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Abstract

We consider the problem of assessing associations between multiple related outcome variables, and a single explanatory
variable of interest. This problem arises in many settings, including genetic association studies, where the explanatory
variable is genotype at a genetic variant. We outline a framework for conducting this type of analysis, based on Bayesian
model comparison and model averaging for multivariate regressions. This framework unifies several common approaches to
this problem, and includes both standard univariate and standard multivariate association tests as special cases. The
framework also unifies the problems of testing for associations and explaining associations – that is, identifying which
outcome variables are associated with genotype. This provides an alternative to the usual, but conceptually unsatisfying,
approach of resorting to univariate tests when explaining and interpreting significant multivariate findings. The method is
computationally tractable genome-wide for modest numbers of phenotypes (e.g. 5–10), and can be applied to summary
data, without access to raw genotype and phenotype data. We illustrate the methods on both simulated examples, and to a
genome-wide association study of blood lipid traits where we identify 18 potential novel genetic associations that were not
identified by univariate analyses of the same data.
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Introduction

The problem of assessing associations among multiple variables

arises in a wide range of settings. Here we are motivated primarily

by genetic association studies, which aim to assess associations

between genetic variants and one or more phenotypes (observable

characteristics) of interest, such as health-related quantitative traits

(e.g. LDL-cholesterol, HDL-cholesterol) or disease status. Howev-

er, many of the issues that arise in this setting also occur elsewhere,

and so the statistical framework and results given here have

potential for wider application.

In genome-wide association studies, published analyses are

almost always univariate, considering each phenotype indepen-

dently, even when multiple phenotypes are available on each

individual (e.g. [1], to give just one example). However, in a sign

that this may change in the future, the last few years have seen a

plethora of papers related to multivariate association testing,

including for example [2–10]; see also review papers by [11,12].

Nonetheless, statistical methods for assessing associations with

multiple traits remain surprisingly under-developed, and still more

under-utilized.

The under-utilization of multivariate association methods may

partly reflect a lack of general appreciation for the potential

increased power of multivariate analyses. This is despite the fact

that comparisons of multivariate and univariate association

methods usually conclude that multivariate approaches can

increase power. However, a more important factor may be that,

despite their power, multivariate association analyses can be

difficult to interpret. For example, rejecting a null hypothesis of no

association does not indicate which phenotypes are associated,

which is often the question of primary interest. In addition, some

existing multivariate approaches for genetic data, while sophisti-

cated, are also somewhat complex, which may discourage

potential users.

Here we focus on relatively simple multivariate association

analyses, involving a single genetic variant and a modest number

of phenotypes (e.g. up to 10). Our aims include not only

emphasizing the benefits of multivariate association analyses, but

particularly to understand when and why a multivariate analysis will

be most helpful, and, perhaps most importantly, to draw some

connections between apparently disparate approaches. In partic-

ular we outline an analysis framework, based on model

comparison, which effectively includes both standard univariate

and standard multivariate association tests, as well as a large

number of other standard tests, as special cases. Framing the

association analysis as a model comparison problem, rather than

as a testing problem focussed only on rejecting the null hypothesis,

helps illuminate the settings under which each analysis approach

will outperform others. It also provides an integrated way to both

test for association and interpret associations, and in particular to

address the primary question of which phenotypes are associated

with each genetic variant.

The next section (Methods) provides i) further background and

motivation; ii) a description of the framework in general terms; iii)

detailed consideration of methods for the special case where a

multivariate normal distribution can be used for the phenotypes;

and iv) a discussion of challenges that may arise in practice when
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applying these methods. The methods for multivariate normal

phenotypes are easily implemented (e.g. in R), and can be applied

genome-wide, requiring only summary data, rather than individ-

ual genotype data (which can be harder to arrange access to,

particularly when coordinating across multiple studies of the same

phenotypes). In Results, we illustrate the methods on both

simulated data and on a large meta-analysis of lipid-related traits,

identifying several novel putative associations. The Discussion

outlines connections between our framework and other work

(particularly graphical models), highlights some of the main

limitations and weaknesses, and suggests directions for future

work.

Methods

Background and motivation
To illustrate some key issues, consider the following simple

example. Suppose we have measured both height and weight on a

random sample of (unrelated) genotyped individuals, and we wish

to identify genetic variants that are associated with one or both of

these phenotypes. In addition, having identified such variants, we

wish to assess, for each one, how it is associated with the

phenotypes. For example we would like to know whether it is

associated with just height, just weight, or both. We refer to the first

of these problems as testing for associations, and the second as

interpreting the associations.

For simplicity, here and throughout this paper, we consider

testing and interpreting associations with a single genetic variant g,

with the idea that any such analysis strategy would be applied to

each measured genetic variant, one at a time. This is the approach

taken by almost all GWAS analyses, although there can be

advantages to analyzing multiple variants jointly: e.g. see [13,14].

Even for a single genetic variant, and just two phenotypes, there

are several simple association tests one might consider. These

include:

1. Separate (univariate) tests for association with each of weight and

height.

2. A test for association with weight controlling for height. (This analysis

is roughly equivalent to testing for association with Body Mass

Index, BMI).

3. A test for association with height controlling for weight. (This analysis

seems less natural, for reasons we discuss below).

4. A multivariate test of association with the bivariate phenotype

(height, weight). Although this test can be performed in different

ways, many approaches turn out to be equivalent. For example,

one can test the global null of no association with either height or

weight by either i) MANOVA, treating (height, weight) as a bivariate

normal response and g as an explanatory variable; or ii) ordinary

least squares regression, treating g as a univariate response and

(height, weight) as explanatory variables. For reasons discussed in

[15], both these approaches lead to the same F statistic (a result

that also holds for more than two phenotypes), as can be easily

verified empirically. [In R try, for example, g = rbi-

nom(100,2,0.2); y = matrix(rnorm(1000), nrow = 100); sum-

mary(lm(g*y)); summary(manova(y*g)), and note the p values

and F statistics are the same.]

It is natural, and instructive, to consider under what circum-

stances each of these tests will be more powerful than others.

Figure 1 illustrates three different scenarios, and discusses the most

powerful test for each scenario. Even this simple bivariate setting

produces some perhaps unexpected results. For example, naively

one might have expected that if only weight is associated with

genotype then the preferred test would be the univariate test of

weight. However, as is clear from Figure 1a, the separation of the

three genotype groups under this scenario is much better in the

two-dimensional phenotype space than in the weight dimension

alone, and so a joint analysis of the phenotypes should be more

powerful. (Indeed, as we shall see later, in this case the test for

weight controlling for height would be most powerful.) Conversely,

one might naively expect that if both height and weight are

associated with genotype then the multivariate test would be

preferred. In some cases this is true (e.g. Figure 1b). However, in

other cases the univariate test will actually be more powerful (e.g.

Figure 1c). While these facts are arguably obvious in hindsight, in

the author’s experience they are easy to overlook in practice:

indeed, most people seem to naturally assume that the main

reason to do joint (multivariate) analyses is that the phenotypes

may share a common set of underlying genetic associations, when

in fact multivariate association analyses are often most advantageous when not

all phenotypes are associated with the genetic variant being tested!

Even when we understand which tests will be most powerful in

which scenarios, we then face a more fundamental problem: in

practice, we do not know which association scenario, if any, holds

for the variant we are considering, and so it remains unclear which

test(s) to perform. A natural reaction to this is to perform several

tests. However, while this is a reasonable strategy, it can be

surprisingly tricky to interpret the results. For example, if a

multivariate test gives a significant result, one does not know

whether it is due to an association with height or weight or both. And

although one could examine the univariate tests to assess this, this

strategy is less than ideal for many reasons [16], particularly that it

ignores the multivariate information that may have been crucial to

detecting the association in the first place. There are also more

subtle difficulties with interpreting the results of tests that control

for certain variables. For example, while a test for association with

weight, controlling for height, may appear to test for association with

weight, in fact genetic variants that are associated with height, but

not with weight, would also give significant results – or, more

precisely, an excess of small p values compared with a uniform

distribution – under this test! (To gain intuition into why, it may

help to think of this test as akin to a test for association with BMI:

any genetic variant associated with height but not weight would be

associated with BMI.) Of course, all these issues will be magnified

if we consider more than two phenotypes.

To summarize, the two main challenges confronting an analyst

in this context are i) different tests have different power under

different association scenarios, but we do not know which scenario

we face in advance; and ii) the results of tests involving multiple

variables may be difficult to interpret. In this paper we propose a

framework that helps overcome both of these challenges. In a

nutshell, the idea is to replace testing with model comparison. We

define a collection of models, each of which corresponds to a

different association scenario (such as those illustrated in Figure 1)

and consider computing the support for each model relative to the

‘‘null’’ scenario of no association. We show how the support for

each model is closely connected to the significance of a particular

corresponding association test (e.g. tests 1–4 above), and so

computing the support for each model effectively corresponds to

performing a series of tests. However, viewing the outcome of each

test as indicating the strength of support for a particular model

greatly facilitates combining and interpreting results across tests.

Although our framework uses Bayesian measures of evidence, we

explore the close connection between these Bayesian measures and

the outcome of standard likelihood ratio tests, and in particular,

for normally-distributed phenotypes, we show that standard

Association Analysis with Multiple Phenotypes
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likelihood ratio tests effectively arise from the use of particular

prior distributions.

The tools we use to implement the model comparison

framework are not new, involving ideas and inference procedures

from literature on Bayesian regression [17,18] and graphical

models [19]. However, the way we motivate these procedures is

different than usual, and in particular we emphasize (apparently

novel) connections between these inference procedures and

traditional test-based analyses such as those outlined in 1–4

above. Indeed, we outline how the framework effectively includes

all of the analysis approaches 1–4 as special cases, and provides a

natural way to combine results from these different analyses. Our

hope is that these connections will make the approach easier to

digest for those more familiar with tests than with Bayesian

graphical models.

A unified framework
Consider assessing association between a single predictor

variable g (e.g. a SNP genotype) and d related variables Y , each

measured on n individuals randomly sampled from a population

(so g is an n|1 vector, and Y is an n|d matrix). The size of d
could affect choice of analysis methods, for both statistical and

computational reasons; here we have in mind situations where d is

reasonably small – in the range 2–10 say – although formally

many of our results apply for all d. By ‘‘related’’ variables we mean

variables that either are significantly statistically correlated with

one another, or are approximately uncorrelated but plausibly

mechanistically linked, and so could be expected to share some

genetic influences. We return to the issue of which types of

variables might benefit from being analyzed jointly in the

Discussion. Although we are primarily motivated by genetic

association studies, the framework described here also applies to

multivariate association analysis more generally, at least to settings

where g can be considered a randomized intervention. (Although

genetic markers are not themselves randomized interventions in a

conventional sense, it is often reasonable to treat them in this way

due to Mendelian randomization; see e.g. [20].).

Simply stated, the aim of a multivariate association analysis is to

identify which variables are associated with g and which are not

(keeping in mind that the answer may well be that ‘‘none of them

are associated’’). It turns out to be fruitful to consider subdividing

the associated variables into two groups, ‘‘directly associated’’, and

‘‘indirectly associated’’. The distinction between these is made

precise below in terms of conditional independencies, but,

informally, an ‘‘indirect association’’ is an association that is

mediated entirely through other measured variables. For example,

in Figure 1c, weight is indirectly associated with g because the

association is entirely due to the effect of g on height.

To formalize this, let c~(U ,D,I) denote a partition of

f1, . . . ,dg into disjoint subsets U ,D and I , which represent,

respectively, the variables that are unassociated, directly associated

and indirectly associated with g. Let YU ,YD and YI denote the

corresponding columns of the matrix Y (so, for example,

YU : ~fY:j : j[Ug). Since variables can only be indirectly

associated with g if some of them are also directly associated, we

impose the restriction on c that if D is empty then so must be I .

We associate with each partition c~(U ,D,I) a probability model

pc(Y j g) that satisfies the following conditional independence

relations:

C1. YU is independent of g.

C2. YI is conditionally independent of g given YD,YU .

(Although it is not required mathematically, in interpreting

results we also implicitly assume that the variables in D do not

satisfy these conditions; that is, moving any subset of variables

from D to either U or I would negate one or both of C1 and C2.

