti-tumor therapy is a study by Cruciani and 
colleagues [116]. Discovered by Michael Zasloff, the 
magainins are a family of AMPs with broad-spectrum 
antibacterial activity found in the African frog Xenopus 
larvae [117–119]. Cruciani et al. showed that magainin 
2 and its analogues demonstrated activity selectively 
against both hematopoietic and solid tumor cells. The 
cytotoxic effects of the magainins were rapid (within 1 
hour) at a concentration as low at 12 µg/mL and were 
not observed against normal lymphocytes even at up to 
200 µg/mL. The peptides induced ion channels leading to 
leakage of Na+, K+, and Cl- ions. The cytotoxic effects of 
the peptides were abrogated when the electrical gradient 
was eliminated prior to peptide exposure, indicating the 
membrane potential is essential to the peptide activity. 
Exposure of the mitochondria to the peptide resulted in 
inhibition of respiration and leakage of glucose through 
the peptide-induced channels [120]. Subsequently, an 
interesting link was established between two independent 
discoveries [the Cecropins (insect) and magainins (frog)] 
by Boman and Zasloff, respectively [119, 121, 122]. In 
this study a hybrid between Cecropin A and magainin 2 
(CA-MA-2, KWKLFKKI-P-KFLHSAKKF-NH2) was 

constructed with three more derivatives based on proline 
substitutions in the hinge region [123]. These investigators 
discovered that the activities against several tumor cell 
lines were enhanced compared to toxicity to erythrocytes 
and primary fibroblasts. The cationic peptide CA-MA-2 
displayed no detectable hemolysis and cytotoxicity against 
the primary cell NIH-3T3 fibroblast at concentrations up 
to 100 µM. In contrast, the 50% inhibition concentration 
(IC50) against several tumor cell lines was as low as 20 
µM. it is important to note that antimicrobial activity was 
always higher than the anti-tumor effects, suggesting 
that these AMPs could be further optimized specifically 
for enhanced antitumor properties. Disruption of large 
phosphatidylcholine (PC)/phosphatidylserine (PS)-
based unilamellar (mixed PC-PS) vesicles by CA-MA-2 
indicated a membrane perturbation mechanism, although 
it would have been informative for the investigators to 
include the parent peptides Cecropin A and Magainin 
2 in this study. Another example of cell membrane 
disruption was more directly demonstrated by the AMP 
chrysophsin-1 (FFGWLIKGAIHAGKAIHGLI) [124]. 
Using fluorescent, scanning and transmission electron 
microscopy, combined with LDH release, the investigators 
showed convincingly that the cationic amphipathic peptide 
disrupted the plasma membrane of several cancer cell lines 
at much lower concentrations compared to the CA-MA-2 
peptide. Cancer cell death by apoptosis was ruled out as 
caspase expression and activities were not affected by 
chrysophsin-1. 

While these previous studies show great promise, 
they fell short of demonstrating anti-tumor efficacy  
in vivo. In addition, AMP activity against cancer cells is 

Figure 1: Main structural classes of cationic antimicrobial peptides (AMPs).
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much lower than their antimicrobial activity. Hence, two 
main problems remained to be addressed: (1) the limited 
anti-tumor activity and (2) specificity toward tumor 
cells. Both limitations can be overcome if the specificity 
of AMPs towards tumor cells is enhanced. The strength 
of AMP interaction with cancer cells may affect both 
activity and specificity. Hence, in 2011 Liu and colleagues 
published an elegant study addressing this limitation. They 
reasoned that linking an AMP to a cancer-homing peptide 
would enhance specificity and activity against cancer 
cells. Isolated from frog skin, Bombesin appeared to be 
a good candidate as the 14-residue peptide recognizes a 
variety of human cancer cells. The question was which 
AMP would be the best choice for this experiment? 
Magainin II (MG2), also derived from frog skin, was 
one of the most studied AMPs at the time. In fact, the 
magainins are likely to become the first classical family 
of AMPs to be used clinically as the derivative pexiganan 
(cream, 0.08%)  is currently in phase III clinical trials 
in patients with mild infections of diabetic foot ulcers 
[125–127]. Hence, MG2 was linked to Bombesin 
(MG2B, GIGKFLHSAKKFGKAFVGEIMNSGG-

