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Abstract

The number of people using online social networks in their everyday life is continuously growing at a pace never saw
before. This new kind of communication has an enormous impact on opinions, cultural trends, information spreading and
even in the commercial success of new products. More importantly, social online networks have revealed as a fundamental
organizing mechanism in recent country-wide social movements. In this paper, we provide a quantitative analysis of the
structural and dynamical patterns emerging from the activity of an online social network around the ongoing May 15th
(15M) movement in Spain. Our network is made up by users that exchanged tweets in a time period of one month, which
includes the birth and stabilization of the 15M movement. We characterize in depth the growth of such dynamical network
and find that it is scale-free with communities at the mesoscale. We also find that its dynamics exhibits typical features of
critical systems such as robustness and power-law distributions for several quantities. Remarkably, we report that the
patterns characterizing the spreading dynamics are asymmetric, giving rise to a clear distinction between information
sources and sinks. Our study represents a first step towards the use of data from online social media to comprehend
modern societal dynamics.
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Introduction

Modern online socio-technological systems are producing a

deep change in our traditional networking paradigms and in the

way we communicate with each other. At the same time, online

social media constitute nowadays efficient and fast means to group

together many social agents around a common issue. In this way,

new types of economic, financial and social phenomena are

arising. An example of the latter is given by the so-called Arab

revolts, which have materialized thanks to these new communi-

cation platforms. The protests have been mediated by the use of

social networks such as Facebook, Twitter and YouTube, which

have been critical for the birth and consolidation of campaigns

involving strikes, demonstrations, marches and rallies.

On the other hand, online social networks not only modify in a

radical way the dynamics of information and opinion spreading,

but are also making our world even more global. More

importantly, these platforms generate an enormous amount of

time-stamped data, making it possible for the first time to study the

fast dynamics associated to different spreading processes at a

system-wide scale. These novel and rich data niches allow testing

different social dynamics and models that would otherwise be

highly elusive with traditional data-gathering methods. Addition-

ally, the availability of data enables the study of phenomena that

take place on time scales ranging from a few minutes or hours to a

year-long duration. An example of the former kind of fast dyna-

mics is given by large sport or cultural events, whereas cooperative

content production such as the case of Wikipedia typically occurs

in months or even years, thus, in a much slower time scale.

In this paper, we study the structural and dynamical patterns of

the network made up by twitter users who have been involved in a

social phenomenon that is currently taking place in Spain: the so-

called May 15th movement (henceforth referred to as 15M). This

movement-in-the-making had been brewing for a while in the

social media, but took off on May 15th when the first demons-

trators camped in a central square in Madrid, Spain. From that

moment on, the protests and camps spread throughout the

country. As many of the adherents are online social media users,
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the growth and stabilization of the movement was closely reflected

in time-stamped data of twitter messages, which we have gathered

and analyzed. This will allow us to elucidate the mechanisms

driving the emergence of this kind of social phenomenon, and

whether it shares dynamical and structural features with other

natural, social and technological processes [1,2]. Additionally, on

more general scientific grounds, a social phenomenon like the

15M movement is an excellent opportunity to understand network

formation processes and online spreading dynamics. The ultimate

aim is to further advance our understanding of this kind of

dynamics and eventually be able to make predictions based on real

time data monitoring.

In what follows, we present the results of our analysis. On the

one hand, we statistically characterize the structural patterns of the

network of users who sent or received tweets containing keywords

related to the 15M movement. We find that this network displays

the typical features of other networks in Nature such as scale-free

degree distributions, a community structure at the mesoscale and

high structural robustness [1,2]. On the other hand, we have also

analyzed the dynamical patterns characterizing the spreading of

information over the 15M network. Our results show that the 15M

diffusion dynamics is highly asymmetric. Admittedly, a relative

large fraction of the system is actively trafficking, but a great part

of the overall traffic is delivered to a few users that do not pass

them anymore, thus constituting a sort of information sinks. We

round off our analysis by comparing our results with those

reported in the literature for other kinds of online dynamical

processes.

Methods

Ethics Statement
The data are publicly available as they come from a public

online social site (Twitter). However, any private information has

been analyzed anonymously.

