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Abstract

Genetic variation contributes to host responses and outcomes following infection by influenza A virus or other viral
infections. Yet narrow windows of disease symptoms and confounding environmental factors have made it difficult to
identify polymorphic genes that contribute to differential disease outcomes in human populations. Therefore, to control for
these confounding environmental variables in a system that models the levels of genetic diversity found in outbred
populations such as humans, we used incipient lines of the highly genetically diverse Collaborative Cross (CC) recombinant
inbred (RI) panel (the pre-CC population) to study how genetic variation impacts influenza associated disease across a
genetically diverse population. A wide range of variation in influenza disease related phenotypes including virus replication,
virus-induced inflammation, and weight loss was observed. Many of the disease associated phenotypes were correlated,
with viral replication and virus-induced inflammation being predictors of virus-induced weight loss. Despite these
correlations, pre-CC mice with unique and novel disease phenotype combinations were observed. We also identified sets of
transcripts (modules) that were correlated with aspects of disease. In order to identify how host genetic polymorphisms
contribute to the observed variation in disease, we conducted quantitative trait loci (QTL) mapping. We identified several
QTL contributing to specific aspects of the host response including virus-induced weight loss, titer, pulmonary edema,
neutrophil recruitment to the airways, and transcriptional expression. Existing whole-genome sequence data was applied to
identify high priority candidate genes within QTL regions. A key host response QTL was located at the site of the known
anti-influenza Mx1 gene. We sequenced the coding regions of Mx1 in the eight CC founder strains, and identified a novel
Mx1 allele that showed reduced ability to inhibit viral replication, while maintaining protection from weight loss.
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Introduction

Influenza A virus (IAV) (orthomyxoviridae) is a negative sense RNA

virus which causes severe, acute respiratory disease. Worldwide

influenza infections cause several million cases annually, with

severe pandemics (such as the 1918 pandemic) causing high levels

of morbidity and mortality [1]. Among infected individuals there is

significant variation in the clinical disease caused by IAV ranging

from an asymptomatic infection to severe and acute respiratory

distress syndrome [2–8]. Population-wide disease variation applies

not only to clinical disease, but also to individual immune

responses mounted in response to IAV infection [9,10], as well as

long-term complicating pathologies and co-infections [2,11–13].

Despite the importance of understanding the underlying mecha-

nisms of IAV-associated disease, the sources of the observed

disease variation are unclear.

Like many viruses, IAV engages in a large number of complex

interactions with various host proteins [14,15]. It is less clear how

polymorphisms in these and other host genes/proteins cause

variation in the disease process following infection with IAV. A

study of survival data from the 1918 IAV pandemic showed that

host genetic variation [16] contributes to IAV disease variation.

However, in contrast with other pathogens [17–21], human

polymorphisms have not yet been identified that contribute to
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variable responses to IAV infection, although there have been

some suggestions of polymorphisms in HLA contributing to IAV

recovery [22,23]. As IAV disease severity is likely due to a

combination of viral, host, demographic and environmental

factors [7,13,24–26], this complexity has interfered with reduc-

tionist approaches to evaluating the role that host genetic variation

plays in regulating different IAV-associated disease outcomes

across the population.

Mouse models of IAV infection have provided novel insights

into the role of host genetics on IAV disease outcomes. This

approach led to the discovery of the naturally polymorphic,

interferon inducible Mx1 gene, which inhibits IAV replication and

limits disease [27]. Subsequently, most studies of host genetic

contributions have used naturally defective Mx1 mouse strains,

such as C57BL/6J to study the effect of gene knock-outs on the

host response to influenza. These studies have shown that many

genes contribute to the host response [28–35] (reviewed in

[36,37]), and knock-outs often affect clinical disease primarily by

altering the host inflammatory response [28,29,32,35,38–40].

Comparisons between inbred mouse strains [41–44] have

confirmed that natural variation contributes to differential host

responses. Given that most polymorphisms within the human

population will be those that alter expression and/or function,

rather than whole gene knock-outs, studies comparing naturally

occurring polymorphisms are more relevant to human disease.

Several recent studies [42,45,46] using classical recombinant

inbred (RI) panels have identified a number of quantitative trait

loci (QTL) contributing to host responses following IAV infection.

However, traditional mouse genetics systems have limitations on

their ability to accurately model the genetic structure and diversity

of outbred populations, like humans [47,48].

We developed a new model that captures host responses to IAV

infection across a genetically diverse host population by using

incipient lines from the Collaborative Cross (CC) octo-parental RI

panel, known as the pre-CC population [49–51]. This population

is highly genetically diverse (,40 million single nucleotide

polymorphisms (SNPs) evenly distributed across the genome),

with up to eight functionally variant alleles at any given locus [52].

The pre-CC population exhibited a broad range of phenotypic

outcomes, including unique combinations of disease phenotypes

following infection, and we identified three novel QTL associated

with multiple aspects of influenza induced disease. Furthermore,

we identified a novel Mx1 allele in the CAST/EiJ mouse strain

and sequenced the associated haplotype. By integrating QTL

mapping with whole genome sequence information, we signifi-

cantly reduced the number of candidate genes within each QTL.

Our findings provide a clarification of the importance of genetic

variation in the host’s response to IAV infection, and a foundation

of support for the hypothesis that genetically complex mouse

models such as the CC will provide a robust platform for studying

the role of host genetic variation in regulating the host response to

infection.

Results

Diverse IAV-associated phenotypic and transcriptome
variation

We used 155 pre-CC mice, each from an independent, incipient

CC line, as well as sets of mice (n = 5–11) from each of the eight

CC founder strains. Mice were infected with a dose of the mouse

adapted A/PR/8/34 (PR8) IAV that was known to cause severe

disease in several of the CC founder strains (C57BL/6J, 129s1/

SvImJ, A/J), and we assessed IAV-induced weight loss (measured

as a percentage of starting weight) and clinical disease daily

through four days post infection (D4), at which point the mice

were euthanized and lung tissue assessed for viral replication,

virus-induced inflammation and pathology, and (pre-CC mice

only) transcriptional profiles by microarray analysis within the

lungs (Table 1, Table S1, Dataset S1). This D4 timepoint was

chosen to allow severe pathology to develop in susceptible lines,

while minimizing the animals lost in this study due to humane

Table 1. Phenotypes measured in the pre-CC and founder
strains.

Phenotype Pre-CC Founders

Clinical
Disease

D4 weight X X

D4 clinical score X X

Hemorrhage X

Gross Edema X

Viral
Replication

Log Titer X X

IHC score X

Virus-induced
inflammation

Airway inflammation X X

Airway neutrophils X

Airway monocytes X

Vascular inflammation X X

Vascular neutrophils X

Vascular monocytes X

Alveolar inflammation X X

Pathology Airway damage X X

Alveolar damage X X

Pulmonary edema X

Fibrin deposition X

Transcription D4 lung expression X

doi:10.1371/journal.ppat.1003196.t001

Author Summary

Host responses to an infectious agent are highly variable
across the human population, however, it is not entirely
clear how various factors such as pathogen dose,
demography, environment and host genetic polymor-
phisms contribute to variable host responses and infec-
tious outcomes. In this study, a new in vivo experimental
model was used that recapitulates many of the genetic
characteristics of an outbred population, such as humans.
By controlling viral dose, environment and demographic
variables, we were able to focus on the role that host
genetic variation plays in influenza virus infection. Both the
range of disease phenotypes and the combinations of sets
of disease phenotypes at 4 days post infection across this
population exhibited a large amount of diversity, reminis-
cent of the variation seen across the human population.
Multiple host genome regions were identified that
contributed to different aspects of the host response to
influenza infection. Taken together, these results empha-
size the critical role of host genetics in the response to
infectious diseases. Given the breadth of host responses
seen within this population, several new models for
unique host responses to infection were identified.

Genetic Regulation of Influenza Pathogenesis
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euthanasia conditions. We examined the weight changes and

clinical scores animals experienced through the course of this

experiment, and found that weight loss and clinical scores of

animals were highest at D4. We therefore limited our analysis of

weight and clinical scores to this timepoint. Importantly, in

analyzing the phenotypes of the pre-CC mice, we found no

evidence for effects of age, generation of inbreeding, block effects

or starting weights on gathered phenotypes, and therefore did not

include these variables in our analysis.

