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ER stress induces NLRP3 inflammasome activation
and hepatocyte death

C Lebeaupin1,2, E Proics1,2, CHD de Bieville1,2, D Rousseau1,2, S Bonnafous1,2,3, S Patouraux1,2,4, G Adam1,2, VJ Lavallard1,2, C Rovere5,
O Le Thuc5, MC Saint-Paul1,2,3, R Anty1,2,3, AS Schneck1,2,3, A Iannelli1,2,3, J Gugenheim1,2,3, A Tran1,2,3, P Gual1,2 and B Bailly-Maitre*,1,2

The incidence of chronic liver disease is constantly increasing, owing to the obesity epidemic. However, the causes and
mechanisms of inflammation-mediated liver damage remain poorly understood. Endoplasmic reticulum (ER) stress is an initiator
of cell death and inflammatory mechanisms. Although obesity induces ER stress, the interplay between hepatic ER stress, NLRP3
inflammasome activation and hepatocyte death signaling has not yet been explored during the etiology of chronic liver diseases.
Steatosis is a common disorder affecting obese patients; moreover, 25% of these patients develop steatohepatitis with an inherent
risk for progression to hepatocarcinoma. Increased plasma LPS levels have been detected in the serum of patients with
steatohepatitis. We hypothesized that, as a consequence of increased plasma LPS, ER stress could be induced and lead to NLRP3
inflammasome activation and hepatocyte death associated with steatohepatitis progression. In livers from obese mice,
administration of LPS or tunicamycin results in IRE1α and PERK activation, leading to the overexpression of CHOP. This, in turn,
activates the NLRP3 inflammasome, subsequently initiating hepatocyte pyroptosis (caspase-1, -11, interleukin-1β secretion) and
apoptosis (caspase-3, BH3-only proteins). In contrast, the LPS challenge is blocked by the ER stress inhibitor TUDCA, resulting in:
CHOP downregulation, reduced caspase-1, caspase-11, caspase-3 activities, lowered interleukin-1β secretion and rescue from cell
death. The central role of CHOP in mediating the activation of proinflammatory caspases and cell death was characterized by
performing knockdown experiments in primary mouse hepatocytes. Finally, the analysis of human steatohepatitis liver biopsies
showed a correlation between the upregulation of inflammasome and ER stress markers, as well as liver injury. We demonstrate
here that ER stress leads to hepatic NLRP3 inflammasome pyroptotic death, thus contributing as a novel mechanism of
inflammation-mediated liver injury in chronic liver diseases. Inhibition of ER-dependent inflammasome activation and cell death
pathways may represent a potential therapeutic approach in chronic liver diseases.
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Nonalcoholic fatty liver disease (NAFLD) has become the
most common form of chronic liver disease, currently affecting
20–30% of the general population and 75–100% of obese
individuals.1 The spectrum of NAFLD is wide ranging: from
hepatic steatosis to nonalcoholic steatohepatitis (NASH) and
hepatocellular carcinoma. Hepatic steatosis is characterized
by triglyceride accumulation in hepatocytes and follows a
benign non-progressive clinical course. Nonalcoholic steato-
hepatitis (NASH), a progressive form, is defined as a
combination of lipid accumulation, hepatocyte death, inflam-
mation and fibrosis. As the probability of developing advanced
fibrosis and hepatocellular carcinoma2 is significantly greater
in patients with steatohepatitis than in those with simple
steatosis, it is important to elucidate the mechanism under-
lying the progression from steatosis to steatohepatitis.

The endoplasmic reticulum (ER) stress response has been
linked to obesity, type 2 diabetes and liver cancer.3,4 Under
stress conditions, the ER initiates the unfolded protein
response (UPR) to restore homeostasis. The UPR involves
three transmembrane sensors: inositol-requiring enzyme
1 (IRE1α), PKR-like ER kinase (PERK) and activating
transcription factor (ATF6).5 Each pathway culminates in the
transcriptional regulation of gene expression, which first seeks
to reestablish ER homeostasis. Failure of the UPR to decrease
ER stress leads to apoptosis, notably via CHOP, a pro-
apoptotic transcription factor whose expression is highly
induced by ER stress.6

Increased activation of the ER stress response has been
reported in obese mice and humans.3,4,7,8 Obesity results in
liver ER stress, which promotes insulin resistance and
hepatosteatosis through the IRE1α branch.3 Moreover, PERK
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and IRE1α can regulate lipid stores in the liver, enforcing the
hepatic metabolic disorders associated with obesity.9,10 It is
well established that apoptosis and inflammation are
increased in patients with NASH, correlating with histological
severity. Because the ER stress response is a critical mediator
of inflammation, apoptosis and insulin resistance, it could have
a central role in the progression from steatosis to NASH.
However, the evidence for activation of hepatic ER stress in
patientswith NASH needs to be clarified. Gonzalez-Rodriguez
et al.11 observed that NASH patients displayed more elevated
ER stress markers, namely CHOPand GRP78, reinforcing the
notion that enhanced ER stress within liver cells may be
relevant in the progression from steatosis to NASH.12–14