This is related to the concept of ‘‘faithfulness’’ in graphical models

[21].) These conditions imply that pc(Y j g) factorizes as:

pc(Y j g)~pc(YU )pc(YDjYU ,g )pc(YI jYU ,YD): ð1Þ

[A note on notation: throughout the paper all distributions are

conditional on g, but some of these conditional distributions do

Figure 1. Illustration of three simple scenarios of association between genotype and a bivariate phenotype. All three scenarios involve
positively-correlated bivariate response, which for concreteness we refer to as height (x-axis) and weight (y-axis). Each point represents an individual,
colored according to their genotype (0, 1 or 2 copies of the minor allele). A) A variant associated with weight but not height. Even though height is
unassociated, it nonetheless clearly helps to consider weight and height jointly in testing for association: the separation between genotype classes in
the two-dimensional space is substantially greater than the separation along the y axis alone. In fact, here the most powerful analysis would be the
test for association with weight, controlling for height. B) The minor allele decreases height but increases weight: it is an allele for being ‘‘short and fat’’.
Here the three genotype classes are much better separated in the two-dimensional space, than for either phenotype individually. Should one be
lucky enough to encounter such a genetic variant, a multivariate test would be considerably more powerful to detect it than either univariate test. C)
Here the minor allele increases height, and as a result increases weight, resulting in what we will call an ‘‘indirect’’ association with weight. In this case
the separation of the groups in the bivariate space is no greater than the separation along the x axis alone, and the most powerful analysis would be
a univariate test for association with height. In all panels, the differences among genotype classes were deliberately made very large for clarity of
presentation.
doi:10.1371/journal.pone.0065245.g001
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not depend on g, a fact that we indicate by dropping g from the

notation. Thus, for example, we use pc(YU ) for pc(YU jg ) to

indicate that this conditional distribution does not depend on g.]

Note that the usual global null hypothesis, which is that Y is

independent of g, corresponds to the partition with all variables in

U , i.e. to the partition c0 : ~(U~f1, . . . ,dg,D~�,I~�). We

consider specification of suitable distributions pc(Y jg ) in more

detail below; for now we consider them to be given, and fully

specified (i.e. no unspecified free parameters). The relationships

among YU ,YD,YI and g can be visualized graphically as in

Figure 2.

We assume that some (unknown) value of c gave rise to the

observed data, meaning that Y j g*pc(Y jg ), and treat c as a

parameter to be inferred. Since c identifies which coordinates of Y

are associated with g, inferring c can be viewed as the main goal.

We perform inference for c using Bayesian methods, which

involves specifying a prior distribution p(c), and computing the

posterior distribution using p(cjY ,g )!p(c)pc(Y jg ). Choice of

appropriate prior distribution will be context-dependent, and is

discussed further below.

The posterior distribution for c contains all the information

needed for both testing for and interpreting associations between

Y and g. For testing, the overall evidence against the global null

hypothesis (c~c0) is given by the probability that this hypothesis

does not hold, p(c=c0jY ,g ). For interpretation, the posterior on c
quantifies the strength of the evidence (posterior probability) that

any particular combination of variables is directly or indirectly

associated with Y . For example, the marginal posterior probabil-

ities for each coordinate being in U , D, or I seem a particularly

useful summary, and take the form

p(i[U jY , g)~
X
c:i[U

p(cjY , g): ð2Þ

Because each value of c effectively defines a different statistical

‘‘model’’, performing inference for aspects of c in this way, by

summing over models, is often referred to as ‘‘Bayesian model

averaging’’ (BMA).

While there are many possible arguments for a Bayesian

approach to inference, here we find it particularly convenient that,

through the use of BMA, it has the potential to answer questions

about aspects of c even when the actual ‘‘true’’ value of c may be

difficult to infer reliably. For example, suppose that the data

strongly suggest that Y1 is directly associated with g; but are

relatively uninformative about other coordinates of Y . In this case

the posterior distribution on c would be diffuse, spread out over a

large number of partitions, but the posterior would nonetheless be

informative because it would be restricted to partitions in which

Y1 is in D (so p(1[DjY , g)&1). In addition, the Bayesian

framework ensures that answers to inter-related questions are

consistent with one another. For example, the posterior probability

that any particular coordinate of Y is associated with g will always

be less than the overall posterior probability that at least one

coordinate of Y is associated. In other words, the evidence against

the global null is always greater than the evidence against the

univariate null for any given coordinate, which it logically should

be because the global null hypothesis implies all univariate null

hypotheses. In contrast, use of p values from standard tests to

measure evidence does not enjoy this property: performing

standard univariate and multivariate tests can yield smaller p

values against the univariate null than against the global

(multivariate) null.

Specifying pc. Implementing the above inference approach

involves specifying a model pc(Y j g), for each possible value of c.

This is a large number of models even if d is only moderate. In this

section we outline a simple strategy for specifying all these models,

which involves explicitly specifying only two models, and then

deriving all other models from these. This approach is analogous

to [22], which considers deriving a large number of graphical

models from specification of the single model corresponding to a

complete graph.

The two models that must be specified are those corresponding

to the ‘‘global null’’, in which all variables are in U , and what we

will call the ‘‘full alternative’’, in which all variables are in D. We

let p0(Y j g) and p1(Y j g) denote these two probability distribu-

tions. Suitable forms for p0 and p1 will be context-specific; in

following sections we consider specific choices for p0 and p1 when

Y can be assumed multivariate normal within each genotype class.

Recall that pc(Y jg ) factorizes as:

pc(Y j g)~pc(YU )pc(YDjYU ,g )pc(YI jYU ,YD): ð3Þ

Now make the following two assumptions:

A1. The distributions that do not depend on g (the first and the

last) are the same as under the null p0;

A2. The distribution that does depend on g (the second) is the

same as under the full alternative p1.

Figure 2. A graphical representation of the model correspond-
ing to a partition c~(U ,D,I). Each of the nodes YU ,YD,YI

represents a subset of the measured phenotypes Y . The simplest
interpretation of the graph is as representing causal relationships
among variables. In this interpretation a directed arrow from one node
to another represents a direct causal effect, so, for example, the
genotype has a direct causal effect on the variables YD , which in turn
affects YI . A more flexible interpretation is in terms of the conditional
independencies among variables that would result from such causal
network. The rules for obtaining these conditional independencies
involve the notion of d-separation [63], which we do not go into here.
Instead we simply note that the conditional independencies encoded
by this graph include C1 : YU is independent of g; and C2 : YI is
conditionally independent of g given YU ,YD (because all paths from g
to YI go through YU or YD). Note that the absence of any arrows in the
direction from Y to g is justified by our treating g as a randomized
intervention. (For those familiar with Directed Acyclic Graphical (DAG)
models, here each Y node represents a collection of variables, and we
allow for arbitrary correlations among the variables within each node.
Thus, in a full DAG representation arrows would exist between all pairs
of Y variables: arrows between variables in different nodes would go in
the direction indicated by the figure. Arrows between variables within a
node could go in any direction, subject to the constraint that the
resulting graph must be acyclic.).
doi:10.1371/journal.pone.0065245.g002
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Then

pc(Y j g)~p0(YU )p1(YDjYU , )p0(YI jYU ,YD): ð4Þ

Thus assumptions A1–A2 yield a model pc for each c, using only

p0 and p1.

Besides simplifying the problem of specifying the many

probability distributions pc, the assumptions (A1–A2) leading to

(4) may be viewed as desirable in themselves, since they ensure that

all the distributions pc are in some sense ‘‘consistent’’ with one

another, agreeing on some parts of Y where we might wish for

them to agree. For example, suppose we consider two different

partitions, c1 and c2, in both of which the variable height is

unassociated with g. Then the assumptions A1–A2 ensure that the

marginal distribution of height will be the same under both pc1
and

pc2
(and, as a result, observing only the distribution of heights in

the samples would tell you nothing about whether other

phenotypes are associated with g).

Connections with testing. We now describe the connection

between the support for each partition c in the above framework

and standard tests for association.

The support for partition c, relative to the global null hypothesis

H0, is given by the likelihood ratio, or Bayes Factor (BF),

BFc : ~
pc(Y jg )

p0(Y )
: ð5Þ

Large values of BFc indicate support for partition c compared

with the null. Indeed, in terms of traditional hypothesis testing, a

test that rejects H0 if BFc exceeds some threshold is the most

powerful test of its size under the alternative hypothesis pc (by the

Neyman-Pearson lemma; [23]).

Now, noting that the null distribution p0 can be factorized as

p0(Y )~p0(YU )p0(YDjYU )p0(YI jYU ,YD), ð6Þ

and taking the ratio of (4) to (6), we obtain

BFc~
p1(YDjYU ,g )

p0(YDjYU )
: ð7Þ

Note the attractive intuitive interpretation of the right hand side of

(7): it is itself a likelihood ratio, or BF, for comparing a model

where YD depends on g given YU with a model where YD is

independent of g given YU . That is, BFc is effectively a test

statistic for whether YD is associated with g, controlling for YU .

Thus expression (7) establishes a link between the support for

each partition c (vs H0), and commonly-used tests of association.

In words:

[Support for c = (U, D, I) vs H0] = [Support for YD being

associated with g given YU].

Put another way, the support for each partition c corresponds to

a test in which some subset of the variables (YD) is treated as the

response variables, another subset (YU ) is controlled for, and the

remaining subset (YI ) is ignored. Our derivation assumes that the

pc are fully specified, and so applies to Bayesian tests, which

integrate over prior distributions on free parameters, but not

directly to standard likelihood ratio tests, which maximize over

free parameters. However, when Y is modeled as multivariate

normal, these two types of tests can be very closely related, as is

made explicit in Proposition 1 below.

To give concrete examples, each of the tests 1–4 mentioned in

the Introduction can now be seen to correspond to the support for

a particular partition c:

N The univariate test of height corresponds to support for a direct

association with height with an indirect association with weight

(height [D and weight [I ).

N The test for weight controlling for height corresponds to support

for a direct association with weight and no association with height

(weight [D, height [U ).

N The test for height controlling for weight corresponds to support

for a direct association with height and no association with weight

(height [D, weight [U ). This partition, and hence this test, seems

less natural because we might expect that any genetic variant

affecting height would also affect weight.

N The general multivariate test corresponds to support for a

direct association with both height and weight (height and weight

[D).

Although deriving the relationship (7) is algebraically trivial, the

relationship itself is conceptually non-trivial. In particular, for

different c, the tests that occur on the right of the equation are

conceptually very different from one another, involving different

null hypotheses. For example, the null hypotheses for the

univariate test of weight (‘‘ weight is unassociated with g’’) and for

the univariate test of height (‘‘height is unassociated with g’’) are

different, and tests of these hypotheses depend on different parts of

the data, making them appear difficult to compare. Equation (7)

shows how these various tests can be viewed within a single

framework by thinking of each of them as a test for a particular

multivariate alternative hypothesis against the global null hypoth-

esis.

The link between partitions and tests also provides a helpful

indication of which tests will be (asymptotically) most powerful

under which circumstances. For example, if only one of the

phenotypes (Y1 say) is associated with g, and all others are

unassociated, then the most powerful test will not, in general, be

the univariate test for association with Y1, but will instead be the

test for association with Y1 controlling for the other phenotypes.

Conversely, even if all the phenotypes are associated with , if

only Y1 is directly associated then the univariate test of Y1 will be

the most powerful. While these observations may be regarded as

trivial in hindsight, they nonetheless emphasize something that is

otherwise easy to forget: that simultaneous analysis of multiple

related phenotypes may be helpful even if – indeed, particularly if

– only one of the phenotypes is associated with a particular genetic

variant.

Testing the Global Null. In a typical genetic association

analysis the vast majority of genetic variants will not be associated

with any of the measured phenotypes, and so it is natural to focus,

initially, on whether (for each genetic variant g) the data suffice to

reject the global null hypothesis H0.

The overall evidence against the global null H0 is summarized

by the overall Bayes Factor, which we denote as BFav (av

representing average),

BFav : ~ Pr (Y jH0 false)=Pr (Y jH0 true)~
X
c=c0

wcBFc, ð8Þ

where the weights wc are proportional to the prior distribution p(c)

and normalized to sum to 1 [i.e. wc~p(c)=
X

c0=c0
p(c0)]. In a
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Bayesian analysis, the posterior probability of H0 would be

computed from the prior probability on H0 (p0 say) and BFav

using

Pr (H0 truejY )~
p0

p0z(1{p0)BFav
: ð9Þ

If a frequentist test of H0 is desired, then BFav could be used as a

test statistic, and p values estimated by simulation/permutation.