Data Analysis
The data used in this study is a set of messages (tweets) that were

publicly exchanged through www. twitter.com. The whole time-

stamped data collected comprises a period of one month (between

April 25th, 2011 at 00:03:26 and May 26th, 2011 at 23:59:55) and

it was archived by a local start-up company, Cierzo Development Ltd

using the SMMART Platform. This platform is evolving into a

new concept called ‘‘Open Social CRM,’’ which combines

concepts in monitoring tools, CRM tools, social tools and a

philosophy of open innovation. The company restricts its

collection to messages in Spanish language that come preferen-

tially from users within or related to Spain. The internals of data

collection are private to the company, but basically 23 hours of

data are homogeneously collected each day, always leaving the

same timeframe (16:00 to 17:00 CET time) to readjust the

database due to the introduction of new Spanish nodes, purging of

the non-Spanish related ones, etc.

To filter out the whole sample and choose only those messages

related to the 15M movement, we selected 70 keywords (hashtags),

which were systematically used by the adherents to the

demonstrations and camps. Next, the extracted sample was

examined for missing hashtags { of the top ten only one of them

was not in the selected set, this being likely related to its bilingual

nature #acampadabcn. The filtered data set appears to be

representative enough of the total traffic related to the 15M

movement produced during the period analyzed. As a matter of

fact, a comparison with other databases, such as topsy.com, which

aims to collect the whole set of twitter messages, shows that for the

same period there were about 390.000 messages with the word ‘‘

acampadasol’’ and 190.000 for the hashtag ‘‘ #nolesvotes’’. Our

sample is made up of 189.000 and 66.000 messages and hashtags,

respectively, i.e., roughly above a third of the total number of

messages.

Once this process is finished, the final sample consists of

581.749 tweets, out of which 46.557 were identified as retweets of

unknown origin, and therefore were discarded. On its turn, these

tweets were produced by 85.851 different users. To complete the

data set, we located the references to other users inside each

message. These references are marked in the system by an

arobase, ‘‘@username’’. A user receives a notification, usually via

email, each time a mention happens, and the messages having

mentions are also copied to a special tab in the user interface. The

total number of messages having at least a reference was 151.222.

In some cases, the tweet is addressed to more than one user, so that

the total pairs (source, target) extracted from these messages was

actually higher: 206.592. This is the number of directed arrows in

our network. We stress again that our network is a dynamical

instance of a larger underlying network (i.e., that made up of

followers and followings in twitter).

Finally, although not directly related to the study presented here

but important for complementary studies, data for all the involved

users were scrapped directly from twitter.com using a cloud of 128

different nodes of a subnet. The scrap was successful for 84.229

users, for whom we also obtained their official list of followers.

Moreover, about a half of them can be associated to a location

(city), which is later translated to geographical coordinates via a

standard geo-localization service from Yahoo. It is worth remarking

that the extraction of followers gave a list in the order of 3 millions

users, which roughly coincides with the order of the audience

estimated by Twitter in Spain.

Results and Discussion

The availability of time-stamped data allows us to closely track

the birth and development of the network made up of users who

exchanged tweets related to the 15M movement during the

period analyzed. In this network, every node represents a user

while a link between two nodes is established whenever they

exchange a message. We have made a movie (see http://15m.

bifi.es/index.php for a high resolution version with downloading

options) that reproduces the temporal evolution of the networks

and the dynamics of messages exchange during the period

analyzed. The reader will note the highly dynamic character of

the network as well as the dimension of the social phenomenon

being analyzed.

The network constructed as described above is weighted and

directed, i.e., a link from i to j means that i sent at least a message

to j and the weight of the link i?j stands for the actual number of

such messages. Therefore, the adjacency matrix of the network is

not symmetric (j does not necessarily send a message to i).
Moreover, it is worth noticing that we always work with

accumulated data, such that the network at a certain time t
includes every message (link) produced at any time t’ƒt, i.e., once

a link is established, it connects the two end nodes forever. Once

the network is built, we are able to characterize it from a

topological point of view, within the framework of complex

network theory [1,2]. In doing so, we discuss local and global

descriptors, as well as the network structure at the mesoscale level.