In addition, while studies indicated a contribution of NF-κB in
the inflammatory responses triggered as a consequence of
hepatic ER stress associated with NASH,15 the potential
interplay between ER stress and inflammasome engagement
has yet to be explored in NASH progression. The NLRP3
inflammasome is a multi-protein complex which instigates the
inflammatory response and contributes to insulin resistance.
The NLRP3 inflammasome senses obesity-associated dan-
ger signals, namely endotoxin (LPS),16 hyperglycemia and
free fatty acids (FFAs), and mediates caspase-1-dependent
maturation of the proinflammatory cytokines interleukin-1β
(IL-1β) and IL-18.17 Importantly, increased plasma LPS levels
have been detected in mice models of NAFLD18 and in
humans with NASH.19–21 Studies have suggested that the
NLRP3 inflammasome may have a deleterious role in
steatosis and NASH pathogenesis. Indeed, a deficiency in
caspase-1, Nlrp3 or ASC in mice results in protection from
high-fat diet (HFD)-induced steatosis and insulin
resistance.16,22,23 Similarly, a deficiency in IL-1β, IL-1 Recep-
tor or TLR4 24 protects mice from methionine- and choline-
deficient (MCD) diet-induced steatohepatitis. Moreover, the
NLRP3 inflammasome also triggers pyroptosis, a form of
programmed cell death. Pyroptosis is defined as a caspase-1
or caspase-11-dependent cell death subroutine that is
associated with the generation of pyrogenic mediators such
as IL-1β and IL-18.25,26 Therefore, the NLRP3 inflammasome
could be a major cause of cell death and inflammation in
NASH progression.
A ‘two hit’ mechanism has been proposed to drive NASH

pathogenesis.27 The first hit is associated with steatosis and
sensitizes the liver to additional proinflammatory insults
(second hit), such as LPS, which aggravate liver injury and
contribute to the development of NASH.28,29 We hypothesized
that, as a consequence of increased plasma LPS, ER stress
could be induced and lead to NLRP3 inflammasome activation
and hepatocyte death associated with NASH. To address this
issue, we explored in vivo whether the administration of LPS
could trigger exaggerated hepatic ER stress signaling, and
compared the response with that of tunicamycin, a chemical
ER stress inducer, in steatotic livers from genetically obese
(ob/ob) mice. We analyzed the potential benefit of TUDCA, an
ER stress inhibitor, in the prevention and treatment of hepatic
inflammation and death caused by an LPS challenge. We
found that PERK and IRE1α pathways cooperate to activate
CHOP, and that this appears to be a critical link between
inflammasome activation and hepatocyte death in NASH.
Importantly, the upregulation of transcripts of ER stress

correlated with inflammasome priming and liver injury in
NASH patients, which highlights their relevance in disease
progression.

Results

TUDCA protects the liver from LPS-induced injury,
apoptosis and inflammasome priming. In genetically
obese mice (ob/ob) with severe steatosis and challenged
with LPS, we investigated the in vivo effects of TUDCA
treatment. Liver histological analysis revealed severe inflam-
mation with many inflammatory foci and areas of cell death in
LPS-injected mice compared with PBS-injected mice
(Figure 1a). Five days of TUDCA treatment dramatically
reduced the number of steatohepatitis foci (presence of
inflammatory foci and ballooned hepatocytes) induced by
LPS (Figure 1a). TUDCA treatment also resulted in partial
resolution of hepatic steatosis (Figure 1a and Supplementary
Figure S1A). As expected, inflammatory foci were absent in
PBS- and TUDCA-injected mice (Supplementary Figure S1A).
Consistent with these observations, serum levels of aspartate
(AST) and alanine (ALT) aminotransferases were significantly
lower in [TUDCA+LPS]-treated ob/ob mice compared with
LPS-treated mice (Figure 1b). TUDCA-treated mice also
displayed a reduction in AST and ALT levels compared with
those receiving PBS. Thus, in ob/ob mice, LPS challenge
induced NASH-like pathological features: ballooned hepato-
cytes, liver damage and inflammation. TUDCA treatment
prevented these effects. After LPS injection, liver sections of
TUDCA-treated mice also contained less TUNEL-positive
hepatocytes compared with untreated animals. TUNEL
staining showed that both apoptosis (nuclear fragmentation,
Figure 1c) and necrosis (diffuse cytoplasmic staining,
Supplementary Figure S1A) were significantly reduced after
TUDCA treatment. Furthermore, the levels of active caspase-
3 and substrate CAD were markedly reduced in [TUDCA
+LPS]-treated mice in comparison with LPS-treated ones
(Figure 1c). In accordance with inflammatory cell infiltration,
the hepatic levels of TNFα, IL-1β, IFNγ and iNOS messenger
mRNA were significantly increased in LPS-injected mice
(Figure 1d). TUDCA treatment decreased the hepatic levels
of these markers upon LPS challenge. Notably, IL-1β is
matured by proinflammatory caspases (caspase-1 and
caspase-11).17 Interestingly, the analysis of mRNA levels
showed that caspase-1 and caspase-11 were significantly
decreased in the livers of [TUDCA+LPS]-treated mice in
comparison with LPS-treated ones (Figure 1d). We con-
cluded that TUDCA treatment suppresses hepatocyte bal-
looning, apoptosis and inflammasome priming upon LPS
challenge in ob/ob mice.

