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Abstract

Our ability to control diseases caused by parasitic nematodes is constrained by a limited portfolio of effective drugs and a
paucity of robust tools to investigate parasitic nematode biology. RNA interference (RNAi) is a reverse-genetics tool with
great potential to identify novel drug targets and interrogate parasite gene function, but present RNAi protocols for
parasitic nematodes, which remove the parasite from the host and execute RNAi in vitro, are unreliable and inconsistent. We
have established an alternative in vivo RNAi protocol targeting the filarial nematode Brugia malayi as it develops in an
intermediate host, the mosquito Aedes aegypti. Injection of worm-derived short interfering RNA (siRNA) and double
stranded RNA (dsRNA) into parasitized mosquitoes elicits suppression of B. malayi target gene transcript abundance in a
concentration-dependent fashion. The suppression of this gene, a cathepsin L-like cysteine protease (Bm-cpl-1) is specific
and profound, both injection of siRNA and dsRNA reduce transcript abundance by 83%. In vivo Bm-cpl-1 suppression results
in multiple aberrant phenotypes; worm motility is inhibited by up to 69% and parasites exhibit slow-moving, kinked and
partial-paralysis postures. Bm-cpl-1 suppression also retards worm growth by 48%. Bm-cpl-1 suppression ultimately prevents
parasite development within the mosquito and effectively abolishes transmission potential because parasites do not
migrate to the head and proboscis. Finally, Bm-cpl-1 suppression decreases parasite burden and increases mosquito
survival. This is the first demonstration of in vivo RNAi in animal parasitic nematodes and results indicate this protocol is
more effective than existing in vitro RNAi methods. The potential of this new protocol to investigate parasitic nematode
biology and to identify and validate novel anthelmintic drug targets is discussed.
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Introduction

Lymphatic filariasis is a disease caused by filarial nematodes

including Wuchereria bancrofti and Brugia malayi, transmitted through

the bite of infected mosquitoes. These parasites perpetuate

socioeconomic instability in developing countries by inflicting

crippling morbidity and debilitating stigmatization. The impact of

this disease is vast - over 120 million people are infected in 81

endemic countries [1]. In an effort to alleviate morbidity and

eliminate transmission of this disease, the Global Program for the

Elimination of Lymphatic Filariasis (GPELF) has orchestrated a

systematic mass drug administration (MDA) program centered on

the repeated dosing of either diethylcarbamazine citrate (DEC)

and albendazole or albendazole and ivermectin in areas where the

other filarial parasites, Onchocerca volvulus and Loa loa are co-

endemic. This strategy has reduced prevalence in many areas [2]

but lymphatic filariasis remains a significant global health concern.

Many factors contribute to continued transmission, but central is

the inadequate portfolio of effective drugs; none of the MDA drugs

are effective against all life stages of the parasite with notable

inefficacy against adult worms [3–5]. This means MDA must be

provided annually for the duration of the lifespan of adult

parasites. This situation is compounded by gaps in our

understanding of mechanisms of drug action and pharmacology

– the site of action of DEC is unknown despite being the drug of

choice for lymphatic filariasis control for decades, and the

filaricidal mechanism of ivermectin at therapeutic concentrations

is also equivocal. There is a very real and significant need for

additional and more effective antifilarial drugs, and a better

understanding of the mode of action of existing drugs [6].

A major obstacle to the rational development of such drugs is

the experimental intractability of parasitic nematodes. An example

of this complication is RNA interference (RNAi), a reverse genetic

tool that allows researchers to rapidly and specifically ‘turn off’

genes of interest. RNAi has fast become a standard tool in rational

drug discovery for the identification and validation of potential

new drug targets [7,8]. By suppressing specific genes and

examining the resulting phenotype, it is possible to delineate gene

function and appraise the potential value of encoded proteins as

drug targets. Successful applications of present RNAi protocols to

parasitic nematodes have been sporadically reported, limited in

their effectiveness and seldom repeated [9]. Some success has been
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achieved with Nippostrongylus brasiliensis [10], Ascaris suum [11],

Trichostrongylus colubriformis [12], Ostertagia ostertagi [13] and

Haemonchus contortus [14,15]. Germane to the study of filarial

worms, RNAi has been described in B. malayi [16,17], Onchocerca

volvulus [18,19] and Litomosoides sigmodontis [20]. The conclusion has

been reached, however, that successful RNAi ‘‘only works on a

limited number of genes, and in some cases the effect is small and

difficult to reproduce’’ [14]. The inability to depend on present

RNAi protocols with parasitic nematodes has proved a major

stumbling block to the identification and validation of new drug

targets, to a better understanding of anthelmintic mode of action,

and to advancing our comprehension of parasite biology.