The infected founder strains varied significantly for all

measured phenotypes, including D4 weight, log titer, virus

induced inflammation and pathology, except for variation in

alveolar debris (p-values ranging from 0.15 to 1.3761029,

Figure 1, Table S1). Founder strains could be grouped into

susceptible (high viral titer, inflammation and weight loss) or

resistant (low viral titer, little inflammation and weight loss)

groups (Figure 1, Figure S1). As with the founders, many aspects

of IAV associated disease were correlated with each other across

the pre-CC population (correlation coefficients ranging from

20.78 to 0.78, Figure 1, Table S2), with the exception of

alveolar immune cell infiltration as well as gross edema and

hemorrhage at time of harvest, which were not strongly

correlated with the rest of the host response to infection. Pre-

CC mice often showed unique combinations of disease-

associated phenotypes (e.g. high levels of viral replication but

low inflammation and weight loss, no replication but significant

weight loss, Figures 1 and 2). Therefore, though the pre-CC

population recapitulated the range of variation within any given

phenotype (Table S1), we observed new phenotypic combina-

tions not seen in the parental lines.

The unique combinations of disease-associated phenotypes

across the pre-CC population led us to investigate the relationships

between viral replication and immune cell infiltration on weight

loss, a long standing question within the IAV field. Since the large

number of pre-CC mice we had in this study lacked the genetic

structure of the founder strains, this population was uniquely

positioned to evaluate the relationships between these disease

parameters. Both log titer and airway inflammation (the cellular

infiltrate most clearly related to infection status) were significant

predictors (p-values,2.2610216 and 1.5661029, respectively) of

D4 weight (Figure 1, Table S3). However, log titer and airway

inflammation together were significantly better predictors of D4

weight than either variable alone (based on both partial F tests and

Akaike Information Criterion (AIC), Table S3).

In addition to measuring disease associated phenotypes, we also

assessed host transcript levels within the lungs at four days post

infection. Of the 155 pre-CC mice used in this study, 99 had RNA

of sufficient quality to use for RNA microarray analysis (see GEO,

accession GSE30506 for full microarray dataset). A total of 11,700

genes passed quality control processing, and did not have a SNP

across the eight founder lines which could impact their intensity on

the array. Out of these 11,700, we identified the 6000 most

variable and interconnected genes across this population and used

weighted gene co-expression network analysis (WCGNA) to cluster

these transcripts into twelve modules, labeled A–L (Figure 3, Table

S4). Seven modules (B, D, F–I, K) were enriched for specific gene

ontology (GO) terms (Table S5), including cellular signaling

(module G), cell growth and biosynthesis (module D) and immune

responses (module K). There was little to no overlap between the

enriched categories across modules. We used the eigengene, an

idealized representation of module transcription levels for each

individual mouse, to correlate module expression levels with

disease phenotypes as eigengene expression has been used

previously to simply describe the sets of transcripts within a

module [53]. We found that eigengene values for eight of the

twelve modules (modules A–C, F, H, and J–L) were correlated

with multiple disease-related phenotypes. Modules E and G

correlated with aspects of Virus-induced inflammation and

module D correlated with D4 weight (Figure 3). These results

suggest that in this genetically diverse population severity of

influenza infection is associated with wide-scale variation in a large

number of biological processes within the lung.

Figure 1. Diverse disease-associated phenotypes across the
pre-CC population. Pre-CC mice showed a wide range of variation in
phenotypes including D4 weight (Y-axis histogram, A and B), Log titer
(X-axis histogram, A) and Airway Inflammation (X-axis histogram, B). In
addition, strong correlations existed between D4 weight and both (A)
Log titer and (B) Airway Inflammation across the pre-CC population
(black diamonds). Despite these correlations, individual pre-CC mice
showed unique combinations of disease phenotypes (e.g. low Log titer
and severe D4 weight loss) not present in the founder strains of the CC
(colored circles: A/J (n = 11) = yellow, C57BL/6J (n = 6) = grey, 129S1/
SvImJ (n = 5) = pink, NOD/ShiLtJ (n = 5) = dk. Blue, NZO/HILtJ (n = 12) = lt.
blue, CAST/EiJ (n = 5) = green, PWK/PhJ (n = 5) = red, WSB/EiJ
(n = 5) = purple).
doi:10.1371/journal.ppat.1003196.g001

Genetic Regulation of Influenza Pathogenesis
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Genetic mapping reveals host genome regions
controlling IAV-induced host responses

Given the variation in disease, virologic, inflammatory, patho-

logic, and transcriptional phenotypes observed in the pre-CC

animals, we conducted QTL mapping (as in [49]) to identify host

genome regions contributing to variation in IAV-induced pheno-

types (Figures S2, S3, S4, Table 2). Previous studies [27] have

identified a large effect IAV resistance gene, Mx1, on chromosome

16, and our a priori expectation (see below) was that we would

identify a QTL over Mx1, validating our mapping approaches

within the CC. Consistent with this, we identified a highly

significant QTL on chromosome 16, HrI1 (Host response to

Influenza) that contributed to a number of these disease-associated

phenotypes (D4 weight, D4 clinical, log titer, IHC score, airway

inflammation and airway damage). HrI1 explained 41.67% of the

variation in weight loss (i.e. the adjusted R-squared for a model

with all 8 strain effects), and similar amounts of variation in other

phenotypes, and was located in a 0.71 Mb region (1.5 LOD

interval: 97500418-98213493) annotated as containing 10 genes

and one non-coding RNA, including the known anti-influenza

gene Mx1. We also conducted QTL mapping on the eigengenes of

the expression modules to identify mQTL (module QTL). Three

modules (B, C, and K) had QTL that overlapped with HrI1

(Table 2). These modules included ones enriched for a number of

cell-adhesion and morphogenesis/development transcripts (mod-

ule B) and immune system response phenotypes (module K), while

module C was not enriched for any specific functional categories.

We grouped the eight founder alleles at HrI1 by their estimated

effects on each phenotype [49,54,55]. Alleles from five strains (A/

J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ and WSB/EiJ) affected

the host response similarly and were associated with decreased

influenza resistance (i.e. higher titers, higher weight loss, more

pathology), increased module K and decreased expression of

modules B and C. A/J, C57BL/6J and WSB/EiJ had previously

been identified [27,56] as having nonfunctional Mx1 alleles. In

contrast, the NZO/HILtJ and PWK/PhJ alleles within the pre-

CC population shared similar effects and increased influenza

resistance. Previously, CAST/EiJ was characterized as having a

full length Mx1 allele, based on analysis of portions of the Mx1

locus [56]. Despite the presence of a full length transcript, the

effect of the CAST/EiJ allele across the pre-CC population was

intermediate in conferring resistance in our QTL models. Pre-CC

mice with the CAST/EiJ allele showed low-to-intermediate weight

loss. In contrast, these animals had viral titers that were

intermediate between animals with nonfunctional Mx1 alleles

and those with a NZO/HILtJ or PWK/PhJ allele (Figure 4).

These three functional groups held true when considering animals

from the eight founder strains. Importantly, animals from the

CAST/EiJ strain showed intermediate weight loss, but had viral

titers no different than founder strains with nonfunctional Mx1

alleles (Figure 1). We conclude that three Mx1 alleles segregate in

the pre-CC population, with the CAST/EiJ allele being function-

ally distinct from the classical protective Mx1 allele, where this

allele confers limited protection from viral replication, but does

protect from virus-induced weight loss. We found no significant

differences in Mx1 mRNA gene expression in the lung at two days

post-infection using one strain from each allele group (C57BL/6J,

CAST/EiJ and PWK/PhJ, Figure 4). C57BL/6J had the highest

mean level of up-regulation, with CAST/EiJ intermediate and

PWK/PhJ having the lowest level of expression. This suggests that

the differences between the CAST/EiJ and PWK/PhJ alleles are

due to coding changes within the gene and not variation in gene

expression.

The sequence variation at the Mx1 locus in mouse is poorly

understood despite its well-known role in influenza susceptibility.