TUDCA provides protection against LPS-induced ER
stress and inflammasome pyroptotic death. As TUDCA
treatment prevented LPS-induced upregulation of IL-1β,
caspase-1 and caspase-11 gene expression (Figure 1d)
and TUNEL positivity (Figure 1c), we hypothesized that LPS
could induce hepatic ER stress pyroptosis. As in apoptotic
cell death, cells undergoing pyroptosis incur DNA damage
and become positive in the terminal deoxynucleotidyl
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transferase dUTP nick-end labeling (TUNEL) assay. Also,
Figure 2a shows that LPS-treated ob/ob mice exhibited
marked increases in both active caspase-11 and -1, whereas
TUDCA strongly prevented activation. As reported,16 hepatic
steatosis was already associated with increased levels of
both active inflammatory caspases in the liver. We observed
that NLRP3 expression was induced upon LPS stimulation at
the protein and mRNA levels, whereas it was decreased with
TUDCA, as shown in Figures 2a and b, respectively.
Accordingly, hepatic activation of another specific inflamma-
some substrate, IL-18, was reduced at the mRNA level
(Figure 2b). Importantly, in agreement with increased
caspase-11 and -1 activation, the serum levels of systemic

mature IL-1β rose after LPS injury, whereas TUDCA
treatment completely abolished IL-1β secretion in these mice
(Figure 2c). TUDCA treatment also decreased the circulating
levels of global inflammatory markers such as TNFα, IFNγ
(Figure 2c), MCP-1 and IL-6 (Supplementary Figure S1B) in
response to LPS. It should be acknowledged that the
circulating inflammatory markers could be derived from
adipose tissue in addition to the liver and contribute to
inflammatory responses.
Together, these data reveal that upon LPS treatment, ER-

dependent NLRP3 inflammasome and hepatocyte death
pathways were induced in the livers of ob/ob mice, whereas
TUDCA blocked both pathways. We next decided to
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administer the TUDCA treatment with LPS for the duration of
the 6-h treatment. Importantly, we observed that a unique dose
of TUDCAwas still capable of protecting the liver against LPS-
induced steatohepatitis foci formation and necrosis
(Supplementary Figure S2A), liver injury (Supplementary
Figure S2B) and apoptosis (Supplementary Figure S2C)
independently of the grade of steatosis (Supplementary
Figure S2A). TUDCA 6-h co-treatment decreased the activa-
tion of inflammatory caspases in the liver at the protein and
mRNA levels (Supplementary Figure S3A, top and bottom,
respectively). The increase in circulating levels of IL-1β, TNFα
and IFNγ in response to LPS was also limited by TUDCA
(Supplementary Figure S3B). Thus, the hepatoprotective and
anti-inflammatory properties of TUDCA against LPS are
independent of its ability to improve steatosis.

TUDCA reduces LPS-induced hepatic IRE1α and PERK
activation. During ER stress, IRE1α initiates an unconven-
tional splicing of the mRNA encoding an isoform of the XBP-1
protein (sXBP-1).5 PERK phosphorylates eIF2α, which
results in the translational induction of ATF4. ATF6 is
cleaved and its cytosolic domain translocates to the nucleus.

We examined the hepatic status of sXBP-1, phospho-eIF2α,
ATF4 and total ATF6 in ob/ob mice. The levels of the sXBP-1
protein (Figure 3a) and target gene DnaJ9 (Supplementary
Figure S4a) increased significantly in LPS-treated mice,
whereas they were barely detected in [TUDCA+LPS]-treated
mice. In addition, the hepatic levels of phosphorylated eIF2α
and ATF4 protein expression were slightly enhanced with
LPS, while TUDCA pretreatment protected from LPS-induced
eIF2α activation (Figure 3a). Interestingly, 5 days of TUDCA
treatment reduced the basal state of phosphorylation of
eIF2α. In contrast, total ATF6 expression remained
unchanged irrespective of LPS stimulation (Figure 3a). The
GRP78 protein was markedly increased in the livers of
TUDCA-treated ob/ob mice, whereas the CHOP protein was
barely detectable. TUDCA further increased the [GRP78/
CHOP] ratio, thereby promoting potential protection against
LPS stimulation (Figure 3b). Importantly, we found similar
results on an mRNA level when TUDCA and LPS were
administrated together for the duration of the 6- h treatment
(Supplementary Figure S3C).
As reported,3 the basal levels of phospho-JNK were already