The recalcitrance of animal parasitic nematodes to RNAi is

perplexing, given that Caenorhabditis elegans, a free-living nematode,

and plant parasitic nematodes are readily susceptible to the

technique [21–28]. One hypothesis advanced to explain this

recalcitrance is that because present RNAi protocols employ in vitro

approaches including soaking nematodes in an RNAi trigger,

feeding nematodes bacteria producing the trigger, or electropo-

rating of the trigger into the parasite, the RNAi trigger is not

provided in a manner conducive to systemic gene suppression

[29]. Implicit in the use of these protocols is the removal of a

parasite from the host and its maintenance in a liquid culture.

Therefore these protocols have distinct drawbacks such as

difficulty maintaining healthy, viable worms that behave normally

in vitro, limitation of use of parasites or life stages for which in vitro

culture is defined, and poor efficacy in RNAi trigger delivery

methods that can prove lethal to the parasite [30].

The aim of this study was to develop an innovative in vivo

approach to RNAi in parasitic nematodes that overcomes the

drawbacks associated with present in vitro experimental paradigms.

Our approach is based on the filarial nematode B. malayi. We

establish a B. malayi infection in an intermediate host, the mosquito

Aedes aegypti, and then initiate suppression of parasite genes by

injecting an RNAi trigger directly into the mosquito. The

mosquito acts as an ideal culture and delivery system, ensuring

the RNAi trigger is exposed to healthy, developing parasites. Using

this approach we have effectively and quantifiably suppressed

expression of Bm-cpl-1, a B. malayi gene encoding a cathepsin L-like

cysteine protease. Dramatic aberrant phenotypes accompany this

suppression, including a marked retardation of motility, an

inhibition of normal parasite migration behavior within the

mosquito and impaired parasite growth and development.

Suppression is specific; non-target RNAi has no effect on

nematode viability or behavior, and the level of gene suppression

and extent of the resultant phenotypes suggest this new protocol is

more effective than previous methods. The development of an in

vivo RNAi protocol to reliably suppress gene expression in filarial

worms has great potential for the identification and validation of

novel drug targets, and more broadly, to explore parasitic

nematode biology and host-parasite interactions.

Results

A Brugia RNAi trigger rapidly disseminates throughout
the mosquito host

Our hypothesis is that mosquitoes provide an optimal culture

and delivery system for an RNAi trigger targeted to developing

Brugia malayi parasites. Healthy, viable, developing parasites are

subjected to the RNAi trigger because the parasites undergo

growth and development in the mosquito intermediate host. In

order to test the extent of dissemination of the RNAi trigger from

the site of intrathoracic injection, 150 ng of an equimolar mix of

four 39 Cy 3-labelled Bm-cpl-1 siRNAs was injected into adult Aedes

aegypti mosquitoes as described. The dissemination of this RNAi

trigger through the mosquito was tracked over 15 d post-injection

by periodic microdissection of the mosquito and evaluation of

internal fluorescence compared to saline injected controls. The

labeled siRNA mix spread rapidly from the site of injection and

maximal fluorescence was observed 24 h post-injection (Fig. 1).

The intensity of fluorescence slowly decreased until reaching basal

levels at five d post-injection after which fluorescence intensity was

not appreciably different from control mosquitoes. Our observa-

tions closely parallel those of a previous report that describes the

spread of 140 ng AlexaFluor 555-labeled siRNA in the mosquito

Anopheles gambiae from an injection site to the midgut and

pericardial cells 36 h post-injection [31]. Systemic dispersion and

persistence of RNAi signal from the site of injection suggests B.

malayi larvae are likely to be exposed to the RNAi trigger in our

experimental model.

Brugia gene suppression in vivo is potent and specific
Recently it has been shown that B. malayi genes encoding

cathepsin L-like enzymes can be suppressed in vitro by soaking

adult parasites in culture media containing siRNA [17]. We tested

the capacity of our novel methodology to suppress larval stage B.