This is due in part to the presence of a deletion in the C57BL/6J

strain (the mouse reference genome, see Materials and Methods)

and the subsequent effect on the annotation of several of Mx1

exons in the mouse assembly (mm9) and in the Sanger Institute’s

Mouse Genomes sequencing project [57]. Therefore, we identified

the genetic variants in all Mx1 exons in each of the eight founder

strains by sequencing the Mx1 exons from each strain (see

Methods). We found five distinct haplotypes (Figure 4, Table S6).

The most common haplotype in the CC contains a large (.2 kb)

deletion that spans three coding exons (9, 10, and 11) that are

highly conserved among placental mammals. As previously

described [27], this deletion leads to a frame shift and early stop

codon in exon 12. This haplotype results in the presence of the

same non-functional Mx1 gene in A/J, C57BL/6J, 129S1/SvImJ

and NOD/ShiLtJ. We confirmed that WSB/EiJ also has a non-

functional allele due to a nonsense mutation in exon 10 [56]. The

other three strains have full length ORFs and each has a distinct

protein sequence due to the different combinations of alleles at two

non-synonymous SNPs. However, the genetic variants identified in

Figure 2. Diverse disease pathologies present across the pre-
CC population. Histopathological examination of lung sections
following IAV infection showed a diverse range of phenotypes. Each
image is a single 1006 magnification image of the lung section of a
single pre-CC mouse (strain ID, D4 weight, and log titer (BDL = below
detectable limit) are listed over each image). Disease phenotypes were
scored for aspects of the damage to, and inflammatory cell infiltration
around the airways (A), inflammatory cell infiltration around the
vasculature (B), and damage and inflammatory cell infiltration in the
alveolar spaces (C). Note that the image of OR219 shows a relatively
healthy looking lung, and is useful as a baseline image.
doi:10.1371/journal.ppat.1003196.g002
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our analysis and the regional assignment of sub-specific origin

[47,58] demonstrate that the CAST/EiJ strain has a divergent

haplotype of Mus musculus castaneus origin while PWK/PhJ and

NZO/HILtJ both have haplotypes of M. m. musculus origin. The

three functional haplotypes are characterized largely by synony-

mous variation and variation in untranslated regions of the gene.

There was a single amino acid substitution identified in NZO/

HILtJ relative to PWK/PhJ and CAST/EiJ (Gly616Arg), and a

single amino acid substitution identified in CAST/EiJ relative to

NZO/HILtJ and PWK/PhJ (Gly83Arg). Although we cannot

preclude transcriptional differences at different time points during

infection from having a role in the functional differences between

the three Mx1 alleles, the nonsynonymous substitution that is

unique to the CAST/EiJ haplotypes is a strong candidate to

explain the intermediate phenotype of the CAST/EiJ Mx1 allele.

These results demonstrate our ability to identify: 1) a known IAV

resistance locus with only one mouse per line, 2) the multiple

phenotypes regulated by this locus, and 3) previously unidentified

allelic variants due to the multiple alleles segregating within the

pre-CC population.

We returned to our transcriptional data in an attempt to better

understand how the CAST/EiJ Mx1 allele could contribute to

protection from weight loss while showing high titers and severe

inflammatory responses. Of the 11,700 transcripts that passed

QA/QC and were not SNP impacted, we determined that 2156

transcripts (18.4%) had their expression levels significantly

impacted by genotype at the most significant Mx1 marker (i.e.

these transcripts had an expression, or eQTL at Mx1, Table S7),

confirming the large role that Mx1 has on regulating the response

to IAV infection. We grouped these transcripts based on their

allele effects, specifically looking for those transcripts where (a)

CAST/EiJ Mx1 alleles grouped with the resistant PWK/PhJ or

NZO/HILtJ Mx1 alleles, or (b) where CAST/EiJ allele grouped

with susceptible A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ and

WSB/EiJ Mx1 alleles. A total of 307 transcripts with an eQTL at

Mx1 (14.2%) had allele effects consistent with CAST/EiJ grouping

with the resistant PWK/PhJ and NZO/HILtJ alleles, while 1207

transcripts with an eQTL at Mx1 (55.9%) had allele effects

consistent with CAST/EiJ grouping with the susceptible A/J,

C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ and WSB/EiJ alleles.

Those transcripts where CAST/EiJ grouped with the suscep-

tible alleles showed significant enrichments for a large number of

Figure 3. Transcriptional Modules across the pre-CC population. (A) highly variable transcripts from across the pre-CC population were
grouped into modules (sets of transcripts that are connected and similarly expressed (shown here by heat map intensity) within individuals). Modules
are given colored bars below them for visual clarity. (B) Modules were correlated with different disease phenotypes.
doi:10.1371/journal.ppat.1003196.g003

Table 2. QTL identified in the pre-CC population.

QTL Phenotypes
Location
(Megabases)

HrI1 D4 weight 16:97.5–98.2

Log titer

IHC score

D4 clinical

Airway inflammation

Airway damage

Module B

Module C

Module K

HrI2 D4 weight 7:89.1–96.7

HrI3 Pulmonary edema 1:21.7–29.0

HrI4 Airway neutrophils 15:77.4–86.6

doi:10.1371/journal.ppat.1003196.t002

Genetic Regulation of Influenza Pathogenesis
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GO terms (Table S8), including biosynthesis and biogenesis

processes (upregulated in the lines with a PWK/PhJ or NZO/

HILtJ allele) and a highly diverse array of inflammatory,

apoptotic, chemotactic, cell growth and hematologic-based terms

(upregulated in the lines with A/J, C57BL/6J, 129S1/SvImJ,

NOD/ShiLtJ, CAST/EiJ and WSB/EiJ alleles). In contrast, those

transcripts where CAST/EiJ was grouped with the resistant

PWK/PhJ and NZO/HILtJ alleles showed a much more limited

enrichment, with mainly cytokine and T-cell processes (downreg-

ulated in lines with CAST/EiJ, PWK/PhJ and NZO/HILtJ

alleles) being enriched.

Despite the large effect of Mx1 on influenza response, there

was large phenotypic variation within both the functional and

non-functional Mx1 allele classes. This suggested the presence

of modifier alleles segregating in the pre-CC population. To

find these modifiers, we conducted additional genome scans

after accounting for genotype at the most significant HrI1

marker (see methods), thereby controlling for Mx1 allele. This

model accounted for the large effect of HrI1 and resulted in a

single significant QTL, HrI2, on chromosome 7 (1.5 LOD

interval: 89130587-96764352), that explained 9.7% of the

variation in D4 weight (Figure S2). This region is annotated as

containing 69 genes and 10 non-coding RNAs. Analysis of the

allelic effects at HrI2 suggests that animals with an A/J allele

showed less weight loss than other animals, and animals with a

129S1/SvImJ allele showed more weight loss than other

animals.

Unique alleles contribute to disease phenotypes in a
susceptible sub-population

To eliminate epistatic effects of the protective Mx1 genotype, we

analyzed those Mx1-/- individuals in our pre-CC population,

where this group consisted of 99 mice defined as having two Mx1

alleles coming from any of the A/J, C57BL6/J, 129S1/SvImJ,

NOD/ShiLtJ or WSB/EiJ strains. Although this susceptible

subpopulation still showed a wide range of phenotypes (Table

S9), it was skewed towards increased disease-associated pheno-

types. The correlations between weight loss, viral replication,

pathology and aspects of the immune cell infiltrate were weaker

than those seen across the whole population (Table S10).

Specifically, while aspects of pathology and immune cell infiltrate

remained correlated with each other, we observed reduced

correlations between titer and pathology, titer and inflammation,

and clinical disease and pathology. We also reexamined the

relationship between titer, airway inflammation and weight loss, to

determine if our earlier observation, which linked both titer and

airway inflammation as significant predictors of weight loss was

independent of Mx1 status. Despite the reduced strength of

relationships across the population, both titer and airway

inflammation were still significant predictors of weight loss. Again,

knowledge of both titer and airway inflammation was a better

predictor of weight loss than either variable alone (based on both

partial F tests and AIC, Table S3).