QRLGNQWAVGHLM). The MG2B peptide displayed 
higher cytolytic effects compared to MG2. In fact, the 
in vivo efficacy of MG2B was demonstrated in mice 
bearing MCF-7 tumor grafts. With a daily intratumoral 
injection of MG2B (20 mg/kg) for 5 days, there was a 
significant reduction of the tumor size in mice [128]. 
There are several other examples of membranolytic 
effects of ACPs, including the use of the ACP gomesin 
(ZCRRLCYKQRCVTYCRGR) in a cream formulation 
for successful topical treatment in mice [129, 130]. 
Importantly, one of the most significant anti-cancer 
effects of a membranolytic ACP was demonstrated by 
Papo and colleagues (Figures 2 and 3) [131–133]. The 
investigators constructed a D-enantiomer of an engineered 
ACP K6L9. With a daily dose of the peptide (9 mg/kg) 
injected systemically every other day for a total of nine 
doses, immunodeficient mice implanted with both breast 
and prostate metastatic cancers were protected against 
malignant disease.  The tumors became necrotic, and 
the density of the tumor-induced neovascularization was 
significantly reduced. The selective binding of the ACP 
to the negatively charged PS and cytoplasmic membrane 

Figure 2: Common antitumor mechanisms of cationic AMPs classified as ACPs. ACPs (anticancer peptides), or cationic 
AMPs with anticancer properties, selectively recognize cancer cells by electrostatic interactions with negatively charged phospholipids on 
the surface of eukaryotic cells [e.g., PS (phosphatidylserine)]. Some ACPs demonstrate in vivo efficacy (e.g., *MGB2, Gomesin, K6L9, 
LTX-315); ACPs tend to kill cancer cells by membrane perturbation (blue/cyan), although some (e.g., KLA, Pardaxin) may penetrate the 
target cell and disrupt the mitochondrial membrane resulting in apoptosis (green/purple). (How?), mechanism unclear; brown perpendicular 
bar, inhibition; CTL, cytotoxic T-Lymphocytes; M, mitochondria, SER, smooth endoplasmic reticulum; RER, rough endoplasmic reticulum; 
R, ribosomes; N, nucleus; V, vacuole; L, lysosome; only cholesterol and other lipids are shown; membrane proteins are omitted for clarity.
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depolarization were also demonstrated. The ACP 
D-K6L9 (LKLLKKLLKKLLKLL) is the most successful 
demonstration of the systemic anticancer efficacy of 
an ACP to date [58]. Notably, D-K6L9 is made of only 
two amino acids. As natural AMPs work in the context 
of a multifunctional immune system, they are more 
efficient at protecting the host against disease than they 
are at curing established illnesses (more preventive than 
therapeutic). Hence, it is logical to engineer AMPs with 
more optimized structures for therapeutic applications as 
opposed to using AMPs as they are produced in nature. 
We predict that the success of AMP engineering will be 
facilitated by the establishment of a definitive framework 
for distinguishing the unique role of the cationic from that 
of the hydrophobic domain in selectivity toward the target 
versus host cells. Once a guideline for selective killing 
of different target cells is established, it will then be 
possible to design AMPs with enhanced therapeutic index 
with less trial and error.  In the case of the peptide K6L9, 
the investigators use the principle of amphipathicity to 
design a 15-residue AMP (charge = +6) with an idealized 
amphipathic helix (Figure 3). In addition, the use of 
D-amino acids enhances stability, addressing a concern 
for lability of AMPs [58, 132–134]. This is an important 
example of how AMP engineering can lead to enhanced 
results. Yet, the most advanced (in terms of clinical trials) 
cationic ACP is not D-K6L9. Over the last two decades, 
there has been an increasing interest in bovine lactoferricin 
(LFcinB). LFcinB is derived from the natural milk protein 
bovine lactoferrin (LFB) by pepsin digestion [135–139]. In 
addition to its antimicrobial properties, [140–143] LFcinB 
demonstrates enhanced activities against cancer cells 
compared to normal mammalian cells [139, 144, 145]. 
Importantly, high-resolution imaging revealed a 
membranolytic mechanism [146]. These studies reached 
a turning point when Eliassen and colleagues (2006) 
began to examine the in vivo efficacy of LFcinB in mice, 
demonstrating the growth inhibition of neuroblastoma 
xenografts [147]. While the peptide could be localized in 
the mitochondria with caspase activation, the lytic effects 
on the cytoplasmic membrane represented the primary 
cytotoxic mechanism, as pan-inhibition of the caspase 
enzymatic cascade could not reverse the cytotoxic effects 
of the peptide. These studies led to further structural 
optimization using 3,3-diphenylalanine (Dip) substitutions 
for Trp at specific positions of the 9-mer template. These 
investigations resulted in enhanced selectivity (IC50 
below 5–10 µM) against a variety of tumors compared 
to normal cells. More importantly, these studies revealed 
a cytolytic-immunogenic dual cell death mechanism   
[148–156]. Lysis of the tumor induced the release of 
danger-associated molecular patterns (DAMPs) including 
high mobility group box protein 1 (HMGB1, reviewed 
by Frank et al., 2015 [157]) in addition to antigens from 
the dead tumor cells. As potent stimulators of immune 
responses, HMGB1 potentiated A20 lymphoma-specific 