Note the attractive intuitive interpretation of (8): BFav is a

weighted average of the Bayes Factors from the many different

possible tests one might consider. Thus, if one prefers, one can

think about specifying weights for different tests, rather than

specifying a prior on c. For example, performing only the full

multivariate test, which corresponds to the partition with all

variables in D, corresponds to putting weight 1 on that partition,

and no weight on any other partitions. We use BFall to denote this

Bayes Factor:

BFall : ~BFcD
, ð10Þ

where cD is the partition with all variables in D. Also, performing

only the univariate tests corresponds, intuitively, to putting equal

weight (1/d) on the d partitions that correspond to each of the

univariate tests:

BFuni : ~(1=d)
Xd

j~1

BFc(j), ð11Þ

where c(j) denotes the partition corresponding to the univariate

test of variable j (j in D and all other variables in I ).

When viewed in this way the standard multivariate test and

univariate tests correspond to rather strong assumptions, since they

assign 0 weight to many partitions, and thus rule them out a priori.

In general it would seem preferable to avoid such restrictive

assumptions, and place at least some weight on all (or most)

partitions. On the other hand, equal weight on all non-null

partitions also has some unattractive properties: for example, for

moderate d , this would put almost no weight on models in which a

single variable is associated with g. One alternative for a ‘‘default’’

prior (where we have in mind a prior to be implemented in

software for general distribution) would be to place a uniform prior

on the number of variables associated with g (conditional on at

least one variable being associated). Specifically, if A~jDjzjI j,
then conditional on Aw0 we assume that A is uniform on 1 to d;

further, conditional on A we assume that jDj is uniform on 1 to A.

Finally, if the coordinates of Y are assumed to be exchangeable,

then given A and jDj all partitions c with that A and jDj are

equally likely, which yields

p(cjc=c0)~
1

d(jDjzjI j)
d

jU j

� �{1 jDjzjI j
jDj

� �{1

: ð12Þ

Under this prior, the expected value of A is (dz1)=2, and so by

symmetry the prior probability that any particular variable is

associated is (dz1)=2d , which equals approximately 1=2 for

moderate d . For larger values of d a prior that more heavily favors

smaller values of A might be more appropriate. If the coordinates

of Y are not exchangeable then this prior could be improved

upon. For example, if Y1, . . . ,Yd reflect temporally or spatially

ordered observations then it will typically be desirable to put more

weight on partitions in which consecutive variables fell into the

same category (e.g. Y1,Y2,Y3[U ; Y4,Y5,Y6[D would get more

prior weight than Y1,Y3,Y5[U ; Y2,Y4,Y6[D). In other cases there

may be physical relationships among the Y variables that affect

the prior on partitions. For example, if we are interested in height

and weight, it seems quite plausible that a genetic variant that

affects height would have a knock-on (indirect) effect on weight, but

substantially less plausible that a genetic variant affecting weight

would have a corresponding knock-on effect on height. However,

quantifying this kind of information may be difficult and tedious,

especially if d is large, and so even though such issues are relevant

in principle, it is undoubtedly easier, and perhaps generally not too

harmful, to ignore them in practice.

While any particular prior choice of weighting scheme is likely

to appear somewhat arbitrary, we view (12) as no more arbitrary

than – and, indeed, generally preferable to – limiting analyses to

either a single multivariate test or to the d univariate tests. This

said, where possible it would be preferable to take a more

hierarchical or ‘‘data driven’’ approach. For example, in genome-

wide association studies, provided sufficiently many associated

SNPs can be identified, we can ‘‘learn’’ about which phenotypes

tend to share genetic factors, and hence effectively learn an

appropriate prior for c (i.e. ‘‘Empirical Bayes’’). We illustrate this

in our data analysis below.

Multivariate normal phenotypes
In this section we describe a way to implement this framework

for the important special case where Y is multivariate normal

within each genotype class. We also formalize the mathematical

connection, in this special case, between Bayes Factors for each

partition, and standard likelihood ratio tests. This material is

necessarily more algebraic, and of most interest to those applying

these methods in practice, and to those interested in the formal

mathematical connections. Since this section does not introduce

any important new concepts, it could be skipped on a first reading

by those keen to see examples and results.

For multivariate normal outcomes we use Bayesian Multivariate

Regression (BMVR) [24–26] to specify the null distribution p0(Y )
and general alternative distribution p1(Y jg ). Our treatment here

owes much to helpful material in [18]; [27] also provides

particularly relevant background.

The standard multivariate regression model is

Y~XBzE ð13Þ

where Y (n|d) is a matrix of d outcome measurements (response

variables) on each of n individuals; X (n|p) is a matrix of p

covariates (explanatory variables) measured on the same individ-

uals; B(p|d) is a matrix of unknown regression coefficients

relating the outcomes to the covariates; and E(n|d) is a matrix of

error terms, whose rows we assume to be independent and

identically distributed as Nd (0,V ) for some unknown covariance

matrix V (d|d).

Bayesian multivariate regression requires specification of prior

distributions for the unknowns B and V . We use the conjugate

prior for (B,V ), which is not only computationally convenient,

but, as we will see later, leads to Bayesian procedures that have

some attractive properties and close connections with traditional

testing procedures such as MANOVA. Specifically, the conjugate

prior for (B,V ) is

V*W{1(Y,m) ð14Þ
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BjV*MNp|d (0,K{1,V ) ð15Þ

where W{1(Y,m) denotes the inverse Wishart distribution with

(inverse) scale matrix Y and degrees of freedom mwd{1; and

MNp|d (M,V1,V2) denotes the matrix normal distribution on

p|d matrices, with mean M, and covariance matrices V1 (p|p)

and V2 (d|d ).

For readers unfamiliar with the matrix normal distribution, note

that if K is a diagonal matrix, as we assume here, then the matrix

normal prior (15) for BjV reduces to independent multivariate

normal priors on the rows of B, each having covariance matrix a

scaled version of V , the covariance of the Y s. Specifically, if K is

the diagonal matrix with diagonal elements k11, . . . ,kpp then the

prior on the jth row of B is N(0,k{1
jj V ).

Use of this prior has been criticized on the grounds that it

imposes overly-restrictive constraints on the prior covariance of B

(see [26], p253, who cites [28]). However, in the absence of specific

prior information to the contrary, this relationship may be

appropriate. For example, consider a situation where two outcome

variables Y1 and Y2 are positively correlated with one another.

Then, the above prior implies that any genetic variant that

increases Y1 is more likely to increase (rather than decrease) Y2;

and that conversely any variant that decreases Y1 is more likely to

decrease (rather than increase) Y2. Note that all possible

combinations of increase/decrease are possible, but some are

considered a priori more likely than others.

Using these priors the marginal likelihood for Y ,

p(Y jX ,K ,Y,m), can be computed analytically (see, for example,

[18], equation (52)). Specifically,

p(Y jX ,K,Y ,m)~
Cd (nzm)

Cd (m)

jK jd=2

jX 0XzK jd=2

jY jm=2

pnd=2jRSS(Y jX ,K)zYj(nzm)=2
ð16Þ

where Cd (n)~pd(d{1)=4Pd
i~1C((nz1{i)=2) is the multivariate

Gamma function, and

RSS(Y jX ,K)~Y 0Y{Y 0X (X 0XzK){1X 0Y ð17Þ

is a Bayesian analogue of the residual sums of squares matrix.

The distribution (16) for Y is a matrix-t distribution [29–31].

Here we will denote this distribution by

Y*BMVR(X ; K,Y,m) ð18Þ

to emphasize that it arises from performing a Bayesian MultiVar-

iate Regression of Y on X .

Specification of p0 and p1. We now specify the two key

distributions, p0 and p1, from which all pc will be derived (via

equation (4)). We take the global null model p0 to be BMVR on an

intercept alone, and the full alternative model p1 to be BMVR on

an intercept and g:

p0 : Y*BMVR(½1 �; K0,Y,m) ð19Þ

p1 : Y j g*BMVR(½1, g�; K1,Y,m): ð20Þ

Here K0~s{2
m and

K1~
s{2

m 0

0 s{2
a

 !
, ð21Þ

where sm and sa are hyperparameters that control the variance of

the prior distributions on, respectively, the intercept parameters

and the effect size parameters associated with g.

With these choices of p0,p1, the Bayes Factor for partition c,

given by (7), has a particularly intuitive form. Indeed, due to

special properties of the priors assumed for the BMVR, both the

numerator and the denominator of this expression are also

BMVRs. Specifically, from Proposition S.4.1, in Section S.4.2 of

Supplementary Information S1,

YDjYU ,g*BMVR(½1,YU ,g �; ~KKU ,YD,m{dzjU jzjDj) ð22Þ

YDjYU*BMVR(½1,YU �; KU ,YD,m{dzjU jzjDj) ð23Þ

where we have assumed for simplicity that Y is diagonal, and

where YD denotes the submatrix of Y corresponding to

coordinates in D, KU~diag(s{2
m ,YU ), and

~KKU~diag(s{2
m ,YU ,s{2

a ). Since BFc is the Bayes Factor for

comparing model (22) with (23), it is, in a precise sense, the BF for

comparing a model in which YD is a regression on both YU and g
against a model in which YD is a regression on YU alone. Further

a simple analytic expression for BFc is easily obtained by taking

the ratio of (22) and (23), each of which has an analytic expression

of the form (16).

A limiting prior for the hyperparameters, and

connections with likelihood ratio tests. The Bayes Factor

BFc depends on hyperparameters Y,m,sm, and sa. Here, and for

the remainder of the paper, we consider the limits sm??, Y?0

(although in some settings other priors may be preferable; see

Practical Issues, below, for discussion). The resulting Bayes

Factors, which we denote BF?
c , have very close connections with

standard frequentist tests based on ordinary multivariate regres-

sion models, as we now discuss.

In the limits sm??, Y?0 the Bayes Factor BFc tends to

BF?
c : ~ s{2

a

jX 00X0j
jX 01X1zdiag(0, s{2

a )j

� �jDj=2
jRSS(YD jX0, KU )j
jRSS(YD jX1, ~KKU )j

� �(nzm{dzjU jzjDj)=2

, ð24Þ

where X0 : ~½1,YU �, X1 : ~½1,YU ,g �, and diag(0,s{2
a ) is the jU jz2|jU jz2 matrix with

s{2
a at position (jU jz2,jU jz2) and zeros elsewhere.

To state the relationship between BF?
c and traditional tests, let

L(YD*g jYU ) denote the standard likelihood ratio statistic from a

normal regression-based test of whether YD is associated with g,

controlling for YU . That is,

L(YD*g jYU )~

maxm,a,V ,b
m,a,V ,b

p(YDjm,a,V ,b)

maxm,a,V p(YDjm,a,V ,b~0)
ð25Þ

where p(YDjm,a,V ,b) is given by the normal multivariate

regression model

ð16Þ

ð24Þ

Association Analysis with Multiple Phenotypes

PLOS ONE | www.plosone.org 7 July 2013 | Volume 8 | Issue 7 | e65245



YDjm,a,V ,b~mzYU azm,a,V ,g bzE ð26Þ

with error terms E*NjDj(0,V ).

The following proposition and notes explore important prop-

erties of BF?
c , including its relationship with the likelihood ratio

statistic, and its invariance to measurement scale of the phenotype.

Proposition 1 The Bayes Factor BF?
c is related to the likelihood ratio

statistic Lc : ~L(YD*g jYU ) by

BF?
c ~(1{k)jDj=2(kL2=n

c z1{k)(nzm{dzjU jzjDj)=2 ð27Þ

with k~1=(1z(s2
a ~g 0~g ){1), where ~g denotes the vector of residuals from

OLS regression of g on YU (including an intercept).

A proof is provided in Supplementary Information S1 (Section

S.2).