malayi gene expression in vivo by injecting mixed siRNAs specific to

the cathepsin L-like Bm-cpl-1 gene directly into Ae. aegypti

mosquitoes harboring L3 stage B. malayi parasites. Gene

suppression was assayed 48 h post-injection using a semi-

quantitative RT-PCR in which the intensity of Bm-cpl-1

amplification in the linear phase of the reaction was compared

to an internal B. malayi reference gene (Bm-flp-14) that is expressed

stably and at comparable levels to Bm-cpl-1. Control mosquitoes

were injected with equal volumes of Aedes physiologic saline. This

methodology was optimized to amplify Bm-cpl-1 from a heteroge-

neous mosquito/parasite total RNA preparation from a single

mosquito. Suppression was concentration-dependent because

injection of 0.15 ng siRNA did not appear to reduce Bm-cpl-1

transcript levels. However, injection of 15 ng or 1.5 ng of siRNA

decreased transcript levels, and injection of 150 ng mixed siRNA

into mosquitoes profoundly suppressed Bm-cpl-1 expression; the

Author Summary

Lymphatic filariasis is a debilitating tropical disease caused
by parasitic nematodes such as Brugia malayi that are
transmitted to humans through the bite of infected
mosquitoes. Controlling lymphatic filariasis, and other
parasitic nematode diseases, is made difficult by a limited
repertoire of sub-optimal drugs and substantial experi-
mental roadblocks to new drug development. We have
developed a novel and highly effective in vivo RNA
interference (RNAi) methodology to better understand
gene function in the parasitic nematode, B. malayi. RNAi
triggers are delivered to developing parasites in the
mosquito intermediate host – an improvement on existing
RNAi protocols, in which the parasite is removed from the
host and maintained in liquid culture. Using this protocol
we have significantly suppressed a cathepsin gene in B.
malayi, which resulted in dramatic change to parasite
movement, growth and development in the mosquito to
the extent that worms cannot be transmitted to a new
host. These data underscore the power of this protocol to
1) critically assess gene function in parasitic nematode
biology, 2) to reveal the mechanism of action for existing
drugs, and 3) for discovery of novel drug targets for drug
development.

In Vivo RNAi in Brugia malayi
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target parasite gene could not be amplified (Fig. 2). This

suppression was also specific; expression of the Bm-flp-14 reference

gene was unaffected by siRNA injection and target gene

expression was normal in saline-injected controls.

Application of dsRNA is the commonly used method for

triggering RNAi in parasitic nematodes and has advantages over

siRNA; dsRNA can be generated in-house more quickly than

commercially produced siRNAs at lower cost. B. malayi-infected

mosquitoes were also subjected to treatment with dsRNA as an

RNAi trigger. The effect of dsRNA was concentration-dependent

such that injection of 15 ng dsRNA results in Bm-cpl-1 suppression

but 1.5 ng dsRNA had no appreciable effect. Injection of 150 ng

of dsRNA potently suppressed Bm-cpl-1 transcript abundance and

suppression appeared specific, with Bm-flp-14 expression unaffect-

ed by dsRNA (Fig. 2).

RT-qPCR was used to quantify the level of Bm-cpl-1 suppression

relative to two reference genes (Bm-flp-14 and Bm-tph-1) using the

efficiency-corrected (EDDCq) relative quantification method [32].

PREXCEL-Q software was used to optimize the performance of

the RT-qPCR assay; and important data pertinent to PCR

efficiency, linear dynamic range and normalization of the assay are

documented in Table 1. Bm-tph-1 showed stable Cq values across

the experiment and therefore was the most appropriate reference

gene for these studies, as shown previously [33]. The suppressive

effects of both RNAi treatments were almost identical; injection of

150 ng siRNA reduced Bm-cpl-1 transcript by 83% compared to

saline-injected controls (P,0.0001) and 150 ng dsRNA also

reduced Bm-cpl-1 transcript by 83% (P,0.0001) (Fig. 3). Bm-flp-

14 reference gene transcript was slightly reduced by both RNAi

treatments but these reductions were not significant (siRNA, 9%,

P = 0.38; dsRNA, 12%, P = 0.17). These data support the gel-

based semi-quantitative RT-PCR experimental findings and

demonstrate the efficacy of this novel method of RNAi delivery.

Bm-cpl-1 suppression elicits marked motility and
developmental phenotypes

Previous studies have described aberrant filarial worm pheno-

types associated with cathepsin L-like gene suppression in vitro

including decreased microfilariae (mf) release from adult B. malayi

[17] and an inhibition of the L3 to L4 molt in Onchocerca volvulus

[18]. Based on these data, we predicted that Bm-cpl-1 suppression

would produce a phenotype in vivo in the mosquito host.

Mosquitoes were injected with 150 ng Bm-cpl-1 dsRNA 10 d

post-infection (dpi) then microdissected four d post-injection to

harvest L3-stage parasites. Worm motility was digitally recorded

and scored according to a five-point schema of one (immobile), to

five (all parts of the worm in constant motion). 100% of control

worms from mosquitoes injected with Aedes physiologic saline were

categorized as four or five on this scale. Bm-cpl-1 suppression

significantly inhibited this normal worm motility (P,0.001), with

only 67% of worms ranked as four or five on the scale (Fig. 4). To

confirm that this effect was Bm-cpl-1 specific and not due to

exogenous dsRNA impairing worm viability, this experiment was

repeated with dsRNA for enhanced GFP (eGFP) as a random

exogenous RNA. These worms were phenotypically identical to

saline-injected controls (100% category four or five), confirming

the specificity of the aberrant phenotype in Bm-cpl-1 suppressed

worms.