RNA of high quality was recovered from 60 mice within this

Mx1-/- population, and we used WCGNA to cluster the 6,000

Figure 4. A novel Mx1 allele differentially impacts host response to influenza. The founder strain alleles at Mx1 were grouped based on
their phenotypic effects into three functionally distinct classes corresponding to domesticus (dom: A/J, C57BL6/J, 129s1/SvImJ, NOD/HiLtJ and WSB/
EiJ), castaneus (cast: CAST/EiJ) and musculus (mus: PWK/PhJ and NZO/ShILtJ). Points shown are individual pre-CC animals with these haplotypes, mean
bars are shown for each class. These functionally distinct classes were separable based upon differences in (A) D4 weight and (B) Log titer, with the
heterozygous classes showing intermediate phenotypes. Across the pre-CC population, homozygous dom animals had severe weight loss and high
titers. Homozygous mus animals showed little weight loss and low titers. Homozygous cast animals showed little weight loss, but had intermediate
viral titers. Brackets between groups represent significant differences (* = p,0.05, ** = p,0.003) based on Tukey’s HSD. We found no difference by
qPCR (C) in expression of Mx1 at 2 days post-infection following influenza infection in a strain from each of these three functional classes. By
sequencing Mx1 (D), we were able to identify five haplotypes across the eight founder strains (Haplotype 1 = A/J, C57BL/6J, 129S1/SvImJ, NOD/HiLtJ;
Haplotype 2 = WSB/EiJ; Haplotype 3 = PWK/PhJ; Haplotype 4 = NZO/HiLtJ; Haplotype 5 = CAST/EiJ). Arrows indicate locations of polymorphisms, with
small arrows indicating non-coding changes, and large arrows indicating coding changes. Colors correspond to the founder strains having those
polymorphisms (brown = multiple strains possess mutation). Grey exons indicate those not transcribed due to either deletion and frameshift, or
insertion and early stop codon.
doi:10.1371/journal.ppat.1003196.g004
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most variable transcripts across this population (4,933 of these

6,000 transcripts were also identified in the whole population

analysis). Even in the absence of a large effect resistance gene,

Mx1, we were able to group transcripts into functionally relevant

co-expression modules. In total, this analysis identified eleven

modules labeled M-W (Table S11). Again, modules were enriched

for a wide range of functional terms, and showed little overlap

between categories (Table S12). Eight modules (M-O, Q, T-W)

were significantly correlated with clinical disease and/or viral

replication, being enriched for T-cell processes (module M),

inflammatory responses (module N), and signaling processes

(module O). Module Q (enriched for cell cycle processes) was

exclusively associated with some virus-induced inflammation, and

two modules had no clear relationships with any phenotypes

(enriched for sensory and neurological processes (module U) as

well as metabolic and biosynthesis (module V), Table S13).

Absence of an mQTL overlapping the Mx1 region (see below)

indicates that, as expected, the effect of the Mx1 locus on the

coexpression network has been ameliorated in this population.

This indicates, along with the continued, albeit, weaker associa-

tions between the modules and phenotypes that performing a

WGCNA analysis conditioning on the Mx1 allele group provides a

way to highlight additional diseases-associated genetic regulation

of transcript expression.

When we conducted QTL mapping in the Mx1-/- subpopula-

tion, we identified a significant QTL, HrI3, which explained

29.73% of the variation in Pulmonary Edema on chromosome 1

(7.31 Mb, 21767867-29085401) annotated as containing 24 genes

and 11 non-coding RNA (Table 2, Figure S3). Additionally, we

identified a suggestive QTL, HrI4, which explained 22.77% of the

variation in airway neutrophils on chromosome 15 (77427235-

86625488), a 9.19 Mb region annotated as containing 206 genes

and 35 non-coding RNAs (Table 2, Figure S4). In contrast to our

results with the whole pre-CC population, we were not able to

identify any mQTL contributing to variation in module expression

within this Mx1-/- subpopulation.

Genetic variation underneath HrI3 contributes to
pulmonary edema

In order to confirm the role of HrI3 in contributing to control of

pulmonary edema, we challenged a new set of female animals

from a small set of completely inbred CC lines with IAV. These

animals were homozygous for various founder alleles across the

entire candidate region for HrI3 and founder strain alleles were

each represented by two CC lines (e.g. two lines that vary across

the rest of their genome both share the WSB/EiJ allele at HrI3).

We examined the severity of pulmonary edema in these animals at

four days post infection. Founder strain alleles at HrI3 significantly

affected pulmonary edema (F3,16 = 8.48, p = 0.0013, Figure 5),

validating the role of this genome region in the host response to

IAV.

Identification of candidate genes from whole-genome
sequences

Having identified three novel QTL our next objective was to

narrow down QTL regions to specific candidate genes/features.

We used the estimated allele effects along with the whole genome

sequences of the founder strains [57] to narrow the list of

candidate genes within each interval (see methods).

When a particular allele underlies a QTL, it is due to a causal

genome feature (e.g. SNP, insertion/deletion) corresponding to

that allele, contrasted with the other alleles in the cross. In the

simplest case of one allele contrasted with the other seven this

means that a private genome feature in the single strain is

causative for the QTL. Under more complex scenarios (e.g. two

strains contrasted with six), because CC mice share common

ancestry due to their natural history and the unique history of

laboratory mice [47,58], we assume that causal alleles are often

shared across mouse strains. That is, if two strains are segregating

from the other six, it is likely due to a common feature these two

strains privately share. We used the allele effects plots (Figures S2,

S3, S4) to group founder strains underneath QTL peaks into two

groups based on the largest difference between groups (Note that

for completely inbred lines, phenotype-by-genotype plots would

provide similar information. For the incompletely inbred pre-CC

mice, with up to 36 allele combinations at each locus, PxG plots

are difficult to interpret). For each group, we identified the regions

in which all strains were identical or nearly identical ($98%).

Then we excluded regions that were not unique to the allele group

(e.g. where two causative alleles had different SNP patterns). Using

this approach, we narrowed the candidate regions for HrI3

(Pulmonary Edema: NZO/HILtJ and WSB/EiJ alleles reducing

edema), from 7.31 Mb to 1.01 Mb, containing 10/24 genes and

1/10 annotated non-coding RNAs (Table 3). HrI4 (Airways

Neutrophils: C57BL6/J, NZO/HILtJ and PWK/PhJ increasing

infiltration) was similarly reduced from 9.19 Mb to 91 kb,

including 12/206 genes and 2/35 non-coding RNAs (Table 3).

HrI2 represented a case where a single founder allele associated

with either increased resistance (A/J) or susceptibility (129S1/

SvImJ) contrasted with the other six strains showing an

intermediate phenotype. We were therefore looking for individual

SNPs (and not regions of difference) that differentiated A/J or

129S1/SvImJ from the other strains. We identified 144 private A/

J SNPs or small in/dels, and 611 private 129S1/SvImJ SNPs or

small in/dels (out of a total of 106,684 SNPs or small in/dels in the

region). These SNPs occur in or near 28 genes (7 genes unique to

A/J, 13 unique to 129S1/SvImJ, and 8 overlapping between the

two, Table 3).

In all three of these cases, the high priority candidate genes we

identified covered a range of biological functions, including a large

number with no annotated functions. While no obvious candidates

jump out with HrI3, HrI4 includes Grap2, involved in leucocyte

specific signaling [59]. Similarly, HrI2 includes the chemoattrac-

tant/T-cell modulator Il16 [60] as well as Nox4, which is

potentially involved in production of reactive oxygen species and

interacts with the TLR4 pathway [61].

Discussion

The host response to infection represents a complex set of

interacting phenotypes, where variation in these phenotypes is

likely influenced by interactions between multiple polymorphic

genes as well as other factors (specific virus-host interactions,

environment, exposure, age). While reverse genetics approaches

have afforded insight into the role of viral genes in infection [62–

64], well defined models do not exist for understanding how

polymorphic host genes interact to regulate host response to

infection. A number of mouse models including gene specific

knockouts and transgenic lines [28–30,32,34,35,39,65], panels of

genetically distinct mouse lines [44,66], and classical RI panels

[42,45,46], have been used to provide key insights into the role of

specific genes in pathogenesis, however, these systems do not

accurately reflect the situation in outbred populations. While these

systems either interrogate the role of specific genes in the context

of a single genetic background (e.g. knockouts) or analyze the

impact of two variant alleles (e.g. classic RI panels) on disease

pathogenesis, in genetically complex populations, such as humans,
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disease outcomes are likely determined by interactions between

multiple polymorphic genes, with multiple polymorphic alleles at

these loci. Therefore, we chose to use the pre-CC population to

assess how genetic polymorphisms impact the host response to

influenza infection in a population of animals that more closely

represents the genetic diversity found in outbred populations. Our

results show that even within the constraints of this pre-CC study

(i.e. one animal/incipient line, single time point), we were able to

uncover underlying relationships between host responses to

infection, identify new disease phenotype combinations not

present within the founder strains, and identify novel QTL

impacting aspects of the host response to infection, suggesting that

the CC panel represents a powerful system for studying pathogen

interactions within genetically complex populations.