Additionally, we also analyze the dynamics of information

spreading over the 15M network and compare our results with

those already reported for other dynamical processes that are

mediated by the Web 2.0.

Dynamical Patterns of the Spanish May 15 Movement
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Network Growth and Structure
The first point of interest concerns the structural growth

pattern. We wonder whether a collective mobilization of

thousands of agents demands a slow, progressive increase in size;

or rather social networking platforms enable an abrupt emergence.

In Figure 1 (top) we present three snapshots of the system for

different days, relative to day D (May 15th). Colors stand for the

‘‘age’’ of the node: early active users are coded in yellow, where

those that adhere the network in successive days are coded in

green, red, etc. Black is left for the latest adopters (people whose

activity began at Dz10). Besides, the size of the nodes has been

made proportional to their activity, taking into account both

incoming and outgoing tweets (however, for the sake of clarity,

such proportion has been truncated at kinzkout~200 in the

networks displayed in the figure). Even this simple representation

of the evolution of the 15M network is already indicative of the

growth in the number of agents once the movement took off and

time goes on.

The results depicted in the bottom panel of Figure 1 further

illustrate the way in which the network evolves by gaining

adherents. The figure represents the proportion of active nodes at

time t (with a resolution of 12 hours) in the giant component

relative to the total number of users in the network at the end of

the growth process. As we can see from the figure, the formation of

the network and its later increase in size does not proceed in a

gradual proportional process but in a sequence of bursts

concentrated in just a few days (from day D to day Dz7).

Obviously this process is driven by the events surrounding the

movement: as mentioned, at day D the protesters decided to camp

at Puerta del Sol square in Madrid, which in turn elicited huge

attention from the media and made the difference as far as the

spread of the movement to a country wide scale concerns. Besides,

from our data, it appears that the number of active users saturates

after Dz7. It is interesting to note that in May 21st (Dz6), the

day preceding local and regional elections, more than the 80% of

the network was already formed.

Beyond structural growth, a second key aspect of the network

under study concerns the distributions of strengths. The strength s
of a given node i is defined, as usual, by the sum of the weights of

the links that are incoming and outgoing to node i. In our case, it is

also important for the discussion that will follow, to further divide

this magnitude into two contributions. One the one hand, we have

the strength derived from the weights of links incident to the node,

sin. This magnitude accounts for the total traffic (number of tweets)

that a given node receives from its neighbors. Conversely, sout

represents the sum of the traffic generated at a node, i.e., the

number of tweets this user sends out. Additionally, let P(sin) and

P(sout) be the cumulative distributions of both strengths, which we

can be measured at different instants t of the network

development.

Figure 2 shows the cumulative distributions of the previous

quantities for several times. As can be seen, even before the

occurrence of the events that triggered public protests on day D,

both P(sin) and P(sout) follow power-laws P(s)*s{c, but with

different exponents (cin~1:1 and cout~2:3, respectively, as

measured at Dz10). Similar plots for the degree of the nodes

exhibit the same behavior. It is well-known that the statistical

properties of these variables in other technological, social and

natural systems are also heterogeneously distributed. Therefore,

the fat-tailed distributions that characterize the topology of the

15M network are not unique, but are rather ubiquitous in Nature.

Nonetheless, the fact that the 15M network is scale-free, has deep

consequences regarding a number of relevant issues including its

origin, complexity, robustness and, from a dynamical point of

view, the way in which information flows over the system. As the

network obtained comes from the activity of the nodes, the heavy-

tailed distribution of both nodes’ degrees and strengths suggests a

dynamics lacking any typical or characteristic scale.