Corollary 1 BF?
c enjoys the following properties: [a)]

a) BF?
c is invariant to invertible affine transformations of YD and/or

YU . That is, if A1 and A2 are any invertible jDj|jDj matrices, and

b1,b2 are any jDj-vectors (jDj|1 matrices) then BFc computed using

th e t rans f o rmed pheno t yp e s YD0 : ~YDA1z1b1 and

YU 0 : ~YU A2z1b2 is the same as using the original phenotypes

YD,YU (This follows from Proposition 1 because .L(YD* gjYU )
also enjoys this property.).

b) For any fixed g and sa, BF?
c is monotonically increasing with L (as

YD varies).

c) For fixed YD, if for each SNP g we use s2
a~c= ~g 0 ~g, for some fixed c,

then BF?
c will rank the SNPs in the same way as L.

Note 1. Property a) above implies that BF?
c is invariant to choice of

coordinate systems for YD and YU , and in particular to changing units of

measurement (e.g. measuring height in meters vs inches). As a special case,

consider the Bayes Factor BFall (10) for testing whether all the variables are

directly associated with g. Property a) implies that BFall is invariant to choice

of coordinate system for Y . Thus, in the settings illustrated in Figure 1, the

result of an association test would be unchanged by rotating the figures.

Property b). suggests a certain amount of robustness to choice of

sa. In addition, if we accept L as a reasonable measure of the association

information in the data, then b) also provides some level of general reassurance

that the priors being used to compute BF?
c do not overwhelm this information.

Some might say that the priors are ‘‘uninformative’’, or that they ‘‘allow the

data to speak’’

Property c) implies that, if the condition on sa holds, then ranking SNPs by

the pvalue from Lwould produce the same rankings as a Bayesian analysis

that assumes the stated limiting priors. Thus, this property gives the prior

assumptions that implicitly underlie traditional analyses, generalizing the

univariate result linking p values and Bayes Factors in [32]. In the special

case where YU is empty, g is simply the mean-centered genotypes, and so the

condition on sa becomes s2
a~c=

X
i
(gi{�gg)2. This condition, which is the

same as the condition in [32], corresponds to assuming that effect sizes of non-

null SNPs tend to be larger for rare SNPs (those with a low frequency of one

allele). Of course, within the Bayesian framework it is easy to make a different

assumption (e.g. that sais the same across SNPs) if one prefers. A further

connection between our Bayes Factor and the approximate Bayes Factor from

[32] is given in Note S.1.1 in Section S.1 of Supplementary Information S1.

Note 2. It is an elementary, although perhaps surprising, result (see [15]

for example) that L(YD*g jYU ) is equal to L(g *YDjYU ): that is, in a

normal regression setting, when testing for association between YD and g using

a likelihood ratio statistic, it does not matter which way around one does the

regression. Thus the above results also link the Bayes Factor with the test

statistics from the ‘‘reverse’’ regressions, L( g*YDjYU ).

Practical Issues
Prior on (Y,m). Proposition 1 above considers properties of

the Bayes Factors that arise in the limit sm??,Y?0. In our

applications below, which all involve relatively low-dimensional

phenotypes (dƒ5) we make use of this limiting Bayes Factor,

together with the limit m?d{1, which is the limit of a proper

prior (the inverse Wishart prior on V is proper for mwd{1). For

larger d we expect it will be preferable to use different priors,

particularly for Y,m which determine the prior on the error

variance-covariance matrix V . In low dimensions the data will be

highly informative about V , and we expect inferences to be

relatively robust to choice of Y,m. However, for higher dimensions

it is usually desirable to regularize estimates of covariance

matrices, and so a prior that effectively regularizes V seems likely

to be preferable. (At the simplest level, using Y~mI with mwd

will provide some regularization; more complex prior structures

that provide more sophisticated regularization may be more

preferable still.) We view the application of this framework to

higher dimensional data as a potential area for future research.

Prior on sa. Computing the Bayes Factors BFc also requires

specification of sa, which controls the expected size of the effect of

g on the elements of Y under Hall. This need to specify an effect

size parameter is shared with the corresponding univariate

analysis. In practice we usually average results over multiple

values of sa, which corresponds to assuming a discrete prior on sa.

By using a (possibly weighted) combination of smaller and larger

values of sa, we can allow the prior on effect sizes to be

concentrated on small values (small sa) whilst not ruling out the

possibility of large effects (large sa). In the univariate context this

averaging strategy provides a very flexible set of prior distributions.

However, in the multivariate context this prior is more restrictive

than one might like, because it assumes that the value of sa is

shared across all phenotypes. This effectively ties together the prior

on the effect sizes on the different phenotypes, and limits the prior

weight on a genetic variant having a large effect on some

phenotypes and small effects on others. Again, developing methods

that can deal with more flexible prior assumptions is a potential

area for future research.

In practice, the need to specify suitable values for sa is perhaps

the aspect of prior specification that most users will find hardest.

For practical guidance (in the univariate case, but which also

applies to multivariate analyses) see [33]. In our real-data

application below, we used the strongest observed associations to

help guide selection of suitable ‘‘data-driven’’ values of sa, and this

may also be a helpful general strategy.

Computation. In Supplementary Information S1 (Section

S.1) we give an algorithm, and R code implementing efficient

calculations of BF?
c for all partitions and all SNPs in a genome-

wide association study.

For modest values of d (and large n) the overall computational

burden of the multivariate analysis is not appreciably greater than

performing d univariate tests. One reason for this is that, as shown

in the Supplementary Information S1 (Section S.1, Lemma S.1.1),

BF?
c depends on Y and g only through the following summary

statistics:

Vxx : ~(1=n)g 0 g (a scalar) ð28Þ

Vyx : ~(1=n)Y 0g (a d vector) ð29Þ
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Vyy : ~(1=n)Y 0Y (a d|d matrix), ð30Þ

which need be computed only once for all partitions c. Computing

these summary statistics in a genome-wide association study

involving p SNPs on n individuals requires computation

O(npdznd2). Then, for each partition c, computing BF?
c for

all SNPs takes less than O(d3zpd) (there are matrix decompo-

sitions that are O(d3) that need to be performed only once, and

then the computations for each SNP are linear in d). Thus the

total computation for P partitions is O(npdznd2zd3zPpd),
and if Pvvn then this is dominated by the O(npd) term that also

applies to d univariate analyses.

Of course, the number of partitions P grows quickly with d

(P~3d{2d ), and for d greater than about 15 computing BF?
c for

all partitions will be impractical. In this case computational

approximation methods may help: for example, Markov chain

Monte Carlo could be used to sample from the posterior

distribution of c. However, for d of this size there may also be

statistical issues that need addressing to make these methods

suitable for routine application (e.g. choices of priors for V and c
may need revisiting, as discussed above).

Even for smaller values of d it may be tedious to compute all

partitions for a large number of SNPs in a genome-wide

association study. One strategy for reducing the computational

demands of a GWAS is to perform a two-step analysis, the first

step being a computationally quick heuristic to identify a list of

promising SNPs, and the second step being a more comprehensive

analysis of these promising SNPs. For example, in our application

below, we perform the first step using a simple multivariate test

and all d univariate tests. This corresponds to considering just

dz1 possible partitions, which is feasible even for large d. Then

we analyze promising SNPs in detail by considering all possible

partitions.

Missing data, and incomplete access to data. As noted

above, BF?
c depends on Y and g only through the summary

statistics (28)–(30). In many cases these summary statistics, or

approximations to them, can be readily computed even with

incomplete data – for example, if some phenotype data are

missing, or if the full phenotype and genotype data from the

original study are hard to obtain, which is often an issue in GWAS.

For example, the first two quantities can be approximated from an

estimate of the SNP minor allele frequency, f , and a d vector of

the usual effect size estimates b̂b:

Vxx&2f (1{f ) ð31Þ

Vyx&Vxxb̂b: ð32Þ

The third summary statistic, Vyy, estimates the covariance

matrix of the phenotypes, which can also be approximated in

various ways. In an application below (‘‘Global Lipids GWAS’’) we

show how an approximate analysis can also be performed using

only Z scores, an allele frequency estimate, and a sample size (n)

for each SNP.

If some phenotype data are missing, then the elements of both

Vyx and Vyy can be approximated using only those individuals for

which the relevant phenotypes are available. For example, the

elements of the vector b̂b can be computed separately for each

phenotype, using only the non-missing values; and similarly for the

elements of Vyy using pairs of phenotypes (e.g. using the cov

function in R with use = ‘‘pairwise.complete.obs’’). We expect

such approximations to be adequate, at least in settings where the

amount of missing data is modest, and the data are missing at

random. (Note that BF?
c depends on sample size n, which varies

among phenotypes if some phenotype data are missing; in this case

we suggest using the smallest value of n across phenotypes as the

value for n in the BF calculation.)

Results

Simulations
Simple bivariate simulations. To illustrate some key

points, we begin with simple bivariate simulations in which

phenotypes Y1,Y2 are associated, in varying ways, with SNP

genotypes g. Each simulation scenario is defined by three

parameters, (b1,b2,r), which denote, respectively, the genetic

effects on Y1 and Y2, and the correlation coefficient of the

residuals. Specifically, we simulated datasets of 1,000 individuals,

where for each individual i we simulated a genotype gi*
Binomial(2,p~0:2), and bivariate phenotypes (Yi1,Yi2)jg*N2

(mi,S), where mi~(b1gi,b2gi) and S~(
1 r
r 1

).

We fixed b2~0:2, and considered two different levels of

correlation (r~0:4,0:7) and b1~{0:1,0,b2r. These values of b1

correspond, respectively, to Y1 being Directly associated, Unas-

sociated, and Indirectly associated with g.

For each dataset we compared the Bayes Factors BFav,BFall

and BFuni (defined at (8), (10) and (11)) with one another, and with

a ‘‘reference’’ Bayes Factor which is the BF for the ‘‘true’’ partition

(which varies according to the simulation scenario). For example,

when b1~0 the reference BF is the BF for the partition in which

Y1[U and Y2[D. All BFs were computed with sa~0:1 (results are

qualitatively robust to this choice of sa).

Figures 3 and 4 show illustrative simulated datasets under each

scenario (panel a) and results of the BF comparisons (panel b). We

emphasize three features of the results. First, the ‘‘reference’’ BF is

generally as large, or larger, than the other BFs computed. This is

reassuring, as it indicates that the support for the ‘‘correct’’ model/

partition is generally as large or larger than support for other

models. Second, the BFs that correspond to multivariate tests

(BFav and BFall) are sometimes appreciably (orders of magnitude)

larger than the BF that corresponds to univariate tests (BFuni),

while the converse is not true. Thus, in the settings considered

here, the potential gain from performing multivariate
tests is much higher than any potential loss. Note also

that, as expected from previous discussions, the multivariate BFs

provide a stronger association signal than the univariate BFs even

when only one phenotype is associated with g (b1~0, middle

column). Finally, BFav and BFall generally do not vary greatly

from one another in these two dimensional examples; we would

expect the difference to be greater in higher dimensions, as

discussed below.

Five-dimensional power simulations. Next we performed

some conventional ‘‘power’’ simulations in scenarios involving

d~5 phenotypes. We simulated data under six different scenarios.

In the first two scenarios only one phenotype was associated with

g; in the next scenario all the phenotypes were associated with g,

but only one was directly associated; in the remainder multiple

phenotypes were directly associated with g. The six scenarios were

as follows:

Association Analysis with Multiple Phenotypes

PLOS ONE | www.plosone.org 9 July 2013 | Volume 8 | Issue 7 | e65245



N Independence: phenotypes were independent, one phenotype

associated with g.

N One variable directly associated, rest unassociated: Y1, . . . ,Y4

are independent of one another and of g; Y5 is correlated with

all four other phenotypes, and with g.

N One variable directly associated, rest indirectly associated: Y1

is associated with g; Y2, . . . Y5 are simulated by adding various

amounts of (independent) noise to Y1, and so are also

indirectly associated with g.

N Multivariate 1: a more complex scenario in which 2 variables

are directly associated with g, two are unassociated, and one is

indirectly associated. (Variables are correlated at varying

levels.)

N Multivariate 2: two variables are directly associated and the

rest are unassociated. (Variables are correlated at varying

levels.)

N Latent factor: a single latent factor is simulated that is

associated with g. Then Y1, . . . ,Y5 are simulated by adding

various amounts of noise to f . Under this scenario, all variables

are directly associated with g.