activation of immature dendritic cells with subsequent 
generation of tumor-specific cytotoxic T-lymphocytes 
and tumor cell lysis. The immunogenic cell death was 
further confirmed by the adoptive transfer of syngeneic 
A20 lymphoma-specific CTLs and resulting protection 
of immunodeficient mice from tumor implants. Further, 
LTX-315-treated mice in remission from the tumor were 
protected from a second challenge by the syngeneic tumor 
and not by a different tumor type, indicating the specificity 
of the immunogenic cell death. Hence, the potent 
derivative LTX-315 was selected for advanced preclinical 
studies. LTX-315 is now (2016) in phase 1 clinical trial 
as described later. The study of LTX-315 is yet another 
illustration of how natural AMPs can be optimized for 
specific clinical applications.

Non-membranolytic mechanisms of ACP

The ACP K6L9, while exerting a direct 
membranolytic effect on cancer cells, demonstrates anti-
angiogenic and anti-metastatic effects, an anti-tumor 
mechanism that remains to be elucidated. Another common 
anti-cancer mechanism is the potentiation of apoptosis in 
cancer cells by ACP [158–160]. While ACPs selectively 
interact with cancer compared to normal cell membranes, 
some AMPs may both perturb the membrane and penetrate 
the cells while other non-lytic ACPs may simply traverse 
the membrane and access the intracellular compartment. In 
both cases, the ACP disrupts the mitochondria (as expected 
because of the bacterial origin of mitochondria) and 
induces programmed cell death. This apoptotic mechanism 
is demonstrated by swelling of the mitochondria, 
disruption of the mitochondrial membrane, translocation of 
PS to the surface of the cell, and stimulation of apoptotic 
markers (e.g., caspase enzymatic pathway). One of the 
earliest examples of an apoptotic ACP was reported by 
Mai et al., 2001 [161]. The authors used a KLA repeat 
AMP [(KLAKLAK)2] conjugated with a transduction 
peptide (RRQRRTSKLMKRGGKLAKLAKKLAKLAK) 
by a glycine pacer. The intratumoral injection of 
the chimeric ACP resulted in the translocation of 
the peptide into the cytoplasm of the tumor cells, 
disruption of the mitochondria, and stimulation of 
apoptotic enzymatic cascade by caspase 3 activation. 
Other ACPs have the inherent property to penetrate the 
cancer cells without the need for conjugation with a 
cell penetrating peptide. An example of such a peptide 
(GFFALIPKIISSPLFKTLLSAVGSALSSSGGQE) is 
pardaxin, which induces apoptosis of squamous cell 
carcinoma cells by caspase 3 activation [162]. In addition, 
some AMPs may be used as cell penetrating peptides to 
transfer an anticancer drug into cancer cells. This is the case 
of the AMP PR39 (RRRPRPPYLPRPRPPPFFPPRLPP 
RIPPGFPPRFPPRFP) used as a cell penetrating peptide 
to transfer Stat3 siRNA (the cargo) into breast cancer cells 
[163–165]. As previously mentioned, another interesting 
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antitumor mechanism is the immunogenic cell death 
conferring long-lasting protection against future challenges 
from the same tumor type. Such a mechanism is displayed 
by the ACP LTX-315, [151] which was selected for 
advanced preclinical studies. LTX-315 is now in phase 1 
clinical trial [151, 155, 156]. Noteworthy is an antitumor 
mechanism occurring via the lysosomal-mitochondrial 
death pathway by the defensin Brevenin-2R (in vitro 
activity) [166]. As the anticancer mechanisms of AMPs 
become increasingly clear, structural optimization for 