elevated in the steatotic liver as a consequence of IRE1α
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activation compared with lean control livers (Supplementary
Figures S5A–C). Upon LPS challenge, the levels of phospho-
JNK rose further, whereas TUDCA treatment prevented
exaggerated JNK activation (Figure 3b). CHOP mediates its
pro-apoptotic effects by positively regulating pro-apoptotic
Puma and Bax proteins, while negatively regulating the
anti-apoptotic Bcl-2 protein.5 Importantly, LPS stimulation
increased Puma and Bax protein expression (Figures 3c
and d). TUDCA blocked this upregulation and slightly
increased the levels of Bcl-XL and Bcl-2 proteins. Thus,
TUDCA treatment inhibited the increase in Bax and Puma
protein levels, thereby promoting a protective Bcl-XL- and Bcl-
2-dependent mechanism against LPS-induced liver injury.
These data revealed that in livers from obese mice,

administration of LPS results in the activation of IRE1α and
PERK, as well as CHOP overexpression. This, in turn,
activates the NLRP3 inflammasome, initiating hepatocyte
apoptosis and, more specifically, pyroptosis. In contrast, the
LPS challenge is blocked by the ER stress inhibitor TUDCA.
In light of the data, we addressed whether feeding mice with a
methionine- and choline-deficient (MCD) diet, a nutritional
model of steatohepatitis, would induce a similar phenotype.

As expected, the MCD-fed mice developed a typical feature of
NASH: increased liver injury (Supplementary Figure S6A). All
these parameters correlated with an increased hepatic
priming of the NLRP3 inflammasome and ER stress markers,
specifically CHOP, in the MCD-fed mice (Supplementary
Figures S6B and C).

Tunicamycin treatment leads to hepatic apoptosis,
exacerbated NLRP3 inflammasome activation and over-
whelmed IRE1α and PERK activities. We questioned
whether ER stress activation with tunicamycin (TUNI), a
specific ER stress inducer, would lead to increased liver
injury and NLRP3 inflammasome activation in the livers of
obese mice. As shown in Figure 4a, the serum levels of AST
were significantly increased in TUNI-injected mice compared
with control animals, indicative of additional hepatocyte
death, and we observed a strong increase in the number of
steatohepatitis foci. Furthermore, these mice present a
marked increase in TUNEL-positive hepatocytes, activated
hepatic caspase-3, Puma α and active Bax in response to
TUNI (Figure 4b). These results clearly indicate that ER
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stress by TUNI led to liver injury associated with hepatocyte
apoptosis in ob/ob mice.
Regarding inflammasome activation, we found that TUNI

exacerbated hepatic caspase-11, caspase-1 and production
of IL-1β compared with control mice (Figure 4c). Importantly, in
agreement with increased caspase-11 and -1 activation, the
serum levels of systemic mature IL-1β increased after TUNI
injection (Figure 4d). TUNI treatment also increased the
circulating levels of the proinflammatory cytokines IL-6 and
MCP-1 (Figure 4d). The mRNA level of Nlrp3 was also
specifically increased with TUNI (Supplementary Figure S4B).

Hence, the induction of ER stress by TUNI administration not
only triggered apoptosis, but also led to an increase in
hepatocyte pyroptosis in ob/ob mice.
We thus analyzed the activity of UPR effectors in response

to TUNI. The level of sXBP-1, a target of IRE1α, was
significantly increased after TUNI treatment (Figure 4e).
Consequently, the mRNA levels of sXBP-1 and the target
gene DnaJ9 (Supplementary Figure S4B) were increased in
response to TUNI. Simultaneously, levels of hepatic phospho-
PERK increased in TUNI-challenged mice compared with
control mice. Accordingly, we detected a marked increase in
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the protein (Figure 4e) and mRNA levels (Supplementary
Figure S4B) of ATF4. Finally, a strong upregulation in CHOP
protein expression, a downstream target of sXBP-1 and
ATF4,5 was detected after TUNI challenge, alongside an
increase in phospho-JNK expression (Figure 4e). Accordingly,
TUNI increased the [CHOP/GRP78] ratio at the protein
(Figure 4e) and the mRNA levels (Supplementary Figure
S4B), thus favoring programmed hepatocyte death.

CHOP mediates ER-stress-induced pyroptosis and apop-
tosis in mouse primary hepatocytes. We evaluated cell
viability, pyroptosis and apoptosis in primary mouse hepato-
cytes treated with LPS or TUNI, or co-treated with TUNI and
LPS [TUNI+LPS], in the absence or presence of the ER
stress inhibitor TUDCA. Although LPS and TUDCA alone did
not alter hepatocyte viability (MTT test, Figure 5a) or positivity
for TUNEL staining (Figure 5b), primary hepatocytes dis-
played enhanced sensitivity to co-treatment with TUNI+LPS,
compared with TUNI alone, with a marked decrease in
viability and a higher percentage of TUNEL-positive hepato-
cytes (Figures 5a and b). Furthermore, hepatocyte death
induced by TUNI+LPS was partially suppressed by TUDCA.
We also confirmed these results in AML12 hepatocytes
(Supplementary Figure S7). We also tested whether Z-YVAD-
fmk, a caspase-1 and caspase-11 inhibitor, could block the
hepatocyte death induced by TUNI+LPS. The cell death
caused by TUNI+LPS was indeed attenuated by Z-YVAD-fmk