Host genetic control of infectious disease responses
Host genetic polymorphisms have been shown to contribute to

differential disease outcomes, and evidence exists for influenza

[16,22,23,67] that suggests host genetic variants are important

regulators of influenza pathogenesis. The identification of a QTL

of major effect sitting over the anti-influenza gene Mx1 was not

surprising. Mx1 is known to strongly inhibit influenza virus

replication, limiting the resultant IAV-induced disease symptoms

in mice [68]. As was to be expected, within the pre-CC

population, functional Mx1 alleles reduced viral titers, weight loss

and clinical disease, inflammation and pathology. Mx1 also acted

to influence the expression levels of a large number of transcripts.

While it is unlikely a direct transcriptional regulator, Mx1’s potent

ability to inhibit IAV replication likely alters the signaling

environments and host response pathways triggered in response

to infection.

Within human populations, it is possible for multiple alleles to

exist at any given locus. Similarly, at any locus within the pre-CC

population, up to eight distinct alleles exist. In addition to

increasing the probability of having functionally variant alleles

Figure 5. Genetic variation at HrI3 contributes to variation in pulmonary edema in an independent set of Collaborative Cross lines.
Following the identification of HrI3, we infected animals from fully inbred Collaborative Cross lines, where each line was homozygous for a single
founder allele at HrI3. (A) We found a significant effect of genotype at HrI3 on the extent and severity of pulmonary edema at four days post infection.
Mild (B) and Severe (C) pulmonary edema can be seen at 2006magnification in animals from this experiment. Pulmonary edema was scored on the
basis of evidence of transudates accumulating in the alveolar spaces (denoted by star marks in panel C).
doi:10.1371/journal.ppat.1003196.g005

Table 3. Candidate genes within QTL regions.

HrI2 HrI3 HrI4

9930013L23Rik
(A)

Vmn2r73 (A) 4931308C20Rik Atxn10

AC139576.1 (A) 1700026D08Rik (C) Bai3 AW121686

AC156557.1 AC099601.2 (C) Col19a1 Cacng2

AdamTsl3 (A) AC111022.1 (C) Fam135a Card10

Ctsc (A) AC161439.1 (C) Gm5697 Cbx7

Folh1 Arnt2 (C) Gm9884 Celsr1

Grm5 Eftud1 (C) Gm11161 Enthd1

Il16 Fam108c (C) Kcnq5 Grap2

Mesdc2 Fam154b (C) Rims1 Lgals2

Nox4 Mex3b (C) Smap1 Mirlet7c-2

Sh3gl3 Olfr301 (C) SNORA17 Pdgfb

Tmc3 Tmem135 (C) Sstr3

Tyr (A) Vmn2r72.ps (C) Syngr1

Vmn2r66 (A) zfand6 (C)

For HrI2, (A) refers to genes with a private A/J SNP, (C) refers to genes with a
private 129S1/SvImJ SNP. Unmarked genes had both A/J and 129S1/SvImJ
SNPs.
doi:10.1371/journal.ppat.1003196.t003
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segregating within the population, multiple alleles at a locus can

give rise to distinct phenotypic outcomes across the population.

The effects of this allelic variation can clearly be seen when

considering Mx1. A total of 5 distinct Mx1 haplotypes exist in the

pre-CC population, and they can be grouped into three

functionally distinct alleles based on their effects during influenza

infection. Of particular interest is the CAST/EiJ allele, which

disassociates the effects of Mx1 on control of viral replication from

its’ ability to protect from a clinical disease aspects. We utilized the

large number of transcripts that had an eQTL at Mx1 to better

understand potential ways in which the CAST/EiJ allele might

provide clinical protection while being unable to control IAV

replication. We identified a set of transcripts that were significantly

upregulated in those individuals with defective Mx1s, but were

downregulated in individuals with CAST/EiJ, PWK/PhJ and

NZO/HILtJ Mx1 allele). These transcripts included sets of

inflammatory and immune related transcripts, such as SOCS3,

Irf1, and Interferon-gamma. GTPases, such as Mx1, are important in

a number of signaling and protein production activities [69,70],

and it is possible that the signaling activities of Mx1 are responsible

for regulating specific transcripts, such as those mentioned above,

in limiting clinical disease independent of Mx1’s previously

described anti-IAV activities. However, additional studies are

needed to better define whether the differential effect of the

CAST/EiJ Mx1 allele are due to Mx1-associated signaling or more

subtle effects on viral replication which subsequently affect

inflammation and disease.

In a more general sense, these results illustrate the advantages

provided by using a system such as the CC compared to using

classical inbred strains such as the founder strains. Because of the

inherent genome structure of the founder strains [47], it would be

difficult to differentiate between the disassociated effects of the

CAST/EiJ Mx1 allele we found in the pre-CC population and the

alternate hypothesis that CAST/EiJ’s Mx1 was completely non-

functional, and that there was another polymorphic gene within

CAST/EiJ that provided some protection from clinical disease. It

is only through the recombination present within the CC, and the

use of large populations of unique lines that can be evaluated

within the CC that such hypothesis can be differentiated. This lack

of structure across the genomes also allowed us to gain new insight

into the relationships between coexpressed transcripts and disease

outcomes, as well as the relationships between specific disease

processes (see population-wide pattern section below).

Though the identification of Mx1 served to validate our

mapping study, the presence of a large effect allele within

genetically variable populations can mask those with smaller effect

sizes. Indeed, this genetic architecture is common to pathogen

resistance, as several other large effect genes have been identified

for viral (e.g. flaviviruses [71], mouse CMV [72], norovirus [20],

HIV [18]), bacterial (NRAMP [73]) and parasitic (malaria [74])

diseases. Due to these genes of large effect, many studies of these

pathogens have been conducted within susceptible models (e.g.

mouse models of influenza infection are almost universally Mx1-/-

models). It is likely that there are specific alleles influencing disease

processes that only act in the context of the presence or absence of

major resistance alleles (e.g. an allele that affected the degree of

tissue repair would only act when there had been significant tissue

damage, which a functional Mx1 allele would prevent). To address

this issue, we conducted further genome mapping while account-

ing for Mx1 status using two complementary approaches: asking

whether there are loci that act in addition to Mx1 in regulating

disease-associated phenotypes (HrI2), and also asking if there are

loci that act only in the highly susceptible Mx1 negative population

(HrI3, HrI4). By doing so, we were able to identify three additional

loci influencing weight loss, pulmonary edema and neutrophil

infiltration into the airways, further validating the role of genetic

variation at HrI3 in contributing to pulmonary edema differences

in a separate set of fully inbred CC animals. The development of

pulmonary edema [6,75], as well as neutrophilic infiltration [76]

have been shown to contribute to disease severity and long-term

lung disease in the human population. Our results show that host

genetic variation not only contributes to direct responses to

infection, but also to other aspects of the host response that can

lead to long-term complications following infection.

In addition to allowing us to identify novel QTL that impacted

the host response to IAV, our mapping using only Mx1-/- animals

also allowed us to compare our study to other studies using QTL

mapping within Mx1-/- panels [42,45,46]. While these studies all

identified QTL contributing to IAV responses, there was no

overlap between these QTL and the ones we discovered. This

result is unsurprising given the differences in virus strains,

phenotypes measured, and polymorphisms within the two panels.

Nevertheless, the aggregate of these studies further strengthens the

idea that virus-host interactions are highly complex, and that

polymorphic host genes are critical for numerous responses. Our

results further emphasize the unique genetic interactions that

occur in specific sub-populations of infected individuals that

regulate disease processes. While we limited our analysis to the

Mx1-/- animals in the pre-CC population, due to sample size, it is

likely that similar QTL can be identified in future work using

animals with functional Mx1.