Figure 1. Evolution of the 15M Network. (Top) Cumulative snapshots of the system (at day D, Dz5 and Dz10). Different colors stand the age
of the nodes (yellow for former adherents and black for latecomers). (Bottom) Evolution of the system’s giant component, relative to the final size of
the network. Note that growth does not proceed progressively, but it rather explodes from day D due to socially relevant events on that date.
doi:10.1371/journal.pone.0023883.g001

Dynamical Patterns of the Spanish May 15 Movement
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On the other hand, the dynamical asymmetry between

incoming and outgoing degrees or strengths is not surprising

either. Indeed, individual behavior, which ultimately determines

the resulting (out) dynamics, is an intended social action, but the

emergent properties of the collective behavior of agents are

unintended [3]. Essentially, subjects decide when and to whom a

given message is sent. Therefore, the aggregate behavior of all

agents and their popularity (i.e., how many incoming links a node

has) result from individual choices. This is what is reflected in the

in and out distributions. As a matter of fact, the exponent of the

power law characterizing the degree probability distribution p(k)
lies in the interval ½2,3�, as usually found in most real-world

networks. Interestingly, spreading dynamics such as rumor and

disease propagation processes are most efficient for scale-free

networks whose exponent is precisely in this range [4–6]. Finally,

the strength distribution for the tweets sent, p(sout), also resembles

a power law function with an exponent larger than 3, although in

this case the distribution exhibits an exponential cut-off. This

might be due to the fact that sending messages has an associated

cost in terms of bandwidth availability, the cognitive capacity to

produce different messages and ultimately an unavoidable physical

limitation to type them [7–9].

Another aspect of capital interest regards how the overall traffic

is generated and delivered. One of the main consequences of the

functional form of the strength distributions is presented in

Figure 3. The emergence of hubs, namely, the signaling feature of

scale-free networks, leads to a predictable oligopoly in the way

information is spread. In Figure 3, we observe that the number of

tweets sent grows with the number of active users of the network.

The curves corresponding to different days (i.e., instances of the

network) nearly collapse into a single one. This means that as users

join the network, the traffic generated scales accordingly.

Moreover, the figure indicates that, for instance, roughly the

10% of active subjects generate the 52% of the total traffic. This is

another indication of the dynamical robustness of the network to

random failures but at the same time of its fragility to attacks

directed towards that 10% of users. More remarkably, the results

depicted in the figure are in sharp contrast with the activity

patterns corresponding to received tweets. In this latter case, as

time goes on, the number of in-strength hubs decreases. As shown

in the figure, by Dz10, less than 1% of users receive more than

50% of the information. As we will show later on, these nodes

correspond to authorities or mass media, which the adherents

identify as main receptors (government) of or potential spreaders

(mass media) for their messages. However, what at a priori seems

to be a good choice, turns out to be harmful for the process of

information spreading. As a matter of fact, we have checked that

these hubs, which we call information sinks do receive a lot of

messages but rarely act as spreaders within the network. As a

consequence, almost all messages that arrive to those nodes are not

redelivered and hence lost. In this sense, our results show that

while the delivering of information is shared by a relative large

number of users that keep the ‘‘social temperature’’ of the

movement, most of this information is simply directed towards a

few highly connected targets that might not pass the voice any

longer (i.e., they are not active spreaders). Nonetheless, the

information exchanged is public and users can therefore access it.

This would however imply an individual action (to check a given

user’s timeline) that is not captured in our twitter data.

Community Structure
The modular structure is pervasive in many natural, social and

technological networks. Generally speaking, modules are islands of

highly connected nodes separated by a relatively small number of

links. This meso-level skeleton is likely to be relevant to

understanding dynamical processes in networked systems. Agents

Figure 2. Cumulative in- and out-strength distributions.
Strength distributions for both received (top) and sent (bottom)
messages display a power-law behavior as early as at D{2. The fat-
tailed distributions indicate that the 15M network is scale-free, with the
implications this fact bears. Note that the exponents that define the
power-laws differ significantly between sent and received messages.
doi:10.1371/journal.pone.0023883.g002

Figure 3. Information flow. The figure represents the density of tweets received (left) and sent (right) as a function of the cumulative fraction of
active users. For each day, data are normalized by the number of active users at that date. As a reference, the horizontal line corresponds to 50% of
emitted/received tweets. Note that, on Dz10, less than 1% of the nodes receive half of the messages. On the contrary, the pattern of tweets sent
hardly evolves from the beginning of the movement: 10% of the active nodes produce 50% of the messages. This asymmetry is coherent with the
differences observed for the strength distributions.
doi:10.1371/journal.pone.0023883.g003
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in social networks tend to gather with those who share cultural

traits (homophily) or professional interests [10–13], and more

specifically, political communication networks tend to exhibit a

clustered structure along political opinion lines [14,15].