(Supplementary Figure S7). These results suggest that loss
of viability was dependent on proinflammatory caspase-1 and
caspase-11 activities. We next monitored the protein levels of
proinflammatory caspases, IL-1β and CHOP by immunoblot-
ting. Expression of the CHOP protein was enhanced in TUNI-
treated hepatocytes, whereas it was barely detectable in
controls (Figure 5c). Strikingly, CHOP protein expression was
further increased in hepatocytes treated with TUNI+LPS.
Importantly, this pattern of CHOP activation mirrored the
increase in the active forms of caspase-11, caspase-1 and
IL-1β. These effects were strongly inhibited by TUDCA
(Figure 5c). We hypothesized that CHOP could induce the
activation of inflammatory caspases, but not apoptotic
caspase-3. We then performed similar experiments in
primary hepatocytes by knocking-down Chop using siRNA.
As shown in Figure 5d, the knockdown of endogenous Chop
strongly prevented the accumulation of active caspase-11,
caspase-1 and their substrate IL-1β in response to TUNI or
TUNI+LPS, but not active caspase-3 (data not shown). This
result indicated that TUNI and LPS act synergistically to
induce CHOP-dependent inflammasome pyroptotic death.

NASH patients show increased hepatic ER stress,
inflammasome priming and liver injury. In line with our
results, we hypothesized that progression from steatosis to
NASH could be associated with enhanced hepatic ER stress
and inflammasome activation in obese patients. This was
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tested by evaluating the expression of ER stress markers
(Chop and Grp78) and inflammasome priming (caspase-4,
which shares 60% homology with murine caspase-11),
caspase-1 and IL-1β in 30 obese subjects (Supplementary
Table 1). The analysis of the mRNA levels showed a
significant increase in both the deleterious [Chop/Grp78]
ratio (54-fold increase), and inflammasome components
(caspase-4, caspase-1 and IL-1β) in NASH patients (n=9)
compared with patients without NAFLD (n=6) and with
steatosis (n=15, Figure 6a). These markers of ER stress and
the inflammasome also correlated with the NAFLD Activity
Score and liver injury, as evaluated by transaminase levels
(Supplementary Table 2). In addition, we also found a positive
correlation between the ER stress and level of inflammasome
transcripts (Supplementary Table 2). The [Chop/Grp78] ratio
correlated with the levels of caspase-4 (Rs=0.414,
P=0.029, n=28), caspase-1 (Rs=0.421, P= 0.026, n= 28)
and IL-1β (Rs= 0.46, P=0.016, n=27) transcripts, which
also correlated with each other (Figure 6b). These results
indicate that ER stress and inflammasome platforms may
cooperate in the progression from steatosis to NASH.

Discussion

Steatosis is an extremely common disorder affecting nearly
30% of the US population, among which 25% develop NASH
with an inherent risk for progression to cirrhosis and

hepatocarcinoma. Although the function of the NLRP3
inflammasome in myeloid immune cells has been well
characterized, increasing evidence shows that the NLRP3
inflammasome activation also occurs in non-myeloid cells,
namely hepatocytes,30 in normal and pathogenic states.
Nevertheless, studies have not examined whether the ER
stress response stimulates hepatic NLRP3 inflammasome
activation and associated cell death in NASH. Our studies
suggest several potential mechanisms related to ER stress
and inflammasome activation that cooperate to induce NASH
development.
We first found that exaggerated ER stress obtained with

LPS or TUNI in the steatotic liver leads to a transient state of
NASH-like disease and the presence of hepatocyte pyroptotic
cell death. Remarkably, in livers from ob/ob mice, challenge
with LPS resulted in a degree of steatohepatitis that closely
resembled human NASH, and two of the main pathological
features, steatohepatitis foci and hepatocyte apoptosis, were
also rapidly induced by the administration of TUNI to ob/ob
mice. In addition, we demonstrated in these animal models
that the ER stress effectors PERK and IRE1α converge on
CHOP activation, thus increasing the activity of the NLRP3
inflammasome (caspase-11, caspase-1, IL-1β) and hepatic
apoptosis (TUNEL positivity, caspase-3, BH3-only proteins).
Second, a treatment with TUDCA dramatically reduces
NLRP3 inflammasome activation and improves the NASH-
pathological features in these models. Indeed, we have shown
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that TUDCA, administered as a protective 5-day pretreatment
or as a potential 6-h treatment in ob/ob LPS-injected mice,
exhibits anti-inflammatory and hepatoprotective properties.
Third, CHOP is a critical signaling node that links ER stress-
induced cell death and inflammasome activation in hepato-
cytes. The level of CHOP activation was robust after LPS and
TUNI co-treatment, which correlated with increased cell death
and activation of caspase-11 and caspase-1. Genetic silen-
cing of Chop strongly reduced the activation of caspase-11, -1
and IL-1β production, suggesting that Chop modulates
caspase-11 and caspase-1 activation at the transcriptional
level in hepatocytes. We also observed that TUDCA protected
hepatocytes from LPS- and TUNI-induced inflammasome
activation and cell death, thus phenocopying the effects
observed in mice with TUDCA treatment. Importantly, we
reported a significant increase in gene expression of Chop in
the livers of NASH patients, which correlated with priming of
the inflammasome markers caspase-1, caspase-4 and IL-1β.
These markers significantly correlated with liver injury
(transaminases) and inflammation (presence of inflammatory
foci and NAS score) suggesting that the cross-talk between
ER stress and inflammasome is an important mediator in the
pathophysiology of NASH.
Sustained inflammasome activation can trigger apoptosis