Ultimately, the goal of QTL mapping studies is to identify the

causal polymorphic genes or genome features responsible for

variation in disease processes. A variety of studies have used

transcriptional data [42,49] to narrow QTL regions into candidate

genes. However, transcriptional analysis can be confounded by the

dynamic nature of transcriptional responses, and can also be

confounded by SNPs residing underneath the expression probes

that can impact binding [77,78]. An alternate approach, taking

advantage of the allelic complexity of the CC is the use of the

sequence of the founder strains [57] to interpret the mapping

results and to prioritize candidate genes within QTL. This

approach is quite powerful; as causative polymorphisms must be

contained within QTL regions, and has been used effectively in

other pre-CC studies [49,55]. However, Mx1 provides a caution-

ary note for regions of the genome in that there is a large in/del

differentiating the eight CC founders. In fact, C57BL/6J, and thus

the assembly, has the deletion. In such regions, functional genomic

features may be misannotated and more importantly the genetic

variants present in founders without the deletion is currently not

annotated. This lack of annotation makes it difficult to conclusively

dissect the polymorphisms within these regions that might cause

phenotypic variation across the population, and currently requires

more intensive sequencing efforts on a case-by-case basis. The

Mx1 result illustrates the importance of improving the annotation

of genetic variants in the mouse genome. It also suggests that in

addition of the processed lists of SNPs and in/dels available at the

Mouse Genome Projects from the Sanger Institute, the analysis of

the allele effect in QTL intervals should be analyzed by searching

for signatures of structural variation that might be present in the

raw reads. As further QTL analyses are undertaken within the CC

system, approaches to narrow down onto candidate genes and

polymorphisms will need to be further developed, likely integrating

both transcriptional and refined analysis of sequence data to

account for other potential causative genome features. These

approaches will be facilitated by the interrogation of transcrip-

tional activity at multiple time points in completely inbred CC

lines.

Genetic Regulation of Influenza Pathogenesis

PLOS Pathogens | www.plospathogens.org 9 February 2013 | Volume 9 | Issue 2 | e1003196



Population-wide patterns of host response to influenza
infection

The pre-CC experiment also allowed us to identify specific CC

lines that might be useful models for specific disease phenotypes

(e.g. animals with high titers but little/no clinical disease as super-

spreaders), as well as other interesting relationships between

disease components across the pre-CC population. For example,

while lung hemorrhage is a clinically important influenza-

associated phenotype [79], we found that lung hemorrhage was

only correlated with alveolar inflammation and not with other

metrics of viral spread or disease severity. This result bears further

study, but it suggests that while hemorrhage indicates a severe

response to influenza infection, hemorrhage is governed by

processes that are largely disassociated from those processes

contributing to overall severity of infection at least through day 4.

Results such as this further highlight the complexity of the host

response to infection, and the need to consider genetically diverse

populations when attempting to understand disease processes.

While the individual pre-CC mice used within this study were

insufficient to develop these new models of disease processes, as

CC lines become increasingly available [52], utilization of specific

CC lines with unique responses to infectious diseases might well

become a critical resource for uncovering avenues of viral

pathogenesis in specific subpopulations.

In addition, we identified transcriptional modules that corre-

lated with overall disease severity, or with specific aspects of the

host response to infection (e.g. inflammatory components, clinical

disease). Recent efforts from a number of groups [10,80] have

focused on identifying markers associated with different disease

states (e.g. protective vaccine responses, asymptomatic individu-

als) across human cohorts. While the nature of the pre-CC study

(restricted to a single time-point) makes it difficult to draw broad

conclusions about these results, it does suggest that there are

unique transcriptional signatures relating to different aspects of

the host response to infection. Future studies leveraging the full

power of the CC (identical animals at different time points,

compared to baseline transcriptional levels) will provide the

opportunity for identification of molecular signatures of different

disease-associated phenotypes, informing us both of the mecha-

nisms through which these processes are occurring, as well as

providing non-invasive diagnostic markers of various disease-

related phenotypes.

The findings of this study also provide new insights into the

relative contribution of viral replication versus virus-induced

inflammation in the pathogenesis of influenza infection. There is

conflicting evidence from a variety of in vivo studies as to the

importance of virus-induced inflammation [28,39,64,81,82] and

control of viral load [30,39,66] on disease severity. However, these

studies have all used different mouse strains, influenza strains and

experimental conditions, making direct comparisons difficult. The

novel allele combinations in the pre-CC population allowed new

insight by dissociating phenotypes that were correlated in the

founder strains. This allowed us to assess the relative contribution

of inflammation and viral replication on disease outcome.

Consistent with the complex nature of virus-induced disease, we

found that both viral replication and levels of inflammation were

predictive of disease outcome independently of one another.

Although the overall correlations between viral titer, weight loss

and inflammation were reduced within the Mx1-/- subpopulation

of pre-CC animals, we again found that both viral replication and

levels of inflammation together were better predictors of disease

outcome than either was alone. Consistent with this analysis, we

identified CC lines that showed high levels of replication and

weight loss, but little inflammation as well as lines with excessive

inflammation and weight loss, but low viral titers suggesting that

multiple pathways can lead to similar clinical disease outcomes

across a genetically diverse population. Future studies utilizing this

model with fully inbred CC lines, will allow us to more fully

evaluate how the kinetics, magnitude, and duration of viral

replication and inflammation contribute to disease outcome over

the temporal course of the infection. These results illustrate the

potential and the power of using genetically diverse mice to study

the relative contribution of specific aspects of the pathogen and

host response which together drive disease outcome.

Summary
There is an increased appreciation for the role that host

polymorphisms play in the host response to infectious diseases

[83]. However, for a number of reasons, Genome Wide

Association Studies (GWAS) of responses to acute infectious

diseases within the human population have been difficult to

conduct [84]. While future studies using the CC panel will allow

for the evaluation of multiple animals/line and allow for

integration of information across multiple timepoints, for this

study we had access to only a single animal/line within the pre-

CC population making it similar in design to GWAS and raising

concerns about our ability to identify host response QTL within

this study. However, the identification of several disease

associated QTL, including a QTL containing the known IAV

associated resistance gene Mx1, even when using a single mouse/

time point, suggests that the CC lines represent a robust system

for identifying polymorphic genes that regulate host responses to

infectious diseases. As the CC can be recreated and manipulated,

it will increasingly become a useful tool to a) identify candidate

genes and pathways for more targeted association studies within

human populations, and b) allow us to increase our understand-

ing of how critical demographic and environmental factors, as

well as specific genetic subpopulations impact some of the

variability in GWAS studies of acute infectious diseases in

humans.

Host genetic variation clearly plays an important role in

regulating differential response phenotypes to infectious disease

progression. Herein, we provide proof of concept and a

framework for identifying the role of polymorphic genes on

microbial pathogenesis using a genetically diverse population:

underlying relationships between different disease phenotypes,

genetic control of phenotypes following infection (both those of

large effect, as well as those that modulate the host response), and

transcriptional profiles that related to specific disease-associated

phenotypes. In summary, this study shows that a genetically

complex in vivo model represents a useful system for modeling

pathogen interactions within genetically diverse populations and

identifying novel genetic loci controlling multiple aspects of

disease pathogenesis. Though this study had clear limitations, the

pre-CC population provided the appropriate framework to

develop the methodological approaches that resulted in the

identification and prioritization of genes within novel disease loci.

These results strongly support the hypothesis that studies using

the fully inbred CC lines, with the use of replicate animals and

evaluation of phenotypic variation during influenza infection over

time, will be even more successful in identifying polymorphic

genes that regulate multiple disease associated phenotypes

including those phenotypes associated with adaptive immune

responses and disease recovery. Furthermore, through careful

selection of CC lines, studies can be designed to specifically

investigate how interactions between allelic variants in two or

more genes interact to influence complex phenotypic outcomes

during infection.
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Methods

Ethics statement
Mouse studies were performed in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. All

mouse studies were performed at the University of North

Carolina (Animal Welfare Assurance # A3410-01) using

protocols approved by the UNC Institutional Animal Care

and Use Committee (IACUC). All studies were performed in a

manner designed to minimize pain and suffering in infected

animals, and any animals that exhibited severe disease signs was

euthanized immediately in accordance with IACUC approved

endpoints.