The code used to simulated each scenario is given in

Supplementary Information S1 (Section S.3).

For each scenario we simulated 10,000 ‘‘alternative’’ data sets

with a genotypic association and 10,000 null datasets with no

genotypic association (but with the covariance of the error terms

the same as under the alternative). Each dataset had n~500
individuals. For each test statistic, at any given rejection threshold,

we estimated the size (type I error rate) from the test statistic values

on the simulated null data, and the power from the test statistic

values on the simulated alternative data. Figure 5 plots power

against size for each test statistic.

In addition to the three BFs considered in the previous section

(BFav,BFall,BFuni) we also used as a test statistic the minimum p

value from the d univariate tests of association (from regressing Yj

on g); marked as ANOVA on the plot. This test statistic is highly

correlated with BFuni, as should be expected since both are based

on the d univariate association analyses. Note that, by Proposition

1, BFall produces identical results here to a standard multivariate

likelihood ratio test (and indeed to MANOVA, as implemented in

R).

As expected, different tests have better power in different

scenarios. We emphasize two general features of the results. First,

the relative performance of the tests is, reassuringly, as expected

from previous discussion. For example, the univariate tests are

more powerful when the true model is that one phenotype is

directly associated and the rest are indirectly associated, whereas

Figure 3. Comparison of Bayes Factors in simple bivariate simulations, correlation = 0.4. The upper panel shows a typical simulated
dataset under each of three scenarios (see text), but with effect sizes increased |5 to aid clarity; each dot represents a single individual, colored
according to genotype. Note that in the middle scenario only Y2 is associated with genotype. The lower panel compares BFall,BFuni and BFav with a
reference BF, which is the theoretical optimal for that simulation scenario. Thus one can see not only how the BFs compare with each other, but also
the extent to which they lose compared with the optimal. Each point represents the results from a single simulation, and each simulation is
represented by three points.
doi:10.1371/journal.pone.0065245.g003
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the multivariate tests are more powerful when one phenotype is

directly associated and the rest are unassociated. Second, in as

much as one can draw general conclusions from these results, it

seems that the multivariate tests tend to be more powerful than the

univariate tests. The clearest exception to this is the rather special

case where one variable is directly associated and the rest

indirectly associated, which was specifically chosen for inclusion

here because it is the case where the univariate test is optimal. In

addition, consistent with the bivariate simulations, the potential

increase in power of the multivariate test over univariate tests

tends to be greater than the potential gains of univariate tests over

multivariate tests.

Global Lipids GWAS data
To investigate the potential for multivariate association analysis

methods in practice, we applied the framework outlined here to

GWAS data from the Global Lipids consortium [34]. These data

comprise more than 100,000 individuals of European ancestry

(obtained from 46 separate studies), genotyped genome-wide on

large-scale SNP genotyping chips, and phenotyped for four blood

lipids phenotypes: total cholesterol (TC), low-density lipoprotein

cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C)

and triglycerides (TG). The original univariate association analyses

in [34] reported a total of 95 SNPs as being associated with one or

more of these phenotypes.

For these data we have access only to summary statistics, and

not the raw genotype and phenotype data. Specifically, for each of

the four phenotypes we have access to univariate Z scores from the

meta-analysis of [34]. Consequently, to apply our framework we

had to make approximations. These are described, together with

other details of the analysis, in Detailed Methods below. Since in

GWAS access to summary data is often substantially easier to

arrange than access to raw data, these methods for applying the

framework in this setting are practically very important.

Before conducting a genome-wide analysis, we first applied our

framework to the 95 associated SNPs identified in [34]. Rather

than specify subjective prior distributions for the partitions c and

effect size variance sa, we instead took an empirical Bayes

approach, estimating the relative frequency of different partitions

and effect sizes from the data. Specifically, we estimated weights

p(c) and p(sa) (for a grid of values of sa) by maximum likelihood

estimation. Because the 95 SNPs were selected to be the most

strongly associated SNPs, the estimates of sa will likely be biased

upwards. However, this data-driven approach seemed preferable

to fixed subjective specification of p(c) and p(sa). Given the

estimated weights, p̂p(c) and p̂p(sa), we computed the posterior

distribution on the partition c for each SNP. This allows us to

assess, for example, which SNPs are associated with which

phenotypes. See Detailed Methods for further details of the

methods used.

Our results suggest that most of the 95 SNPs are actually

associated with all four phenotypes. Indeed, p̂p(c) assigned a total

probability of 77% to models in which all four phenotypes were

associated (either directly or indirectly) with the SNP. Almost all

Figure 4. Comparison of Bayes Factors in simple bivariate simulations, correlation = 0.7. See caption to Figureô 3 for more details.
doi:10.1371/journal.pone.0065245.g004
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the remaining probability (21%) was assigned to models in which

three of the outcomes were associated (8%, 8% and 5% assigned

to models in which LDL, HDL and TG were unassociated

respectively, with effectively no weight assigned to models in which

TC was unassociated). Of the 95 SNPs, only 11 had w50%
probability of being unassociated with at least one trait (Table 1).

The individual model with greatest estimated probability (38%)

was the one with TC, TG and HDL directly associated, and LDL

indirectly associated. There followed a long tail of models assigned

modest weights; no other individual model had weight w8%. This

is, perhaps, unexpected: since LDL, HDL and TG are sub-

components of TC, one might have expected to see more weight

on models in which TC was indirectly associated. We speculate

that this result may reflect the fact that in these data, TC, TG and

HDL were directly measured, whereas LDL was usually computed

from the other measures by the Friedewald formula [35]. If this

explanation is correct, then it illustrates the potential for

measurement error to complicate the distinction between ‘‘direct’’

and ‘‘indirect’’ associations (see Discussion).

We next applied our framework genome-wide to attempt to

identify novel associations. For computational convenience we

took a two-stage approach, which first identified approximately

8,000 ‘‘promising’’ SNPs by applying simple univariate and

multivariate tests to every SNP, and then applied the full Bayesian

analysis (using priors p̂p(c) and p̂p(sa) from above) to these

promising SNPs. See Detailed Methods for details.

This analysis identified 18 novel independent associations (SNPs

more than 0.5Mb apart) with stronger evidence for association in

this analysis than the weakest of the 95 associations reported in

[34] ( log10 BFavw4:3). Representative associated SNPs, together

with near-by genes, are summarized in Table 2. Consistent with

the results above for previously-reported associations, most of these

SNPs were assigned high probability of being associated, either

directly or indirectly, with all four phenotypes. The one exception

was SNP rs17134533 in AKR1C4, which was judged most likely

(posterior probability 0.75) to be unassociated with LDL.

One of these associations involves a non-synonymous SNP in

ANXA9, which codes for the Annexin-A9 protein. The annexins

are a family of calcium-dependent phospholipid-binding proteins,

and studies in cows have associated variation in or near ANXA9

with milk-fat yield [36], making this a plausible functional variant

that affects lipid levels. More generally, many of the other

associations involve SNPs near or in genes that, based on external

Figure 5. Power comparison of different test statistics under different simulated (five dimensional) multivariate scenarios. Each line
shows the power vs size for a different test statistic; the univariate tests (BFuni and ANOVA) are indicated by dotted lines. See main text for details of
each simulation scenario and the test statistics compared.
doi:10.1371/journal.pone.0065245.g005

Association Analysis with Multiple Phenotypes

PLOS ONE | www.plosone.org 12 July 2013 | Volume 8 | Issue 7 | e65245



information, are very plausible candidates for harboring variants

that affect lipid levels. For example:

N NROB2 (small heterodimer partner) regulates metabolic

pathways, including hepatic bile acid, lipid, and glucose

homeostasis [37].

N STAB1 (also known as FEEL-1, and CLEVER-1) codes for the

protein stabilin-1 which acts as a scavenger receptor for

acetylated low density lipoprotein and oxidized LDL [38–40].

N VEGFA codes for the protein ‘‘Vascular endothelial growth

factor A’’, and variants near VEGFA have been implicated in

a range of clinical conditions, including diabetic retinopathy

[41–43] and age-related macular degeneration [44].

N AKR1C4 codes for the enzyme Aldo-keto reductase family 1

member C4, and plays a major role in bile acid biosynthesis

[45], which is a major pathway of cholesterol catabolism in

mammals.

N VIM codes for Vimentin, which assists in the transport of LDL

cholesterol from a lysosome to the site of esterification [46].

N ERLIN1 codes for the protein Erlin-1, which is a member of

the prohibitin family of proteins that define lipid-raft-like

domains of the endoplasmic reticulum [47]. SNPs near

ERLIN1 have previously been associated with plasma levels

of alanine-aminotransferase [48], an important liver enzyme.

N DGAT2 encodes one of two enzymes which catalyzes the final

reaction in the synthesis of triglycerides, and has been

implicated as a major target for the action of niacin in

regulating lipids [49,50].

Thus, although we can not be sure that all the associations in

Table 2 reflect true novel associations, both our analyses and these

external data suggest that many of them will indeed turn out to be

genuine.

Table 1. Table of genes from Global Lipids study [34], that, in
our analysis, are best classified as being unassociated with
one of the four lipid traits. (All other genes were best classified
as being associated with all four lipid traits).

Gene

Marginal
(univariate)

Unassociated Lipid
Trait Posterior

associated traits (multivariate) Probability

LPL TG:HDL LDL 0.99

MLXIPL TG:HDL LDL 0.98

LIPC HDL:TC:TG LDL 0.97

CAPN3 TG LDL 0.67

CILP2 TC:TG:LDL HDL 0.92

GCKR TG:TC HDL 0.92

HPR TC:LDL HDL 0.6

HNF4A HDL:TC TG 0.87

LIPG HDL:TC TG 0.84

LDLR LDL:TC TG 0.68

SORT1 LDL:TC TG 0.59

The univariate associations in column 2 are the phenotypes reported as being
associated with each SNP in the univariate analyses from [34]. The posterior
probability (column 4) shows the assessed probability that the listed trait
(column 3) is actually unassociated.
doi:10.1371/journal.pone.0065245.t001

Table 2. Putative novel associations identified by multivariate analysis of the Global Lipids Data.

snp chr pos MAF ZTG ZTC ZLDL ZHDL log10BFav Gene Annotation

rs12739698 1 27102620 0.083 3.3 3.4 4.6 25.1 7.2 NROB2 5’ up

rs267733 1 149225460 0.141 21.0 3.5 5.4 21.9 4.8 ANXA9 non-syn

rs10490632 2 118295555 0.082 0.8 4.7 5.4 22.0 5.1 DDX18 intronic

rs13326165 3 52507158 0.207 24.4 21.4 22.1 5.0 4.7 STAB1 intronic

rs762861 4 3411809 0.261 4.5 4.9 4.4 22.1 5.2 HGFAC/RGS12 5’ up/3’ down

rs998584 6 43865874 0.491 5.1 0.3 0.0 24.3 4.5 VEGFA 3’ down

rs6951245 7 1024719 0.156 2.0 5.4 3.6 3.3 5.4 C7ORF50 intronic

rs4722551 7 25958351 0.177 3.9 23.8 24.9 21.3 7.5 miR-148a NA

rs17134533 10 5237098 0.146 24.9 23.2 21.2 21.8 6.0 AKR1C4 intronic

rs10904908 10 17300296 0.432 21.6 24.9 23.4 23.6 4.6 VIM 5’ up

rs970548 10 45333283 0.246 0.0 23.8 22.1 25.2 5.4 MARCH8 intronic

rs1408579 10 101902184 0.47 2.6 3.2 0.8 3.9 4.8 ERLIN1 intronic

rs11246602 11 51368666 0.126 20.2 22.5 20.7 25.4 5.3 *

rs11229252 11 54886216 0.091 0.5 3.4 1.5 5.0 4.9 *

rs11227638 11 55776161 0.118 20.6 22.3 20.4 25.0 4.8 *

rs499974 11 75132669 0.175 22.1 22.4 0.3 24.1 4.4 DGAT2 5’ up

rs4942505 13 31861707 0.476 21.3 24.5 25.3 3.1 5.8 BRCA2 intronic

rs10422101 19 57011927 0.265 1.0 23.6 22.4 25.4 5.6 FPR3 intronic

All these SNPs have log10 (BFav)w4:3, and are more than 0.5Mb from any SNP identified in [34]. (*) These three SNPs map to a region of complex structure on
chromosome 11 containing a large number of olfactory receptors, and are in LD with one another despite mapping w0:5 Mb apart (possibly reflecting mapping errors).
doi:10.1371/journal.pone.0065245.t002
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Discussion

We have introduced a framework for association analysis of

multiple related phenotypes. This framework unifies such analyses

in two ways: it includes standard univariate and standard

multivariate tests, as well as many other types of test one might

consider, as special cases; and it unifies the problems of testing for

and interpreting associations. Our applications to both real and

simulated data suggest that the potential gains in power from

multivariate association analyses outweigh the losses in power that

can result in specific situations where univariate analyses are most

powerful. In addition we emphasized that the settings in which

multivariate analyses have increased power can be counter-

intuitive: in particular they have power advantages when only one

of the phenotypes is associated with genotype, a setting that might

naively have been expected to favor the univariate analysis.