and pyroptosis, resulting in DNA damage with positivity for
TUNEL staining. We found an increase in TUNEL-positive
hepatocytes in both livers from LPS- and TUNI-injected mice,
which correlated with increased production of active caspase-1,
caspase-11, IL-1β and of caspase-3, PERK and IRE1α
activities. These results suggest that LPS and TUNI induce
ER-dependent pyroptosis and apoptosis in the livers of ob/ob
mice, whereas Z-YVAD-fmk and TUDCA blocked both
pathways.
Our current data demonstrate for the first time a connection

between ER stress activation and the presence of pyroptotic
cell death in hepatocytes with a hyperactivated NLRP3
inflammasome. Importantly, we confirmed our results in a
frequently used nutritional model of steatohepatitis by feeding
mice with the MCD diet.
The role of CHOP in NAFLD remains unclear, as evidence

demonstrated that MCD-diet-induced steatohepatitis was
reduced in Chop knockout mice and that inflammation was
exacerbated in macrophages from Chop-deficient mice13

arguing for a cell autonomous effect of the Chop deficiency.
Our results support a deleterious role of CHOP, driving both
ER stress-induced hepatocyte death through the activation of
BH3-only proteins31 and the NLRP3 inflammasome activation
in our experimental models. Herein, we demonstrated that
CHOP expression correlated with Puma and Bax induction.
These results are consistent with the concept that the
induction of Puma is necessary for ER stress-induced
apoptosis and can be linked to direct Bax activation, initiating
mitochondrial dysfunction as a downstream consequence of
ER stress.32 These results are in accordance with the high
hepatic expression levels of Puma and Bax found in patients
with NASH contributing to hepatocyte lipoapoptosis.33 Inter-
estingly under stress conditions, Bax and Bak can activate
IRE1α.34 They could act as retro-positive controls amplifying
ER stress apoptosis, inflammasome activation and down-
stream mitochondrial dysfunction in NASH models.

Transcriptionally, CHOP expression is regulated by ATF4,
sXBP-1 and cATF6.35 Therefore, the increase in CHOP
expression observed in the steatotic livers of mice treated
with LPS and TUNI could be a reflection of both PERK and
IRE1α/sXBP1 activation, as ATF6 remained unchanged. The
increase in phospho-JNK observed in these mice could also
reflect IRE1α/TRAF2/ASK1 activation.5 Interestingly, JNK is
speculated to promote CHOP activity through
phosphorylation,5,6 thereby potentially reinforcing the PERK
pathway and the IRE1α/sXBP-1-dependent pathway that
increases CHOP production, inflammasome activation and
hepatocyte death.
Such a connection between ER stress and inflammasome

pathways has been recently suggested through the
thioredoxin-interacting protein (TXNIP) which associates
PERK and IRE1α with the NLRP3 inflammasome, thus
activating β-cell death and contributing to diabetes.36,37 We
did not observe any variation of TXNIP protein expression in
our experimental conditions suggesting that TXNIP does not
seem to be a target of hepatic IRE1α and PERK, at least in our
models (Supplementary Figure S8). Hyperactivated IRE1α or
irremediable ER stress would also spontaneously generate
ROS.36 We found that the level of ROS production was slightly
increased after LPS and TUNI co-treatment (Supplementary
Figure S8). As ROS enhance the activation of NLRP3
inflammasome, they may further amplify effects of the
IRE1α-PERK-CHOP axes to increase pyroptosis in our
experimental conditions. Future studies seeking to character-
ize the tight link between ER stress and NLRP3 pathways and
its contribution to liver inflammation and cell death are worth
considering.
As other inflammasome pathways have been described,38

our results support a model in which the severity of the
ER stress response could activate these pathways, in
hepatocytes and nonparenchymal cells, resulting in the
induction of proinflammatory signaling, hepatocyte pyroptotic
death and fibrosis in various liver pathologies, such as NASH,
ASH and HCC. For example, AIM2 could be an attractive
candidate as it senses damage-associated molecular pat-
terns, such as cytoplasmic and mitochondrial DNA, which are
increased in NASH patients.39 AIM2 could form an NLRP3-
independent inflammasome with Pycard and caspase-1,
contributing to the pathological features of these liver
diseases.
A therapeutic strategy that aims to target these common