We have analyzed the community structure of the 15M network

once its size stabilizes, i.e., at t~Dz10. We have applied a

random walk-based algorithm that optimizes a map equation on a

network structure [16]. Although alternative community detection

algorithms are at hand, we chose the previous strategy because it is

suited for networks, as it is actually our case, in which the

dynamics of information flow is relevant. These type of algorithms

rely on the intuitive idea that, if communities exist, a random

walker tends to get trapped in them due to their dense within-

connectivity [16–18]. The output of such information theoretic

algorithm is a partition made up of 6388 modules. Most of these

communities have less than ten nodes. We focus our analysis on

the 30 most important modules from a dynamical perspective, i.e.

those which concentrate most of the random walker’s activity.

These modules do not necessarily coincide with the first 30

communities ranked according to their size, but all of them

contain over 100 nodes. Figure 4 shows these 30 communities in a

compact view (each node represents a community) [19].

Furthermore, each community is assigned a tag, corresponding

to the most central node in that community. Again, these nodes

have been identified as being dynamically dominant within their

modules, thus they play an outstanding role in the dynamics of

Figure 4. Community structure of the 15M network. The figure shows, in a compact view in which each node represents a community, the 30
most important modules. They can be identified by a single node, around which the community is organized. These local hubs (labeled in the figure)
agglutinate modules and act as information bridges connecting the whole network.
doi:10.1371/journal.pone.0023883.g004

Dynamical Patterns of the Spanish May 15 Movement
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information. Our results show that modules are highly hierarchical

and that nodes that are central to their communities, i.e., local hubs,

are mostly hubs at the global scale as well.

The mesoscale structure allows to get deeper insights into social

aspects of our case study. First, tags identifying the 30 largest

communities are highly heterogeneous. 6 of these modules

correspond to important mass media (newspapers and television),

which points to the otherwise intuitive fact that users rely on these

agents to amplify their opinion. The same can be said of 3 modules

corresponding to famous journalists. More interestingly, 7 modules

correspond to on-line activists and/or veteran bloggers. These

agents are unknown to most people, but they are present in the

network from its birth and enjoy a solid reputation that facilitates

their being considered a reference in the movement. Remarkably,

7 modules are formed by camps in 7 different cities. Madrid is of

course the main one, as the movement began there (acampadasol,

which comprehends over 3000 nodes). Other cities are Barcelona,

Granada, Zaragoza, Valencia, Seville and Pamplona.

The fact that communities are geographically defined suggests

some additional conclusions: (i) the mesoscale reflects the

autonomy of each of the assemblies throughout the Spanish

geography. Each of these modules hardly connects to any other,

indicating a low communication between them; (ii) the exception

to the previous point is Madrid: each minor camp holds a strong

communication interchange with the community represented by

acampadasol. Taking points (i) and (ii) together, it can be safely said

that the movement is highly centralized, because in most cases a

peripheral settlement is only influenced by Madrid and one or two

minor ones. Finally, (iii) despite the potential of Web 2.0

communication platforms, data indicates that these media are

mostly used to communicate with geographically close people. In

other words, the network is global, but communication is mainly

local. This is further verified in Table 1, where we have

summarized the percentage of people whose geolocated informa-

tion coincides with that of the module (city).

Popularity Evolution
The Web 2.0 has brought to network science the challenge to

deal with highly dynamic, changing structures. Besides source and

target nodes, and a (perhaps weighted) link between them, one

must now consider a new ingredient: time. In this context, an

interesting issue is related to the evolution of particular nodes:

understanding how an element (be it a Wikipedia entry or a novel

trend in social networks) comes to existence (appears in the

network) and develops. Of further interest is to elucidate how a

subset of these network’s components ends up as a ‘‘popular’’

entity. This is a key aspect in network development, as popular

agents eventually have an impact on other agents’ opinions, acting

as a referent, be those opinions related to politics, culture or

business.