Although our framework makes extensive use of Bayesian

statistics, we emphasize also its intuitive appeal. In particular, it

captures three intuitive principles illustrated in scenarios 1a-c

above: i) variables that are unassociated with g should be

controlled for when assessing whether other variables are

associated with g (Figure 1a); ii) variables that are directly

associated with g should be treated as a joint multivariate response

(Figure 1b); and iii) variables that are only indirectly associated

with g through other measured variables provide effectively no

additional information for assessing the global null (as in 1c for

example). Of course, we do not know a priori which of the three

categories each variable falls into, and so we try all possibilities,

weighting each analysis by how well it explains the observed data.

In essence the method conducts an exhaustive search for subsets of

variables that are highly associated with g after suitably controlling

for other relevant variables, much as a tenacious practitioner

might proceed in a more manual analysis. Besides the convenience

of being automatic, our Bayesian method also has the advantage

that where the ‘‘correct’’ analysis is ambiguous, and many different

analyses seem equally consistent with the data, conclusions from

these analyses can be combined in a rigorous way. This is

important because, with the kinds of subtle effects that are

common in genetic association studies, exactly which subset of

variables are associated with g may be impossible to confidently

identify; and yet it may be possible to confidently conclude that

certain variables are associated with g, whilst being unsure about

others.

Connections with other work
The field of multivariate statistics is so vast that there are

inevitably numerous close connections between our work here and

previous work. Here we highlight connections with two particular

subfields of multivariate analysis: Directed Acyclic Graphical

models (DAGs), and Seemingly Unrelated Regressions (SUR).

Connections with Directed Acyclic Graphical

Models. Our framework has close connections with Bayesian

Directed Acyclic Graphical (DAG) models, particularly for

Gaussian data. The main different from typical application of

DAGs is that here we focus narrowly on the relationship between

one variable (g) and the remaining variables (Y ), rather than

placing equal emphasis on the dependancies and conditional

independencies among all variables. This narrower focus helps to

simplify both computation and interpretation of results. Further-

more, special properties of g (treatment of g as a randomized

intervention) constrains the set of graphical models we consider,

disallowing models in which arrows come into g.

To establish the connection with DAGs more precisely, note

that, for Gaussian data, our null model (equations (13) and (14),

with B~0) corresponds to a standard Bayesian DAG model for

Gaussian Y s where the graph connecting the Y variables is

complete: that is, there are edges between all pairs of Y variables,

and therefore no conditional independence assumptions are

imposed on the Y variables. There are many different possible

complete DAGs, depending on how one orients the arrows

between each pair of variables (the only constraint being that the

graph must be acyclic, that is contains no cycles). However, with

the inverse Wishart prior, all complete DAGs imply the same

probability model [22].

Similarly, the model pc also corresponds to a DAG where the Y

variables are related by a complete graph, but now there are

arrows from g going to each variable in YD, and the directions of

the arrows among the Y variables are further constrained so that

no arrows go from variables in YI into variables in YU or YD, and

no arrows go from variables in YD to variables in YU . These

constraints ensure that the graph is consistent with the factoriza-

tion (4).

Note that under each model pc the graph connecting the Y s is

complete. To some extent we make this assumption for simplicity:

in this particular application the covariance structure of the Y s is a

nuisance parameter, about which we care little if at all, and so we

are happy not to model it too carefully if we can avoid it. Further,

in our current work we are motivated primarily by situations

where the dimensionality d is small compared with n, where

intuitively there should be plenty of information about the

covariance matrix of Y , and perhaps little benefit to putting

structured priors on this covariance. Indeed, one could argue

against more structured models, on the basis that we might want

the allocation of variables into groups (U ,D,I) to be driven

primarily by the relationship of these variables with g, and not

with one another. However, in some cases there may be benefits to

incorporating structure into the Y s, particularly if d is large (e.g. if

the response were expression measures of thousands of genes).

Connections with Seemingly Unrelated

Regressions. Our work also has close connections with work

on Bayesian variable selection in Seemingly Unrelated Regressions

(SURs). Seemingly Unrelated Regressions were introduced by [51]

as a generalization of standard multivariate regression in which

each component of a multivariate outcome may be associated with

different explanatory variables. Previous papers that consider

Bayesian approaches to selecting explanatory variables associated

with each component of the outcome include [52], [53] and, in a

genetics context, [2] and [3]. Formally, in the rather special case of

a single explanatory variable, variable selection in the SUR model is

effectively the same as the problem we consider here. However,

despite this formal relationship, the aforementioned papers have a

very different focus from ours, and – perhaps partly as a result –

make use of methods and priors that differ in several details from

those presented here. For example, none of them encompasses the

concept that some response coordinates may be indirectly associated

with an explanatory variable; that is, effectively they consider only

our categories U and D, and not I . As a result, unlike the

framework considered here, they do not include standard

univariate analyses as a special case.

Given these connections it is natural to consider extending our

framework to simultaneously assess associations with multiple

SNPs/covariates. The connection with DAGs might suggest

building a single DAG (equivalence class) relating the Ys with

multiple gs. However, this approach is unattractive because

requiring the Y s to have a single DAG structure, shared across all

Xs, would unnecessarily constrain the permitted relationships

among variables. For example, it would not allow both

X1?Y1?Y2 and X2?Y2?Y1 (because the arrows between the
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Y variables are in opposite directions in each case) but this could

be a plausible set of relationships (e.g. if there were feedback in the

molecular mechanisms relating Y1 and Y2). An alternative

approach would be to recognize that in our approach each

submodel c corresponds to a particular prior distribution on b
given V , pc(bjV ), and so an extension to multiple X variables

could be made by introducing a model indicator cj~(Uj ,Dj ,Ij) for

each variable j, and then assuming that, given c~(c1, . . . ,cp) the

rows of b are independent with bj*pcj
(:jV ). It seems that it

should be possible to fit a model along these lines using a Gibbs

sampler that at each step updates each row of b conditional on the

other rows, as in [3]. However, in this approach the interpretation

of the conditional independencies implied by cj would seem to be

complicated by the fact that they would be conditional on the

(unknown) values of b at all SNPs.

Practical Issues, Critiques, and Areas for further work
We have tried to make our framework as simple and ‘‘clean’’ as

possible. Inevitably, when applying it to real data, complications

arise, and the veneer of cleanliness starts to be chipped away. For

example, in our analysis of the Global Lipids data, the most

common partition (TC, TG and HDL being directly associated,

LDL being indirectly associated) seems likely to reflect the

phenotype measurement protocol rather than interesting biology.

Here we attempt to anticipate issues that may arise when applying

the framework in practice; in some cases we have partial answers

or suggestions for how to approach these issues, but in many cases

further work may be required.

Beyond multivariate-normal distributions. Perhaps the

biggest limitation of our work is that, although the conceptual

framework (Section ‘‘A unified framework’’) is quite general, we

provided a practical implementation only for the special case of

multivariate normal phenotypes. Furthermore, implementing the

framework for other phenotype distributions may prove challeng-

ing. One possible approach would be to define p1 for non-normal

phenotypes by applying a link function to a latent multivariate

normal distributed variable. For example, one could deal with

binary phenotypes Z by assuming that Zj~I(Yjw0), where Y is

multivariate normal with p1(Y j g) and p0(Y j g) as given here.

However, computation of p1(Zj g), or more generally

p1(ZDjZU ,g ), will require the development of efficient approxi-

mations to the necessary integrals, which may well not be

straightforward.

Another limitation of our work, is that the effect of genotype is

assumed to affect only the mean, and not the variances or

covariances, of the phenotypes. This assumption also underlies

most univariate analysis approaches to genetic association studies,

but it is conceivable that some genetic variants (or other variable)

could affect phenotype (co)variances instead of, or in addition to,

the mean. This represents another potential avenue for future

methods development.

A slightly easier, although still potentially tricky, issue, is how to

deal with phenotypes that are approximately, but not exactly,

multivariate normal. [The methods here actually require only that

the likelihood for B in (13) be approximately multivariate normal,

which is weaker than requiring the residuals E be multivariate

normal. Nonetheless, deviations from this assumption remain a

potential concern.] In univariate association analyses, we routinely

transform quantitative phenotypes to a standard normal distribu-

tion (via a rank-quantile transformation), and compute association

test statistics or Bayes Factors on the transformed phenotypes. This

procedure avoids sensitivity to outlying phenotype values, because

it ensures that, under the null, the normal modeling assumptions

are met. For multivariate analysis, we recommend this transfor-

mation also be applied to quantitative phenotypes before applying

the methods here. However, compared with univariate analyses,

additional care will still be needed, because transforming each

phenotype to be univariate normal does not guarantee that,

jointly, the phenotypes are multivariate normal – not even

approximately. Furthermore, problems with outliers can be more

extreme in multivariate settings. For example, a 20 year-old adult

male who is 180 cm tall, and weighs 60 kg, is towards the tails of

the distribution in each of height and weight in the USA, but is a

much stronger outlier when the two measurements are considered

together. This phenomenon can be particularly acute when

dealing with strongly correlated phenotypes. Because of this, it

may be prudent to check sensitivity of results to the inclusion/

exclusion of individuals with the most outlying phenotypes in

multivariate space (e.g. those with a large Mahalanobis distances

from the mean). Undoubtedly there must be other relevant work

on this issue, since robustness to deviations from multivariate

normality is relevant also to classical multivariate analyses;

however, in a brief literature search we did not find a single

widely-adopted solution. In the longer term, a potential alternative

to these transformation and outlier-detection based methods

would be to modify the normal likelihood assumption to allow

for longer tailed distributions such as the t distribution; see, for

example, [54] and [55].

Choice of coordinate system for Y . As shown in Corollary

1 above, the Bayes Factor BF?
all, like the standard likelihood ratio

test, is invariant to affine transformations of Y . In other words,

choice of coordinate system does not affect these simple

multivariate tests. In contrast, BF?
av, which averages over

partitions c, is not so invariant. Indeed, averaging over c is

predicated on the assumption that the coordinate axes have special

meaning, since each c corresponds to an assumption that some

coordinates of Y may be associated with g while others are not.

As a result, before computing BF?
av, or considering appropriate

priors for c, it seems prudent to at least briefly consider choice of

appropriate coordinate system. For example, if analyzing height

and weight two possible natural parameterizations would be i)

log(height) and log(weight), or ii) log(height) and log(BMI) where

BMI~weight=height2. The choice of parameterization affects

which models will be naturally included within the partitioning

framework outlined here. For example, using i) the framework

would include a model where g is associated with height but not

weight, whereas ii) would not. One might choose between

parameterizations based on this consideration. It would also be

possible to consider both parameterizations: because i) and ii) are

simply affine transformations of one another the BFs computed

from i) and ii) effectively both involve the same null hypothesis in

the denominator, and so are directly comparable with one

another. This idea was used in [56], in the context of treated

and untreated measures of the same phenotype (T and U ): for

example, using Y~(T ,U) allows for models in which T is

associated with g and U is not, whereas using Y 0~(TzU ,T{U)
allows for models in which TzU is associated with g but T{U is

not (i.e. g has the same effect on both T and U ). See [56] for more

details.

Use of PCA for dimension reduction. Another issue related

to choice of coordinate system is the possible use of principal

components analysis (PCA) on the phenotypes Y before associ-

ation analysis. Since the PCs are an affine transformation of Y ,

computing BF?
all (or a standard multivariate likelihood ratio test)

using all the PCs will be equivalent to using the original Y .