enhanced anticancer potency will be more achievable and, 
therefore, clinical development more likely to succeed.

Of note, AMPs synthesized in plants are another 
important source of peptide therapeutics that could be used 
as anticancer agents. However, for many of these AMPs, 
the anticancer mechanisms are unclear. AMPs derived from 
plants are beyond the scope of this review and are reviewed 
elsewhere [32]. A list of representative AMPs with selective 
antitumor mechanism is shown Table 1.

Prospect for clinical use of AMPs as anticancer 
agents

The clinical development of AMPs as ACPs faces 
some of the same challenges to AMP clinical development as 
antimicrobial agents. AMPs are not traditional drugs. Because 
they have multifunctional properties, the adaptation from their 
natural environment to clinical applications without structural 
optimization is rather challenging. While AMPs work well 
in the context of a competent immune system, it is likely 
that in nature a particular AMP structure is not completely 
optimized for a single function (e.g., antibacterial, antiviral, 
or anticancer). The field also faces some unfounded criticisms 
that have hindered support for AMP development. Some of 
these criticisms are that (1) “AMPs are labile and likely to 
have poor pharmacokinetic properties”, an assumption based 
on the peptidic nature of AMPs; (2) “AMPs are expensive to 

make”; (3) “AMPs are not good drugs” because they do not 
recognize specific receptors. 

Although stability is an important concern, the first 
criticism is based on the assumption that all peptides have 
similar stability and clearance mechanisms. One of the 
shortcomings of AMPs is the lack of correlation between 
in vitro susceptibility testing and efficacy in animal 
models, with some exceptions including some of the AMPs 
discussed in this review and elsewhere [58, 156, 167–169]. 
Assays establishing correlation between in vitro stability 
and bioavailability in animal models might address this 
concern. Currently, AMPs with optimized structures are 
amenable to parenteral administration including systemic, 
respiratory, intramuscular, intraperitoneal, or subcutaneous 
unless otherwise contraindicated [167, 168, 170–172]. 
Although the peptidic nature of AMPs precludes oral 
delivery, the development of specific delivery systems 
protecting AMPs from degradation by digestive enzymes 
may increase intestinal absorption and the feasibility of oral 
administration. Several strategies can be used to enhance 
PK properties of AMPs. One approach is the utilization of 
D-enantiomers to increase stability, [133] although such 
strategy is only indicated if decreasing peptide clearance 
enhances therapeutic efficacy and does not potentiate 
toxic side effects. Other strategies include end-to-end 
cyclization, C-terminus amidation, pegylation [attachment 
of polyethylene glycol (PEG) to a molecule], and liposomal 
delivery. Cyclisation and amidation can confer peptide 
stability by decreasing susceptibility to protease digestion, 
as demonstrated by the modification of gomesin and other 
AMPs [173, 174]. As a principle, all AMPs used in our 
laboratory are amidated [18, 20, 175, 176]. As shown by 
the Gumbleton group and others, pegylation of AMPs can 
result in lower host toxicity without affecting antimicrobial 
activity [177]. Pegylation enhances the pharmacological 
properties of a given drug in a number of ways [178–
183]. Because it increases hydrophilicity, PEG serves as 