To capture the dynamics of popularity, we follow the

framework recently proposed in [3,20]. The natural quantity to

measure popularity in a communication network is the number of

messages that arrive at a node, which corresponds to that node’s

in-strength sin, and the rate at which sin changes. Hence, a way to

grasp how the activity of a node evolves is to consider its

logarithmic derivative ½Ds=s�t~(st{st{1)=st{1, i.e., the relative

variation of strength in a time unit (we omit subindex ‘‘in’’ for

clarity). Figure 5 displays the evolution of the latter variable for

some arbitrarily chosen nodes among those that are information

sinks. Beyond an initial surge typically observed in many nodes,

the time series of the logarithmic derivative evidence a bursty

behavior. Fluctuations depend on exogenous events, in a strong

parallelism with the external circumstances that drive the whole

network’s strong changes. It is noteworthy that these patterns

closely resemble other, less conflictive, examples of popularity

evolution in the Wikipedia or the Web [20].

On the other hand, Figure 6 shows how bursts are distributed

according to their magitude for two different time intervals but the

same time granularity (1 day). The observed pattern, which is the

same regardless of the time intervals under consideration, clearly

shows heavy-tailed distributions, again in close resemblance to

results already reported for other web-mediated dynamics [20]

and a variety of critical phenomena in physical, economic and

social systems. As a matter of fact, a simple model can account for

the observed bursts distribution. The so-called rank model is

specially conceived for networks in which prestige, rather than

degree-based preferential attachment, plays a central role to

determine nodes’ connectivity [21]. The rank model depends on a

prestige measure that is used to rank nodes. In this model, the

probability that a new node that joins the network at tz1
connects to an older one j is given by

p(tz1?j)~
R{a

j
Pt

i~1 R{a
i

ð1Þ

where Rj is the rank of node j and aw0 determines the exponent c
of the resulting power-law degree distribution p(k), such that

c~1z
1

a
. Figure 7 compares the bursts distributions resulting form

the data and from the model. The results shown correspond to the

case in which nodes are ranked according to their age and a has

been set to 0:9091 (for this value we obtained the best fit to the

actual degree distribution of the empirical network). Moreover, we

note that in order to simulate the non steady growth of the

network, we have considered for the synthetic case that 1 day has

gone by when the size of the network being generated coincides

with that of the empirically assembled network for that time.

As we can see from the figure, even under the simplest rank rule,

the burst magnitude distribution is nicely reproduced. As for our

specific social context, the previous results do not imply that the

driving mechanism behind the evolution of the 15M network is

that simple, but illustrate that bursty activity of this sort can be

produced by generic mechanisms. Given that this self-organized

activity is widespread in nature, there are no reasons to consider

that the network has its origin in external actions. Nonetheless, it

Table 1. Geographic origin of nodes in region-based
communities.

community tag area
fraction of users
from same area

@acampadasol Madrid 54%

@acampadabcn Barcelona 81%

@acampadavlc Valencia 63%

@acampadazgz Zaragoza 82%

@acampadagranada Granada 53%

@acampadasevilla Sevilla 83%

@15MPamplona Pamplona 71%

Region-based modules are mostly formed by nodes whose geographical origin
coincides with that of the most central node in the community. This statement
is clear for almost all these modules, except in the case of Madrid and Granada.
The case of Madrid is not surprising, given that @acampadasol is the reference
of the whole movement, thus the community organized around this actant is a
more heterogeneous one. Granada is a more intriguing exception.
doi:10.1371/journal.pone.0023883.t001

Dynamical Patterns of the Spanish May 15 Movement
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must be pointed out that although the rank model grasps the main

observed trends, both regarding structural characteristics and

dynamical facts, yet other important aspects extracted from the

data are not captured by the model. These limitations demand

model refinements beyond the scope of the present study.

Conclusions
The social phenomenon here presented as a case study is a

collective endeavor that is expressed at many levels, ranging from

public demonstrations and camps to the presence of news in the

mass media. In this work we have analyzed data from time-

stamped, online activity in a specific social networking site during

the formation and stabilization of this social movement. From a

scientific point of view, these data represent a challenge as most

network studies typically deal with a static structure.