Animals
8–16 week old female animals from the 8 founder strains (A/

J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HILtJ,

CAST/EiJ, PWK/PhJ, and WSB/EiJ) were derived from the

Jackson labs (jax.org), and bred at UNC Chapel Hill under

specific pathogen free conditions. 8–12 week old female Pre-

CC mice were bred at Oak Ridge National Laboratories under

specific pathogen free conditions, and transferred directly into

a BSL-3 containment laboratory at UNC Chapel Hill. Inbred

CC mice were bred at UNC Chapel Hill under specific

pathogen free conditions. All experiments were approved by

the UNC Chapel Hill Institutional Animal Care and Use

Committee.

Virus and cell lines
The mouse adapted influenza A strain A/PR/8/34 (H1N1) was

used for all infection studies. A/PR/8/34 stocks were made by

infection of 10-day old embryonated chicken eggs. MDCK cells

grown in high glucose Dulbecco’s modified Eagle’s medium (10%

FBS, 1% Penicillin-Streptomycin) were used for titering virus.

Infections
Animals were lightly anesthetized via inhalation with Isoflurane

(Piramal, Bethlehem, Pa). Following anesthesia, animals were

infected intranasally with 5610‘2 pfu of PR8 in 50 mL of

phosphate buffered saline (PBS), while mock infected animals

received only 50 mL of PBS. Animals were assayed daily for

morbidity (determined as % weight loss), mortality and clinical

disease scores. At 4 days post infection, animals were euthanized

via Isoflurane overdose and cardiac puncture, animals were

assessed for gross pathology (lung hemorrhage and edema) and

tissues were taken for various assays.

TCID50 assay
MDCK cells were seeded into 96 well plates at a density of

1.5610‘5 cells/well in DMEM (10% FBS, 1% Pen-strep) and

incubated at 37 degrees overnight. Cells were washed 2 times with

PBS, before addition of 100 mL of DMEM to each well. Media

was removed from all wells in the 1st column of the plate, and

146 uL of lung homogenate in DMEM was added to these wells

(each biological sample was added to 4 wells). Serial dilutions of

46 mL (0.5 log dilutions) were carried out across the plate. Plates

were incubated at 37 degrees C for 1 hour, inoculum was removed

and 150 mL of serum free DMEM with 1 mg/mL of trypsin was

added to each well. Plates were then incubated at 37oC for 3 days.

Media was then removed, and wells were stained with a 1%

Crystal Violet solution. The stain was washed off with water. Titer

is determined as follows:

Log10 TCID100~2 � Log10TCID50~

{2 � Xpz 0:5 �Dð Þ{ D � Spð Þð Þ
ð1Þ

Where Xp is the last dilution where all of the replicates of a given

sample are positive, D is the serial dilution log and Sp is the sum of

the proportion of replicates at all dilutions where positives are seen

(starting with the Xp dilution).

Histopathological analysis
The right lung was removed and submerged in 10% buffered

formalin (Fischer) without inflation for 1 week before being

submitted to the UNC Linberger Comprehensive Cancer Center

histopathology core for processing. Two 5 micron thick Hema-

toxylin and Eosin stained lung sections (step-separated by

100 microns) were blind-scored by microscopic evaluation per-

formed by two independent scorers for a variety of metrics relating

to the extent and severity of immune cell infiltration and

pathological damage on a 0–3 (none, mild, moderate, severe) scale.

Immunohistochemical analysis of viral replication
For detection of influenza virus antigen, we used serial sections

from formalin-fixed, paraffin-embedded lung samples. After

deparaffinization and rehydration, antigen retrieval was per-

formed using 0.1% protease (10 min at 37uC). Endogenous

peroxidase was blocked with 3% hydrogen peroxide and slides

were briefly washed with phosphate-buffered saline (PBS)/0.05%

Tween 20. Mouse anti- influenza virus nucleoprotein (clone Hb65,

ATCC) and horseradish peroxidase labeled goat anti-mouse

IgG2a were used for 1 h at room temperature. Peroxidase activity

was revealed by incubating slides in 3-amino-9-ethylcarbazole

(AEC, Sigma) for 10 minutes, resulting in a bright red precipitate,

followed by counterstaining with hematoxylin. Tissue sections

from non-infected BALB/c mice and mouse IgG2a isotype

antibody (R&D) were used as negative controls. The extent of

influenza viral antigen spread across these slides was then scored in

a blinded fashion on a 0–3 scale.

RNA preparation and oligonucleotide microarray
processing

At 4 days after infection, mice were killed and lung tissue

harvested and placed in RNAlater (Applied Biosystems/Ambion,

Austin, TX) and stored at 280u. The tissues were subsequently

homogenized, and RNA extracted as previously described [85].

RNA samples were spectroscopically verified for purity, and the

quality of the intact RNA was assessed using an Agilent 2100

Bioanalyzer. cRNA probes were generated from each sample by

the use of an Agilent one-color Low Input Quick Amp Labeling

Kit (Agilent Technologies, Santa Clara, CA). Individual cRNA

samples were hybridized to Agilent mouse whole-genome oligo-

nucleotide 4644 microarrays according to manufacturer instruc-

tions. Samples from individual mice were evaluated to enable

examination of animal-to-animal variation as part of the data

analysis. Slides were scanned with an Agilent DNA microarray

scanner, and the resulting images were analyzed using Agilent

Feature Extractor version 8.1.1.1. The Agilent Feature Extractor

software was used to perform image analysis, including signifi-

cance of signal and spatial detrending and to apply a universal

error model. For these hybridizations, the most conservative error

model was applied. Raw data were then loaded into a custom-

designed laboratory information management system (LIMS).

Data were warehoused in a Labkey system (Labkey, Inc., Seattle,
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WA). Raw array data are available from GEO with accession

GSE30506.

The Agilent arrays were background corrected by applying the

Normal-Exponential convolution model [86] and normalized

using quantile normalization [87] with the Agi4644PreProcess

Bioconductor package (www.bioconductor.org). The probes were

filtered requiring that all probes meet specific QC requirements

(probe intensity had to be found, well above background, not

saturated, and not be nonuniformity or population outliers as

defined by the standard parameters in Agi4644PreProcess

package) for all samples. Differential expression analysis was

performed using the LIMMA Bioconductor package [88], and the

false discovery rate was calculated using the qvalue Bioconductor

package [89]. Probes were mapped to the mm9 genome using

BLAT [90] requiring at least 98% identity. Probes that did not

map, mapped to multiple locations equally well, or contained a

high confidence single nucleotide polymorphism (SNP) from one

of the eight progenitor strains from the Sanger Institute/Wellcome

Trust mouse sequencing project [57] in the probe sequence were

excluded from analysis. There were 11,700 probes passing QC

and not potentially impacted by a SNP. The Gene Ontology (GO)

analysis was performed using the standard hypergeometric test

from the Gostats Bioconductor package [91] with a universe

consisting of the unique genes from the probes entered into the DE

analysis. Only the Biological Process subset of the Gene Ontology

was used for testing. The Benjamini and Yekutieli false discovery

rate (FDR) [92] was computed for the P-value distribution for this

analysis to address dependencies inherent from the hierarchical/

nested structure of the GO categories.

De-novo network (module) analysis
For both the full analysis and the Mx1-/- analysis, six thousand

probes were chosen to be entered into the analysis based on both

high variability across samples as well as a measure of how

connected they were [93]. Arrays were preprocessed separately for

both analyses. These probes were used for the formation of

coexpression modules through the weighted gene coexpression

network analysis (WGCNA) procedure [93,94]. Module formation

was signed [95] and was carried out using the dynamicTreeCut R

package [96] with pruning carried out based only on the

dendrogram. All modules were checked for statistical significance

through a permutation procedure whereby the mean topological

overlap of those probes within a module was compared to the

mean topological overlap of 10,000 random modules of the same

size chosen from the initial set of 6,000 probes. Using the

WGCNA package the module eigengene (first principle compo-

nent of the expression matrix) for each module was computed

[97]. The module eigengene can be viewed as the representative

profile that summarizes the module expression profile. The

module eigengene was first correlated with the clinical traits using

Pearson’s correlation with P-values provided as Student’s asymp-

totic P-value. The module QTL scan was carried out similar to

below but using the eigengene for each module as a phenotype.