However, computing BFs assessing whether g is associated with

subsets of the PCs (e.g. just one PC) is different than assessing
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whether g is associated with subsets of the original variables.

Whether working with PCs (or combinations of variables obtained

by other dimension reduction techniques), is preferable to working

with the original variables, will be context specific. In particular,

dimension reduction methods may be helpful when analyzing

highly structured systems where the phenotypes reflect a small

number of underlying physical factors (where small is relative to

the number of phenotypes, d). For example, if the components of

Y are independent noisy measurements of effectively a single

underlying phenotype then the first PC may capture that

phenotype effectively, and a univariate test of that PC could be

more powerful to detect genotypes associated with that phenotype

than a multivariate test of Y . More speculatively, in systems with

large numbers of variables, but where the first few PCs capture

most of the observed variation, then a multivariate test (BF?
all)

involving the first few PCs may be an effective way to identify

associations. However, unless individual PCs are interpretable

(which is often not the case; e.g. [57]) considering partitions c of

the PCs may not add much to the analysis. Furthermore, if

individual PCs are not easily interpretable then interpreting

associations found using PCA may be difficult, especially if

examining effect size estimates on the original variables does not

yield obvious insights.

Interpretation of Partitions, and Latent Factors. We

have used the terms ‘‘directly associated’’ and ‘‘indirectly

associated’’ to refer to variables obeying certain conditional

independencies with genotype g. While these terms have value

as convenient shorthands that evoke the kinds of relationships

between Y and g that we might like to infer, we note that in

practice there are many reasons to be cautious in interpreting

these labels. In particular, it is important to remember that the

terms ‘‘direct’’ and ‘‘indirect’’ refer to statistical relationships –

specifically, conditional independencies – and not to molecular

interactions. Furthermore, conditional dependencies among var-

iables can be affected by the (almost inevitable) presence of

unmeasured factors and/or measurement error. Because of this, a

variable could be inferred to be ‘‘directly’’ associated with g, even

if in the causal pathway the effect of g is actually ‘‘indirect’’. See

Figure 6 for examples illustrating some of these issues.

In addition to these interpretational challenges, another

difficulty that arises in practice is that data will often be relatively

uninformative about which of the three categories (U ,D,I) each

variable belongs to (even though, in theory, as n??, Bayes

Factors are consistent for selecting the correct model). For

example, it is challenging to find data that are entirely convincing

that a particular variable is in U : an estimated effect near to 0 is

not sufficient, as (with realistic sample sizes) it is difficult to rule out

a small non-zero effect. (The same phenomenon occurs in

univariate analysis: it is hard to obtain data that strongly favor

the null of no association.) For similar reasons it is unusual for data

to be strongly informative that an associated variable is in I : any

data that are consistent with the necessary conditional indepen-

dence, will also be consistent with a small conditional dependence.

Another type of inferential difficulty that can arise is if two

variables are highly correlated with one another, and both are

associated with g: in such cases the data may be consistent, for

example, with one variable being in D and the other in I , without

being informative for which is which.

In contrast to the difficulty of being confident that a variable is

in either U or I , it is possible to obtain data that strongly favor a

variable being in D: a strong association with g, that remains

strong when conditioning on other variables, would suffice. Thus,

in practice, one tends to see, for each variable, either very strong

evidence for being in D, or considerable uncertainty for which

category it is in. Of course, these inferential difficulties reflect

fundamental limitations of association data, and not limitations of

the statistical inference framework.

Finally, a related objection to our framework is that models

involving ‘‘indirect’’ associations correspond to very precise

conditional independence assumptions that are almost certain to

be contravened in any real system. Putting positive weight on these

‘‘impossible’’ models seems counter-intuitive. Similar arguments

are sometimes advanced against the use of ‘‘point’’ null hypotheses

in settings where the null hypothesis is very unlikely to hold

precisely (e.g. when comparing two different drugs, it seems very

unlikely that they will have exactly no difference in effect). One

response to this criticism is that these models should be viewed as

capturing ‘‘approximate’’ conditional independences that exist in

the data. However, we admit that, conceptually, it might be more

satisfying to attempt to quantify the extent of the conditional

dependence, rather than testing whether or not it is equal to 0, as

we effectively do here.

Given these difficulties, the reader might be forgiven for

wondering whether the distinction between direct associations (D)

and indirect associations (I ) is worth bothering with. We believe it

is, if only because including I is what makes the framework include

the widely-used univariate tests as a special case. Furthermore, if

desired one can always focus inference on events that do not make

the distinction, such as the event that Yi is associated with g,

whose probability is Pr (i[D|I) (as in our Global Lipids results,

for example).

When should variables be analyzed jointly?. A common

question put to us about these multivariate methods is whether

they are sensitive to the inclusion of additional irrelevant variables.

Our response is that additional variables that are correlated with the

primary variables will seldom be irrelevant in testing any given

SNP: either these additional variables will be unassociated with the

Figure 6. Illustration of potential complications in interpreting
direct and indirect effects. The three graphs a)-c) on the left
illustrate different hypothetical scenarios that could all lead to the
inference that both Y1 and Y2 are directly associated with g (illustrated
by the graph on the right). In each graph square nodes represent
observed quantities, and circular nodes represent unobserved quanti-
ties. In a) both Y1,Y2 are indirectly associated with g via an unmeasured
factor, F . In b) Y1 and Y2 are noisy observations of underlying variables
Z1 and Z2 , where Z2 is associated indirectly by via Z1 . In c) Y2 is
associated with g indirectly via Y1 , and an unmeasured factor F affects
both of them. In all three cases both Y1 and Y2 are associated with g,
and, further, due to the existence of unmeasured variables, Y2 is
conditionally dependent on g given Y1 , leading to the inference (right)
that both Y1 and Y2 are ‘‘directly’’ associated withg.
doi:10.1371/journal.pone.0065245.g006
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SNP, and so should be controlled for in testing the primary

variables, or they are associated with the SNP in which case it

would seem hard to argue that they are irrelevant.

Of course, if variables are both approximately uncorrelated with

one another, and also judged unlikely to share any common

genetic effects, then there is little to be gained in treating them

jointly. Further, the larger the number of variables included in the

analysis, the more careful one might need to be about specifying

priors on c and also Y, and so variables should not be included

willy-nilly.

Formalizing a hierarchical model. Our analysis of the

Global Lipids data took an informal Empirical-Bayes-like

approach to setting the prior distributions p(c) and p(sa). In

particular, this informal approach used a two stage process, first

identifying the strongest associations in the data, and then used

these to estimate p(c) and p(sa). Certainly this informal approach

could be improved upon. The most obvious improvement would

be to attempt to build a formal hierarchical model, and then

estimate p(c) and p(sa), as well as the proportion of nulls p0, from

all the data. However, this approach is not without its challenges,

including the challenge of properly coping with correlations

among SNPs (linkage disequilibrium). Perhaps a more fundamen-

tal issue is whether it might make more sense to build the

hierarchical model at the level of the effect sizes (b), rather than at

the level of the partitions/models (c). The point here is that our

framework, when implemented into a hierarchical model,

encourages the lumping together of SNPs with very different

effects. For example, in our example of associating SNPs with

(height,weight), the class of SNPs that have a direct effect on both

could include SNPs where one allele increases both height and

weight, as well as SNPs where one allele decreases height but

increases weight. These SNPs seem qualitatively different, and, in

the context of hierarchal modeling, treating them as coming from

the same ‘‘model’’ seems unnatural. We see the development of

hierarchical modeling methods at the level of the effect sizes b as a

potentially interesting area for future work.

Detailed Methods (Global Lipids Analysis)
We downloaded the tables of summary results of the large meta-

analysis of Triglycerides, Total Cholesterol, LDL-C and HDL-C

(TC2010.zip, HDL2010.zip, LDL2010.zip, TG2010.zip) from

http://www.sph.umich.edu/csg/abecasis/public/lipids2010/.

These tables include a combined Z statistic (computed from all

available individuals contributing to the meta-analysis at that SNP,

and corrected for population stratification by Genomic Control

[58]), Zj , and a sample size nj for each SNP j. We also obtained a

file of additional information on each SNP from X. Wen (personal

communication) that included an estimate of the minor allele

frequency for each SNP (from the studies that contributed to the

meta-analysis when available; using data from the 1000G project

when this was not available). Because of different protocols in each

study, the Z statistics are based on different sample sizes, for each

SNP and each phenotype. We defined a single sample size, n, for

each SNP, as the minimum of these sample sizes across the four

phenotypes. We excluded from our analysis SNPs with nv50,000.

The Bayes Factors depend on the matrix of phenotype

correlations, Vyy. Since we did not have access to the phenotype

correlations in each study (and in any case, the analysis would be

complicated by the fact that these correlations may differ across

studies) we took the following approach to obtain an approximate

value for Vyy. Under the null hypothesis, the correlation of the Z

statistics, V0, is equal to the correlation of the phenotypes Vyy. To

approximate V0 (and hence Vyy) we first identified a set of putative

null SNPs, by taking all SNPs with jZjkjv2 for all four phenotypes

k~1,2,3,4. Let p0 denote the number of such SNPs and Z0

denote the resulting p0 by d matrix. We estimated V0 by the d|d

correlation matrix, V̂V0~(1=p0)Z00Z0.

In our genome scan, to reduce computation, we first used simple

multivariate and univariate tests to identify a set of ‘‘promising’’

SNPs on which to perform a full Bayesian association analysis.

Specifically, for each SNP j we computed a multivariate test

statistic, T2
j ~ZjV

{1
0 Zj , and a corresponding p value based on the

assumption that, under the null, T2
j will have a chi-squared

distribution on 4 degrees of freedom (df). We also computed a

univariate p value for each trait, by comparing Z2
jd with a chi-

squared distribution on 1 df. We marked a SNP as ‘‘promising’’ if

any of its univariate p values, or its multivariate p value was

v10{6. In total 8 065 SNPs met this criteria.

Next, for all 8 065 promising SNPs, we computed Bayes Factors

for all partitions c. In Supplementary Information S1 (Section S.1)

we give an algorithm for computing the Bayes Factors using the

summary statistic matrices Vxx, Vyx and Vyy. To apply this

algorithm to these data, where we do not have direct access to

these matrices, we approximated these matrices from the Z scores,

sample size n, and minor allele frequency f as follows.

Vxx&2f (1{f ) ð33Þ

Vyx&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f (1{f )=n

p
Z ð34Þ

Vyy&V̂V0 ð35Þ

The first of these comes from the fact that Vxx is a vector of

genotype variances, and the expected genotype variance, under

Hardy Weinberg equilibrium, is 2f (1{f ). The second of these

comes from the fact that b̂b~(X 0X ){1X 0Y and

se(b)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(X 0X ){1

q
so Z~b̂b=se(b)~(X 0X ){1=2X 0Y or, rearrang-

ing, X 0Y~(X 0X )1=2Z.

We took an ‘‘Empirical Bayes’’ approach to obtain joint prior

probabilities for the partition c and effect size variance s2
a for

associated SNPs. Specifically, for each of the 95 SNPs reported as

being associated with lipids in [34] we computed BFc(s2
a) for all

66 possible values of c, and on a discrete grid of values for s2
a,

s2
a[f0:005,0:0075,0:01,0:015,0:02,0:03,0:04,0:05,0:06,0:07,0:08,

0:09,0:1,0:15g:
We then estimated the prior probability of each combination,

p(c,s2
a(j)), by maximizing the likelihood

L : ~P
95

i~1

X
c,j

p(c,s2
a(j))BF(i)

c (s2
a(j)), ð36Þ

where j indexes the different grid values for s2
a and i indexes the 95

SNPs. We maximized the likelihood using an EM algorithm; four

independent runs of the algorithm from different starting points

produced essentially identical results. Because the 95 SNPs used in

this estimation procedure are biased towards the most strongly

associated SNPs, we expect the resulting estimates of s2
a to be

biased upwards. However, this simple data-driven approach

seemed preferable to simply picking values for these prior

parameters more arbitrarily.
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The associations reported in Table 2 were identified by first

ranking SNPs by their Bayes Factor for association (BFav), and

then removing multiple associations that were likely due to LD by

eliminating any SNP that was within 0.5Mb of a higher-ranked

SNP. We also removed a SNP (rs2746150) on chromosome 6,

which we judged likely a secondary association due to LD with

previously-reported associations in the MHC region. We anno-

tated the remaining SNPs with respect to near-by genes using

SNPnexus http://www.snp-nexus.org/ [59,60] and by manual

inspection in the ENSEMBL browser www.ensembl.org.