processes might be effective; TUDCA could provide such
a strategy. In our animal models, it is possible that TUDCA
decreases the amount of inflammatory mediators produced
by activating inflammatory macrophages and the inflamma-
tory microenvironment. Studies have reported that TUDCA
decreases the amount of TNFα produced by inflammatory
macrophages in a model of HCC.40 TUDCA could
also decrease the expression of TLR4, the receptor of LPS.
In the liver, TLR4 is expressed in both hepatocytes
and immune cells such as macrophages. TLR4 specifically
activates IRE1α to increase cytokine production (IL-6
and TNFα) in macrophages.41 Such a mechanism could
also occur in hepatocytes contributing to amplify the
inflammatory responses provoked by an LPS challenge
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(Figure 7). Further studies are needed to fully answer this
question.
In summary, we have demonstrated that ER stress leads to

NLRP3 inflammasome activation, thus resulting in severe liver
inflammation and hepatocyte pyroptotic death, and contribut-
ing as a novel mechanism of ER-mediated liver damage
(Figure 7). In this way, blocking ER-dependent NLRP3
inflammasome and cell death pathways, with TUDCA
alone, or combined with other hepatoprotective and anti-
inflammatory interventions, may represent a valid therapeutic
strategy for the treatment of liver disorders.

Materials and Methods
Animal care, mouse model and treatments. All the animal procedures
were conducted in compliance with protocols approved by local ethical government
authorities. Male, ob/ob mice (C57BL/6J-ob/ob), at 6 weeks of age were purchased
from Janvier Laboratories (Saint-Berthevin, France). Experiments were started
2 weeks after the arrival of the mice in our animal facility. Four different treatment
protocols were administered: (1) TUDCA was injected intraperitoneally (250 μg/g
twice a day, total 500 μg/g/day) for 5 days. Control mice received the same volume
of vehicle (PBS). Mice were subjected to a single LPS injection (2 μg/g) 6 h before
being killed. (2) TUDCA and LPS were co-injected intraperitoneally at the above-
mentioned concentrations for the duration of the 6-h treatment. Other mice were
either injected with PBS, TUDCA or LPS 6 h before being killed, at the
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concentrations stated previously. (3) Mice were intraperitoneally injected with
tunicamycin (2 μg/g) or vehicle control (PBS) 6 h before being killed. All the mice
were fed a normal chow diet (A04, Safe Diet, Augy, France). (4) Wild-type C57BL/6
male mice (16–18 weeks of age), from Janvier were fed a methionine- and choline-
deficient diet (MCD, ref 960439) or control diet (ND) (ref 960440, MP BIO) for
2 weeks. Water was available ad libitum.

Biochemical analysis and cytokine measurement. Serum levels of
aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were
determined using a standardized UV test after activation with pyridoxal-phosphate
(Roche-Hitachi analyzer, ASTPM, ALTPM, Cobas, Meylan, France). The BD
Cytometric Bead Array (CBA) Mouse Inflammation Kit was used to quantitatively
measure cytokines by flow cytometry as described previously.42

Histological evaluation. Liver tissue specimens were fixed in 10% buffered
formalin, embedded in paraffin, sectioned (5 μm thick), stained with hematoxylin–
eosin, and then analyzed blindly by a liver pathologist.

TUNEL assay. Liver tissue specimens were embedded in paraffin and
sectioned at 5 μm for processing by the TUNEL method using a commercial kit,
using DAB peroxidase substrate (Roche Molecular Biochemicals, Meylan, France)
and counterstained with methyl green. Specimens were evaluated by microscopy at
high power magnification (×100) in a blinded manner. A total of 30 random fields
were counted for each TUNEL-stained tissue sample. TUNEL assays on primary
hepatocytes were performed following exactly the same procedure as we previously
described.43,44

In vitro assay for viability. Cell viability was determined by a colorimetric
assay based on the ability of viable cells to reduce 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide (MTT) as described,45,46 generating a dark blue
formazan product. Dissolved MTTwas added to each well of the plate and the plate
was incubated at 37 °C for 1 h. The absorbance at 550 nm was measured using a
microplate spectrophotometer system (ELX800, Bio-TEK Instruments, Colmar,
France). Results are presented as a percentage of the control values.

Real-time quantitative PCR analysis. Total RNA was extracted from liver
tissue using an RNeasy Mini Kit (Qiagen, Courtaboeuf, France). The samples were
treated with Turbo DNA-free (Applied Biosystems, Courtaboeuf, France) or RNAse-
free DNAse kit (Qiagen) following the manufacturer’s protocols. The quality of the
isolated RNA was determined using the Agilent 2100 Bioanalyser with RNA 6000
Nano Kit (Agilent Technologies, Massy, France). Total RNA was reverse-transcribed
with the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Real-
time quantitative PCR was performed using the ABI PRISM 7500/Step-One Fast
Real Time PCR System following the manufacturer’s protocols in C3M genomics
facilities. The TaqMan gene expression assays were purchased from Applied
Biosystems (Supplementary Materials and Methods). Gene expression values were
normalized to the value of the housekeeping gene 36B4 (mice conditions) or RPLP0
(human conditions) and calculated on the basis of the comparative cycle threshold
Ct method (22DDCt) as we described previously.44,46