Specifically, each eigengene was regressed on the expected

haplotype contribution from each of the eight founding inbred

strains. Significance was assessed using the –log10 P-values (using

a Bonferroni type correction (a= 0.05)) from the model and

support intervals were computed using the 1.5 LOD drop method

[54]. This method of defining an mQTL is essentially the same as

a previous study using F2 intercrosses [53]. A related approach

looking at overrepresentation of eQTLs in a module [98] could

potentially be sensitive to significance cutoffs and module size and

necessitates a full eQTL scan.

Genotyping and haplotype reconstruction
Genotyping and haplotype reconstruction were done as

described in [49]. Briefly, each pre-CC animal was genotyped

using Mouse Diversity [47] test A-array at 181,752 well

performing SNPs which were polymorphic across the founder

strains. Once genotypes were determined (Dataset S2), founder

strain haplotype probabilities were computed for all genotyped loci

using the HAPPY algorithm [99]. Genetic map positions were

based on the integrated mouse genetic map using mouse genome

build 37 [100].

Genome scans
Genome scans were run as described in [49]. Briefly, QTL

mapping was conducted using the BAGPIPE package [101] to

regress each phenotype on the computed haplotypes in the interval

between adjacent genotype markers, producing a LOD score in

each interval to evaluate significance. Genome-wide significance

was determined by permutation test, with 250 permutations

conducted per scan.

A more complex model was also used to control for Mx1 status,

whereby the null model included the haplotype information from

the most significant marker at the Mx1 locus (JAX00072951).

LOD scores are then computed for each haplotype interval based

on the increase in fit of genotype to phenotype when Mx1

haplotype is already taken into account.

Identifying candidate regions
For the likely regions of identified QTL peaks, SNP data for the

eight founder strains from the Sanger mouse genomes project was

downloaded, and filtered to include only homozygous calls. In the

case where a single founder strain allele drives a QTL peak, all

private SNPs for that strain are candidates for the observed

phenotype. In the case where multiple founder strains drive a

QTL peak, the most likely hypothesis is that the causative

polymorphism exists in a region of shared ancestry between these

founder strains. SNPs were categorized into 3 classes: Consistent

with a shared ancestry (SNPs where the driver strains share a

private SNP), Inconsistent with a shared ancestry (SNPs where the

driver strains share different alleles with other strains), and

Uninformative with regards to ancestry (SNPs private to a single

strain and SNPs shared by driver strains as well as others).

Candidate regions were defined as regions containing at least one

consistent SNP, and were bounded by the 1st nucleotide after the

last inconsistent SNP until the last nucleotide before the next

inconsistent SNP, and also had to exceed 100 base pairs in length.

We identified all annotated genes and non-coding RNAs that were

within 500 bases of, or in consistent regions and classify these as

our likely candidates.

Mx1 gene structure
To characterize the genetic variation at the Mx1 locus we

combined data from the mouse genome assembly, the Sanger

Institute’s Mouse Genomes sequencing project and a mouse

full-length Mx1 cDNA clone (CT010406). By aligning the

cDNA to the Mx1 genomic locus we identified three missing

exons (exons 9, 10 and 11). We used this information to design

primers to amplify and sequence every exon and the span the

deletion boundaries in each strain (Table S14). The deletion

occurs between positions 97674078 and 97674079 of the

reference on chromosome 10. The deletion is 921 bp

upstream from exon 12 and 302 bp downstream of exon 8.

Chromosome walking was used to partially sequence the

introns missing in the assembly. All sequence variants have
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been submitted to NCBI (GenBank Accession numbers:

JQ860141-JQ860220).

Real-time PCR analysis
Whole lung RNA from 8 week old female C57BL/6J, CAST/

EiJ, and PWK/PhJ that had been either mock or flu infected were

isolated using Trizol (Invitrogen, Carlsbad CA), and following

their protocol. One microgram of total isolated RNA from each

sample was reverse transcribed using MMLV-RT (Promega,

Madison WI), and following their protocol. We ran TaqMan real

time PCR with two primer-probe pairs (Applied Biosystems Foster

City, CA): Mm01217999_m1 to amplify the 59 gene region of

Mx1 transcripts, and Hs03928985_g1 to amplify 18s mRNA.

Fold-induction was calculated as the difference in expression levels

for infected animals as compared to their strain-matched mock

animals.

Supporting Information

Dataset S1 Phenotypes of Pre-CC animals.

(CSV)

Dataset S2 Genotypes of Pre-CC animals.

(ZIP)

Figure S1 Variation in weight loss curves across the
eight founder strains of the Collaborative Cross.
Following infection with IAV, n = 5–12 animals from each of the

eight founder strains had their weights recorded through four days

post infection. Shown are weight loss curves (with standard

deviations) for these eight strains (A/J (n = 11) = yellow, C57BL/6J

(n = 6) = grey, 129S1/SvImJ (n = 5) = pink, NOD/ShiLtJ

(n = 5) = dk. Blue, NZO/HILtJ (n = 12) = lt. blue, CAST/EiJ

(n = 5) = green, PWK/PhJ (n = 5) = red, WSB/EiJ (n = 5) = pur-

ple).). The high variation present within NOD/ShiLtJ and CAST/

EiJ was due to bimodal weight loss responses in each strain, and

repeated in multiple experiments,

(TIF)

Figure S2 QTL underlying weight loss following influ-
enza infection. (A) QTL scans showing LOD score (Y-axis) and

genome position (X-axis) for weight loss. HrI1 on chromosome 16

(dark peak) was identified and influenced many disease phenotypes

We remapped weight loss after accounting for the large effect of

HrI1 in our QTL model, and identified another QTL, HrI2 on

chromosome 7 (light grey peak). Allele effects plot for (B) HrI1 and

(C) HrI2, showing the estimated contributions of each founder

strain allele (y-axis) across the likely region for these loci (position

in locus, x-axis) on weight loss. A phenotype by haplotype plot (D)

showing the weight loss phenotypes for those animals that were

homozygous for founder strain alleles at HrI2 (A/J = yellow,

C57BL/6J = grey, 129S1/SvImJ = pink, NOD/ShiLtJ = dk. blue,

NZO/HILtJ = lt. blue, CAST/EiJ = green, PWK/PhJ = red,

WSB/EiJ = purple).

(TIF)

Figure S3 QTL underlying pulmonary edema following
influenza infection. (A) QTL scans within the Mx1 -/-

subpopulation (light grey line) identified a QTL, HrI3 on

chromosome 1, influencing pulmonary edema that was not

detectable within the whole pre-CC population (black line). (B)

Allele effects plot for HrI3, showing the estimated contributions of

each founder strain allele across this locus on pulmonary edema. A

phenotype by haplotype plot (C) showing the pulmonary edema

score for those animals that were homozygous for founder strain

alleles at HrI3 (A/J = yellow, C57BL/6J = grey, 129S1/SvImJ =

pink, NOD/ShiLtJ = dk. blue, NZO/HILtJ = lt. blue, CAST/

EiJ = green, PWK/PhJ = red, WSB/EiJ = purple).

(TIF)

Figure S4 QTL underlying neutrophil infiltration fol-
lowing influenza infection. (A) QTL scans within the Mx1 -/-

subpopulation (light grey line) identified a QTL, HrI4 on

chromosome 15, influencing neutrophil infiltration that was not

detectable within the whole pre-CC population (black line). (B)

Allele effects plot for HrI4, showing the estimated contributions of

each founder strain allele across this locus on neutrophil

infiltration. A phenotype by haplotype plot (C) showing the

neutrophil infiltrate score for those animals that were homozygous

for founder strain alleles at HrI4 (A/J = yellow, C57BL/6J = grey,

129S1/SvImJ = pink, NOD/ShiLtJ = dk. blue, NZO/HILtJ = lt.

blue, CAST/EiJ = green, PWK/PhJ = red, WSB/EiJ = purple).

(TIF)
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Table S5 GO-term enrichment by module.
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