Supporting Information

Supplementary Information S1

(PDF)
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chromosome 11, and to Gonçalo Abecasis for pointing out that, under the

null, the correlations of the Z statistics are equal to the correlations of the

phenotypes. Statistical analyses were conducted in the R programming

language [61], Figures produced using the ggplot2 package [62], and text

prepared using LATEX.

Author Contributions

Conceived and designed the experiments: MS. Performed the experiments:

MS. Analyzed the data: MS. Contributed reagents/materials/analysis

tools: MS. Wrote the paper: MS.

References

1. Willer C, Sanna S, Jackson A, Scuteri A, Bonnycastle L, et al. (2008) Newly

identified loci that inuence lipid concentrations and risk of coronary artery

disease. Nature genetics 40: 161–169.

2. Verzilli CJ, Stallard N, Whittaker JC (2005) Bayesian modelling of multivariate

quantitative traits using seemingly unrelated regressions. Genet Epidemiol 28:

313–25.

3. Banerjee S, Yandell BS, Yi N (2008) Bayesian quantitative trait loci mapping for

multiple traits. Genetics 179: 2275–89.

4. Kim S, Sohn KA, Xing EP (2009) A multivariate regression approach to

association analysis of a quantitative trait network. Bioinformatics 25: i204–12.

5. Kim S, Xing EP (2009) Statistical estimation of correlated genome associations

to a quantitative trait network. PLoS Genet 5: e1000587.

6. Baker AR, Goodloe RJ, Larkin EK, Baechle DJ, Song YE, et al. (2009)

Multivariate association analysis of the components of metabolic syndrome from

the framingham heart study. BMC Proc 3 Suppl 7: S42.

7. Zhang L, Pei YF, Li J, Papasian CJ, Deng HW (2009) Univariate/multivariate

genome-wide association scans using data from families and unrelated samples.

PLoS One 4: e6502.

8. Ferreira MAR, Purcell SM (2009) A multivariate test of association.

Bioinformatics 25: 132–3.

9. Petretto E, Bottolo L, Langley SR, Heinig M, McDermott-Roe C, et al. (2010)

New insights into the genetic control of gene expression using a Bayesian multi-

tissue approach. PLoS Comput Biol 6: e1000737.

10. O’Reilly PF, Hoggart CJ, Pomyen Y, Calboli FCF, Elliott P, et al. (2012)

Multiphen: Joint model of multiple phenotypes can increase discovery in gwas.

PLoS One 7: e34861.

11. Shriner D (2012) Moving toward system genetics through multiple trait analysis

in genome-wide association studies. Front Genet 3: 1.

12. Yang Q, Wang Y (2012) Methods for analyzing multivariate phenotypes in

genetic association studies. Journal of Probability and Statistics 2012.

13. Hoggart CJ, Whittaker JC, De Iorio M, Balding DJ (2008) Simultaneous analysis

of all snps in genome-wide and re-sequencing association studies. PLoS Genet 4:

e1000130.

14. Guan Y, Stephens M (2011) Bayesian variable selection regression for genome-

wide association studies and other large-scale problems. Annals of Applied

Statistics 5: 1780–1815.

15. Anderson TW (1984) An Introduction to Multivariate Statistical Analysis. New

York: John Wiley and Son, second edition.

16. Huberty C, Morris J (1989) Multivariate analysis versus multiple univariate

analyses. Journal of Counseling Psychology 33: 15.

17. Tiao G, Zellner A (1964) On the Bayesian estimation of multivariate regression.

Journal of the Royal Statistical Society Series B (Methodological) : 277–285.

18. Minka T (1999) Bayesian linear regression. Unpublished manuscript. Available:

http: //research.microsoft.com/en-us/um/people/minka/papers/linear.html.

Accessed 2013 June 3.

19. Lauritzen S (1996) Graphical models, volume 17. Oxford University Press, USA.

20. Davey Smith G, Ebrahim S (2003) ’Mendelian randomization’: can genetic

epidemiology contribute to understanding environmental determinants of

disease? International Journal of Epidemiology 32: 1.

21. Spirtes P, Glymour C, Scheines R (2000) Causation, prediction, and search,

volume 81. The MIT Press.

22. Geiger D, Heckerman D (2002) Parameter priors for directed acyclic graphical

models and the characterization of several probability distributions. Annals of

statistics 30: 1412–1440.

23. Neyman J, Pearson E (1933) On the problem of the most efficient tests of
statistical hypotheses. Philosophical Transactions of the Royal Society of London

Series A, Containing Papers of a Mathematical or Physical Character 231: 289.

24. Tiao G, Zellner A (1964) On the Bayesian estimation of multivariate regression.
Journal of the Royal Statistical Society Series B (Methodological) 26: 277–285.

25. Box G, Tiao G (1973) Bayesian inference in statistical inference. Wiley & Sons,

New York.

26. Press S (1982) Applied multivariate analysis: using Bayesian and frequentist
methods of inference. Malabar, FL (EUA).

27. Brown P, Vannucci M, Fearn T (1998) Multivariate Bayesian variable selection

and prediction. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 60: 627–641.

28. Rothenberg T (1963) A Bayesian analysis of simultaneous equation systems.

Econometric Institute Report 6315.

29. Kshirsagar A (1960) A note on the derivation of some exact multivarlate tests.
Biometrika 47: 480.

30. Dickey J (1967) Matricvariate generalizations of the multivariate t distribution

and the inverted multivariate t distribution. The Annals of Mathematical
Statistics 38: 511–518.

31. Dawid A (1981) Some matrix-variate distribution theory: notational consider-

ations and a Bayesian application. Biometrika 68: 265.

32. Wakefield J (2009) Bayes factors for genome-wide association studies:

comparison with p-values. Genet Epidemiol 33: 79–86.

33. Stephens M, Balding DJ (2009) Bayesian statistical methods for genetic
association studies. Nat Rev Genet 10: 681–690.

34. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, et al.

(2010) Biological, clinical and population relevance of 95 loci for blood lipids.
Nature 466: 707–13.

35. Friedewald W, Levy R, Fredrickson D (1972) Estimation of the concentration of

low-density lipoprotein cholesterol in plasma, without use of the preparative
ultracentrifuge. Clinical chemistry 18: 499–502.

36. Martı́nez-Royo A, Ordovas L, Zaragoza P, Altarriba J, Serrano M, et al. (2010)

The bovine annexin 9 gene (anxa9) is significantly associated with milk-fat yield
in a spanish holstein-friesian population. Res Vet Sci 88: 452–5.

37. Huang J, Iqbal J, Saha PK, Liu J, Chan L, et al. (2007) Molecular

characterization of the role of orphan receptor small heterodimer partner in
development of fatty liver. Hepatology 46: 147–57.

38. Li R, Oteiza A, Sørensen KK, McCourt P, Olsen R, et al. (2011) Role of liver

sinusoidal endothelial cells and stabilins in elimination of oxidized low-density
lipoproteins. Am J Physiol Gastrointest Liver Physiol 300: G71–81.

39. Kzhyshkowska J, Gratchev A, Goerdt S (2006) Stabilin-1, a homeostatic

scavenger receptor with multiple functions. J Cell Mol Med 10: 635–49.

40. Adachi H, Tsujimoto M (2002) Feel-1, a novel scavenger receptor with in vitro
bacteria-binding and angiogenesis-modulating activities. J Biol Chem 277:

34264-70.

41. Al-Kateb H, Mirea L, Xie X, Sun L, Liu M, et al. (2007) Multiple variants in
vascular endothelial growth factor (vegfa) are risk factors for time to severe

retinopathy in type 1 diabetes: the dcct/edic genetics study. Diabetes 56: 2161–
8.

42. Abhary S, Burdon KP, Gupta A, Lake S, Selva D, et al. (2009) Common

sequence variation in the vegfa gene predicts risk of diabetic retinopathy. Invest
Ophthalmol Vis Sci 50: 5552–8.

43. Yang X, Deng Y, Gu H, Lim A, Altankhuyag A, et al. (2011) Polymorphisms in

the vascular endothelial growth factor gene and the risk of diabetic retinopathy
in chinese patients with type 2 diabetes. Mol Vis 17: 3088–96.

Association Analysis with Multiple Phenotypes

PLOS ONE | www.plosone.org 18 July 2013 | Volume 8 | Issue 7 | e65245



44. Yu Y, Bhangale TR, Fagerness J, Ripke S, Thorleifsson G, et al. (2011)

Common variants near frk/col10a1 and vegfa are associated with advanced age-

related macular degeneration. Hum Mol Genet 20: 3699–709.

45. Russell DW (2003) The enzymes, regulation, and genetics of bile acid synthesis.

Annu Rev Biochem 72: 137–74.

46. Sarria AJ, Panini SR, Evans RM (1992) A functional role for vimentin

intermediate filaments in the metabolism of lipoprotein-derived cholesterol in

human sw-13 cells. J Biol Chem 267: 19455–63.

47. Browman DT, Resek ME, Zajchowski LD, Robbins SM (2006) Erlin-1 and

erlin-2 are novel members of the prohibitin family of proteins that define lipid-

raft-like domains of the er. J Cell Sci 119: 3149–60.

48. Yuan X, Waterworth D, Perry JRB, Lim N, Song K, et al. (2008) Population-

based genome-wide association studies reveal six loci inuencing plasma levels of

liver enzymes. Am J Hum Genet 83: 520–8.

49. Ganji SH, Tavintharan S, Zhu D, Xing Y, Kamanna VS, et al. (2004) Niacin

noncompetitively inhibits dgat2 but not dgat1 activity in hepg2 cells. J Lipid Res

45: 1835–45.

50. Hu M, Chu WCW, Yamashita S, Yeung DKW, Shi L, et al. (2012) Liver fat

reduction with niacin is inuenced by dgat-2 polymorphisms in hypertriglycer-

idemic patients. J Lipid Res 53: 802–9.

51. Zellner A (1962) An efficient method of estimating seemingly unrelated

regressions and tests for aggregation bias. Journal of the American Statistical

Association 57: 348–368.

52. Smith M, Kohn R (2000) Nonparametric seemingly unrelated regression.

Journal of Econometrics 98: 257–281.

53. Holmes C, Denison D, Mallick B (2002) Accounting for model uncertainty in

seemingly unrelated regressions. Journal of Computational and Graphical
Statistics 11: 533–551.

54. Finegold M, Drton M (2011) Robust graphical modeling of gene networks using

classical and alternative t-distributions. The Annals of Applied Statistics 5:
1057{1080.

55. Vogel D, Fried R (2011) Elliptical graphical modelling. Biometrika 98: 935{951.
56. Maranville JC, Luca F, Richards AL, Wen X, Witonsky DB, et al. (2011)

Interactions between glucocorticoid treatment and cis-regulatory polymorphisms

contribute to cellular response phenotypes. PLoS Genet 7: e1002162.
57. Engelhardt BE, Stephens M (2010) Analysis of population structure: a unifying

framework and novel methods based on sparse factor analysis. PLoS Genet 6.
58. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics

55: 997–1004.
59. Chelala C, Khan A, Lemoine NR (2009) Snpnexus: a web database for

functional annotation of newly discovered and public domain single nucleotide

polymorphisms. Bioinformatics 25: 655–61.
60. Dayem Ullah AZ, Lemoine NR, Chelala C (2012) Snpnexus: a web server for

functional annotation of novel and publicly known genetic variants (2012
update). Nucleic Acids Res 40: W65–70.

61. R Core Team (2012) R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria.
Available: http://www.R-project.org/. Accessed 2013 June 3.

62. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer New
York.

63. Pe’er D (2005) Bayesian network analysis of signaling networks: a primer. Sci
STKE 2005: pl4.

Association Analysis with Multiple Phenotypes

PLOS ONE | www.plosone.org 19 July 2013 | Volume 8 | Issue 7 | e65245