Immunoblot analysis. Total liver protein was isolated from snap-frozen
tissues, homogenized in detergent-containing buffer, normalized for the protein
content (50 μg per sample), and analyzed by SDS-PAGE (8–15% gels)
immunoblotting as previously described for ER stress studies42,46 and for
inflammasome studies.47 Equal loading was assured by Ponceau S staining.
Western blot analyses were performed using the primary antibodies described in
Supplementary Materials and Methods. Antibody detection was accomplished using
horseradish peroxidase-conjugated secondary antibodies (Supplementary Materials
and Methods) and an enhanced chemiluminescence method (Amersham
Biosciences, Piscataway, NJ, USA). Immunoblots were scanned, and the signals
were quantified using ImageJ software.

Cellular models and treatments. Hepatocytes from mouse liver were
isolated by a two-step collagenase procedure, as we previously described.46

Isolated cells were resuspended in Medium I (Williams' Medium E) supplemented
with 10% fetal bovine serum (PAA Laboratories, Villacoublay, France), 100 units/ml
penicillin, 100 μg/ml streptomycin, 2 mM L-glutamine, 0.02 UI/ml insulin (Humulin,
Lilly, Fegersheim, France). Viability was evaluated by trypan blue exclusion (Sigma,
St. Louis, MO, USA). Hepatocytes were incubated for 4 h at 37 °C in a humidified

atmosphere with 5% CO2. For culture, Medium I was renewed with Medium II (a
fetal bovine serum-free Medium I, supplemented instead with 0.5% bovine serum
albumin). Hepatocytes were also pretreated with TUDCA (500 μg/ml) for 48 h or
with Z-YVAD-fmk (25 μM) for 1 h in Medium II. Following these incubation times,
tunicamycin (TUNI; 1 μg/ml), LPS (100 ng/ml) or [TUNI+LPS] was gently added to
the culture for 24 h in Medium II. AML12 hepatocytes (CRL-2254, ATCC) were
cultured in medium (DMEM, 4.5 g/l glucose, 100 units/ml penicillin, 100 μg/ml
streptomycin and 2 mM L-glutamine) supplemented with 10% fetal bovine serum
(PAA Laboratories), under 5% CO2 at 37 °C. The conditions for stimulation were
the same.

siRNA transfection. Primary hepatocytes were transfected with chop (ddit3)
siRNA (MSS273951, Invitrogen, Carlsbad, CA, USA) or control siRNA (Invitrogen,
Low) at 30 nM using Lipofectamine RNAiMAX (Invitrogen) according to the
manufacturer’s instructions. After 48 h of transfection, the cells were then treated as
indicated above.

Human studies. Morbidly obese patients (n= 30) were recruited through the
Department of Digestive Surgery and Liver Transplantation (Nice Hospital) where
they underwent bariatric surgery for their morbid obesity. Bariatric surgery was
indicated for these patients in accordance with the French guidelines. Exclusion
criteria were: presence of a hepatitis B or hepatitis C infection, excessive alcohol
consumption (420 g/day) or another cause of chronic liver disease, as previously
described.48 The characteristics of the study groups are given in Supplementary
Table 1. Before surgery, fasting blood samples were obtained and used to measure
ALT and AST aminotransaminases; glucose and insulin resistance were calculated
using the homeostatic model assessment (HOMA-IR) index. Surgical liver biopsies
were obtained during surgery and no ischemic preconditioning had been performed.
Histopathological analysis was performed according to the scoring system of Kleiner
et al.49 Four histopathological features were semi-quantitatively evaluated: grade of
steatosis (0,o5%; 1, 5–30%; 2,430–60%; 3,460%), lobular inflammation (0, no
inflammatory foci; 1, o2 inflammatory foci per × 200 field; 2, 2–4 inflammatory foci
per × 200 field; 3, 44 inflammatory foci per × 200 field), hepatocellular ballooning
(0, none; 1, few ballooned cells; 2, many cells/prominent ballooning) and stage of
fibrosis (from none= 0, to cirrhosis= 4). All the subjects gave their informed written
consent to participate in this study in accordance with the French legislation
regarding Ethics and Human Research (Huriet–Serusclat law). The “Comité
Consultatif de Protection des Personnes dans la Recherche Biomédicale de Nice”
approved the study (07/04:2003, N°03.017).

Statistical analysis. Statistical significance of differential gene expression
between the two study groups was determined using the non-parametric Mann–
Whitney test with the ΔCt of each group. Correlations were analyzed using the
Spearman’s rank correlation test. Other data from mice and cells were statistically
analyzed by Student’s t-test or ANOVA and post hoc analysis for multiple group
comparison. Data are expressed as mean± S.E.M. Statistical significance from
controls is denoted by *P⩽ 0.05, **P⩽ 0.01, ***P⩽ 0.001. Following the same
pattern, # denotes statistical significance between specified groups.
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