Figure 3: Helical wheel analysis of the engineered AMP K6L9 designed by Papo et al. [57]. The peptide was modeled to form 
an idealized amphipathic helix with only two amino acids; a structural optimization strategy that has been shown to enhance antimicrobial 
functions, now applied to antitumor properties as well. Arrow indicates direction of the hydrophobic moment. Structural motifs: yellow, 
hydrophobic; blue, cationic.
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a shield that protects against protease digestion, prolongs 
circulation time, and reduces the glomerular filtration rate. 
An interesting example of AMP pegylation is a recent 

design by Kelly et al., 2016 as shown in Figure 4 [183]. 
A pro-peptide was designed using the AMP P18 covalently 
attached to a linker region that is sensitive to the cysteine 

Table 1: Representative antimicrobial peptides with selective antitumor mechanisms
AMP name  Amino acid sequence Source Tumor target Mechanism Reference

Alpha-defensin-1 ACYCRIPACIAGERRYG 
TCIYQGRLWAFCC

Human HTC/STC Apoptosis Xu et al., 2008 
[109]

Antiangiogenic
BMAP-28 GGLRSLGRKILRAWK 

KYG
Bovine HTC MP/Ca influx Risso et al., 2002 

[158]
Apoptosis

Brevenin-2R KFALGKVNAKLQSLN 
AKSLKQSGCC

Frog STC LDP Ghavami et al., 
2008 [165]

Buforin IIb RAGLQFPVG[RLLR]3 Frog HTC/STC Apoptosis Lee et al., 2008159
CA-MA-2 KWKLFKKI-P-KFLHS 

AKKF
Hybrid STC MP Shin et al., 2000 

[122]
Cecropin A KWKLFKKIEKVGQNIR 

DGIIKAGPAVAVVGQA 
TQIAK

Silk moth HTC MP Hui et al., 2002 
[96]

Cecropin B KWKVFKKIEKMGRNI 
RNGIVKAGPAIAVLGE 
AKAL

Silk moth HTC/STC MP/Apoptosis Li et al., 2016 [94]

chrysophsin-1  FFGWLIKGAIHAGKA 
IHGLI

Red sea 
bream

HTC/STC MP Hsu et al., 2011 
[123]

D-K6L9 LKLLKKLLKKLLKLL  Engineered STC MP Papo et al., 2006 
[57]

Gomesin *ZCRRLCYKQRCVTY 
CRGR

Spider STC MP Domingues et al., 
2010 [128]

KLA RRQRRTSKLMKRGGK 
LAKL-AKKLAKLAK- 
(KLAKLAK)2

Engineered STC MP Mai et al., 2001 
[160]

lactoferricin B FKC1RRWQWRMKKLG 
APSITC1VRRAF

Bovine HTC/STC MP/Apoptosis Eliassen et al, 2002 
[145]

LL37 LLGDFFRKSKEKIGKEFKR 
IVQRIKDFLRNLVPRTES

Human Ovarian CA MP Chuang et al. 2009 
[210]