Undoubtedly, there are many facts that can be easily identified

as the grounds of the 15M movement. Among them, the world-

wide economic crisis and the impact it has had on society.

Nonetheless, the particular events that triggered the growth of the

whole movement remain unknown and are beyond the scope of

Figure 5. Popularity dynamics. The increase in the strength of the selected nodes (cyan curves) markedly changes after day D. The logarithmic
derivative Ds=s provides a finer interpretation in terms of the bursts in popularity. democraciareal (upper-left) had been an active agent long time
before D, seemingly the movement was gathering strength (note some remarkable increments between D{20 and D{16). A newer user in the
social network (acampadasol; lower-right) emerges and quickly takes over from D onwards as the reference of the whole movement. On the other
hand, two right- and left-wing newspapers, El Mundo and El Paı́s respectively, undertake similar changes, which indicates that a large sets of nodes
identified them as relevant actants in the context of protests. Note, however, that this does not imply that the same nodes are active senders too. As
a matter of fact, they are not.
doi:10.1371/journal.pone.0023883.g005

Figure 6. Burst size distribution. Popularity ‘‘efervescence’’ in the
whole system (each node). Unsurprisingly, most nodes hardly undergo
noticeable changes in their popularity. However, a small fraction of
nodes does experience significant increases (heavy tail). This pattern is
not exclusive of this communication network.
doi:10.1371/journal.pone.0023883.g006

Figure 7. Empirical and simulated burst size distribution. The
rank model, even at its simplest form, successfully reproduces not only
empirical structural features, but also the prestige or popularity
evolution over time. See the text for more details about the model
implemented.
doi:10.1371/journal.pone.0023883.g007
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this work. Addressing these questions would probably require an

in-depth semantic analysis of the contents of interchanged

messages. From its onset, our statistical characterization of the

communication network built from tweets exchanged between

adherents (and opponents) reveals a strong resemblance to well-

known phenomena in natural and manmade systems, which are

admittedly self-organized.

Additionally, the 15M movement also raises relevant questions

with sociological consequences. We argue that information

centralization (Figure 3), as well as patterns of popularity growth

(Figures 5 and 6) are indicative of a tendency towards a

hierarchical structure. Opinion leaders emerge spontaneously

and minor actants devote much energy to communicate with them

(be it to have their ideas echoed, or to influence such leaders). This

proclivity is coherent with economy of attention [22], i.e., the

system tends to avoid the overabundance of opinions to prevent

scarcity of attention, but raises doubts about the possibility of

converging to an egalitarian social system in which information

flows and is received in an efficient manner. As far as our analysis

concerns, we have shown that in a dynamics such that the one at

work for our case, a relative large number of information sources

exist, which is behind the robust functioning of the system.

Conversely, communication sinks, where information is lost, are

also generated.

On the other hand, our analysis of the community structure

reveals some interesting facts. Geo-centered modules are abun-

dant, but ideological or fame-related ones are also remarkable. It is

important to keep in mind that time-stamped data is the dynamic

(or functional) result of the activity on top of a more stable

underlying structure, that of ‘‘following’’ and ‘‘followers’’ in the

social networking site. For this reason, the communication

network we observe is ever-changing and we argue that modules

within it have not a straightforward interpretation.

Finally, we have studied the patterns by which nodes become

increasingly more visible. Results indicate that popularity growth

in the context of political conflict does not display significant

differences from other, less fashionable examples. Popularity is

dominated by a fluctuating behavior, and popularity burst

distributions lack of a characteristic scale. This fact connects the

dynamics of popularity with other critical phenomena in many

natural and artificial systems.

In summary, online social networks and the Web 2.0 provide

new challenges to network theory. Events in the real world,

ranging from economic phenomena to political protest, stand as

the driving forces leading to the emergence of complex, time-

evolving communication patterns. In this scenario, network theory

stands as a suitable tool to unfold the structural and dynamical

facets of such emergent systems.
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