LTX-315 K-K-W-W-K-K-W-Dip-K Engineered HTC/STC MP/ICD Haug et al., 
2016148

Phase I/II trial
Magainin 2 GIGKFLHSAKKFGKAF 

VGEIMNS
Frog HTC/STC MP Cruciani et al., 

1991115]
Melittin GIGAVLKVLTTGLPALIS 

WIKRKRQQ 
Insect STC MP Wang et al., 2009 

[56]
MG2B GIGKFLHSAKKFGKAF 

VGEIMNSGG-QRLGNQ 
WAVGHLM

Hyprid 
AMP

MCF-7 tumor MP Liu et al., 2011 
[128]

Pardaxin GFFALIPKIISSPLFKTLL 
SAVGSALSSSGGQE

Fish STC MP  Han et al., 2016 
[162]

*pyroglutamic acid; HTC, hematological tumor cells; STC, solid tumor cells; MP, membrane permeabilization; LDP, 
lysosomal death pathway; ICD, immunological cell death..
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protease cathepsin B, followed by a PEG region to confer 
thermodynamic stability to the peptide. In vitro studies show 
that selectivity index can be enhanced against an ovarian 
carcinoma cell line (A2780). While this strategy is still 
conceptual, as it requires extensive in vivo studies for proof 
of concept, it shows how a pro-peptide can be designed in 
combination with pegylation to enhance the PK properties 
of an ACP or AMP. Another strategy could be the liposomal 
formulation of AMPs [184–187]. However, one shortcoming 
is that AMPs are membrane active and could, therefore, 
bind and disrupt the liposome. Packaging the molecule as 
an inactive pro-peptide in the liposome could theoretically 
overcome this problem. One last potential caveat is whether 
we are able to produce liposomes that can discriminate 
between the target and normal cells. An AMP delivered inside 
a eukaryotic cell will probably interact with mitochondria as 
it would with a bacterial cell, based on similarities between 
a bacterial cell and mitochondrial membranes. One strategy 
that is already developed is to tag the lysosome with a cancer 
cell-specific ligand for targeted delivery of the peptide [188]. 
Finally, designing AMPs as part of nanoparticles for delivery 
is another strategy that may improve PK properties of AMPs 
and should be explored [189–191]. All of these strategies for 
enhancing PK properties should be considered only when 
indicated, as AMPs are highly diverse in structure, which 
affects PK properties. 

The second criticism is based on an outdated notion 
of the highly impractical cost of peptide production. 
While cost remains a concern, peptide- and protein-
based drugs have been used clinically for decades from 
anti-hypertensive (e.g. Lisinopril) [192–196] and anti-
diabetic (e.g., insulin) [197, 198] to immune, antiviral 
(e.g., fuzeon), [199, 200] antibacterial, [201–203] and 
hormonal therapy [196]. Modern technology and larger 
scale synthesis have also significantly reduced the 
production cost of AMPs. The third concern is based on 
the fact that AMPs do not select their targets via specific 
receptors [204]. This nonreceptor-mediated recognition is 
one of the major reasons AMPs are less likely to invoke 
selection of resistance compared to current antibiotics/
anticancer drugs and the basis for broad selectivity against 
diverse types of multidrug-resistant microbial pathogens 
and transformed cells. Lipid-mediated selectivity of 
AMPs should be considered as a major strength, not a 
weakness. These misconceptions against AMPs have 
considerably hampered the progress of their development, 
particularly AMP engineering for structural optimization 
in the United States. The success of the ACPs K6L9, LTX-

315, and other engineered antibacterial AMPs [20, 167, 168, 
175, 176] illustrates the need for AMP engineering and, thus, 
the establishment of a rational framework for predicting 
structural determinants of the selective killing of different 
target cells. Such a guideline for structural optimization, 
combined with PK-enhancing strategies, would enhance 
our ability to increase the therapeutic index of AMPs with 
significantly less trial and error. 

Despite the aforementioned challenges, there are 
a few AMPs being evaluated as anticancer (in addition 
to antimicrobial) agents in advanced phases of clinical 
development.  The human cathelicidin LL37 is currently 
(2016) in Phase 2 clinical trial for melanoma (lesions at 
least 10 mm and not completely resectable) by intratumoral 
injections in patients with no known immune deficiency, a 
collaborative effort of M.D. Anderson Cancer Center and 
National Cancer Institute [205]. The first patients were 
enrolled in July 2015. LL37 is the single most studied 
human AMP [206–208]. It is normally found in human skin, 
reproductive, and respiratory systems and known to have 
multiple functional properties including (but not limited 
to) antibacterial, antiviral, antifungal, immunomodulatory, 
and anticancer activities [209–211]. Another AMP, LTX-
315, is in phase 1 trial for PK and efficacy treatment of 
multiple types of transdermally accessible tumors. This 
is a lactoferrin-derived lytic peptide that binds and lyses 
tumor cells. The resulting tumor necrosis leads to enhanced 
presentation of tumor antigens and induced innate and 
adaptive immunity against the tumor as described above. 
This clinical trial started on October 28, 2013, and the last 
update (December 2016) indicates that LTX-315 is still 
in phase 1 “Open-label, multi-arm, multi-centre, multi-
dose, dose Escalation Study” for exploration of efficacy as 
monotherapy or in combination with either ipilimumab or 
pembrolizumab in patients with transdermally accessible 
tumors” [212]. Noteworthy are other AMPs in clinical 
trial as anti-infective agents (e.g., OP-145 for otitis media 
and pexiganan for diabetic foot ulcer), but not as ACPs. 
Toward the goal for clinical applications, it is possible to 
improve the therapeutic index of current chemotherapeutic 
agents by considering combination therapy. Combining 
AMPs with a chemotherapeutic agent may help decrease 
dosage, which would result in lower toxicity. While the 
current clinical trial of LTX-315 including combination 
with immunotherapeutics (Ipilimumab or Pembrolizumab) 
is a step in the right direction, combination therapy using 
AMPs and chemotherapeutic agents needs to be explored 
for possible synergy [183].  

Figure 4: Strategy to improve the PK properties of AMPs adapted from Kelly et al., 2016.[183]. The AMP P18 is amidated at 
the C-terminus. In addition, it is covalently bound to the protease cathepsin B-sensitive linker for the release of the cancer-active drug; this 
linker is also covalently attached to a polyethylene glycol (PEG) polymer, which is a hydrophilic moiety that serves as a protective shield 
from protease degradation and drug clearance.
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Concluding remarks

Since the discovery of AMPs more than three 
decades ago, no other class of compounds has matched 
their versatility as multifunctional compounds. AMPs have 
the potential to become the only class of drugs that can be 
used against polymicrobial co-infections (e.g., bacterial and 
viral [213]) and cancer. However, the multifunctionality 
determined by a typical AMP structure suggests that no 
single property is completely optimized in natural AMPs 
in the context of maintaining multiple functions. Rational 
peptide engineering is essential to AMP development for 
clinical applications. An important task is to dissect the 
structural determinants of each property to uncouple each 
of AMP functions for “application-specific optimization”. 
Only when such studies are conducted in a systematic way 
will we begin to significantly explore the clinical potential 
of AMPs as a diverse class of therapeutics. AMP research 
has been largely occurring outside of the United States. 
Despite a vast literature in AMP research, this is still an 
area that is critically underfunded by the National Institute 
of Health (NIH). Because of the initial failure of AMPs to 
reach the Clinique, the resulting bias has largely hindered the 
advancement of AMP research in the United States. Hence, 
there is a pressing need for the NIH and pharmaceutical 
companies to support more AMP research to collect the 
evidence necessary to assess whether the promise of AMPs 
will ever come to fruition. As an essential component of the 
immune system, AMPs warrant such exploration. 
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