The effect of changing the timing of Bm-cpl-1 suppression on

worm motility was also examined. Bm-cpl-1 transcript levels are

elevated in L3 stage parasites, such that this gene has a purported

role in the L3 to L4 molt [18]. The temporal expression of Bm-cpl-

1 was reported to be up-regulated during the L2 to L3 transition,

at six to seven dpi [34]. Based on the timing of Brugia development

in Ae. aegypti [35], infected mosquitoes were injected with Bm-cpl-1

dsRNA at 10 dpi in order to target L3-stage worms (described

above) and at seven dpi to target the L2 to L3 transition. Parasites

exposed to Bm-cpl-1 dsRNA at seven dpi showed significantly

inhibited motility compared to saline controls (P,0.001) with only

31% of worms displaying normal motility. The difference between

parasites exposed to dsRNA at seven and 10 dpi was significant

(P,0.001), and may reflect an important biological role for Bm-cpl-

1 during the transition from L2 to L3 stages. More explicitly,

earlier exposure to the RNAi trigger could impose more significant

detrimental impact on the parasite by disrupting the L2 to L3

molt, or it may simply be a consequence of the longer period of

time from gene suppression to phenotype assay, allowing Bm-

CPL-1 rundown and maturation of the phenotype.

Figure 1. Dissemination and persistence of intrathoracically injected Cy 3-labelled Brugia malayi Cathepsin-L1 siRNAs in Aedes
aegypti. Midgut and Malpighian tubule tissues are shown in light (upper panel) and fluorescence (lower panel) micrographs from 1 to 9 days post-
injection (scale bar 100 mm).
doi:10.1371/journal.ppat.1001239.g001

Figure 2. Concentration-dependent, in vivo suppression of
Brugia malayi Cathepsin-L1 (Bm-cpl-1) using siRNA (Top) or
dsRNA (Bottom) RNAi triggers. Micrograph shows ethidium
bromide stained agarose gel electrophoresis of relative RT-PCR analysis
of individual, B. malayi-infected mosquitoes 48 h post-injection of RNAi
trigger at 10 d post-infection. Amplified product for the target gene,
Bm-cpl-1, is shown above a neuropeptide reference gene (Bm-flp-14).
doi:10.1371/journal.ppat.1001239.g002

In Vivo RNAi in Brugia malayi
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In addition to depressed activity, other morphological and

motility phenotypes were apparent in Bm-cpl-1 suppressed worms.

A highly active, convoluted body form characterizes motility of

healthy B. malayi L3s, both the heads and tails of the parasites in

particular are conspicuously tortuous – curvature we described as

‘knotted’. Control worms from saline-injected mosquitoes fre-

quently (86% of worms) displayed knotting at both ends.

Suppression of Bm-cpl-1 10 dpi significantly inhibited this motility,

because only 14% of worms presented with both ends knotted

(P,0.001) (Fig. 5). This phenotype was enhanced by an early

suppression of Bm-cpl-1 at seven dpi such that no Bm-cpl-1

suppressed parasites exhibited this knotting morphology. The

difference between L2 and L3 Bm-cpl-1 suppression was significant

(P = 0.005). Worms exposed to the exogenous eGFP dsRNA

control confirmed that this phenotype was gene-specific because

parasite motility was not significantly different from saline controls

(85% knotted at both ends, P = 0.2). Another aberrant motility

observed was the presence of a perturbed section of body wall

slightly caudal to the midpoint of the worm. This abnormal kinked

morphology was absent from control worms (4% of worms from

saline-injected and 0% from eGFP-injected mosquitoes displayed

this morphology), but evident with significantly greater frequency

in 10 dpi Bm-cpl-1 suppressed worms (47%, P,0.001) (Fig. 6). This

kink rate increased with Bm-cpl-1 suppression at seven dpi (63%),

but compared to 10 dpi this was not significant (P = 0.08). Finally,

partial paralysis of Bm-cpl-1 suppressed worms was evident,

presenting as immobility in the caudal third of the worm. This

paralysis was observed in 61% of 10 dpi Bm-cpl-1 suppressed

worms, and 83% of seven dpi suppressed worms (this increase was

significant, P = 0.005) but was generally absent from control

worms (5% of worms from saline-injected mosquitoes and 3% of

worms from eGFP-injected mosquitoes) (Fig. 6).

To examine the consequence of this aberrant motility on B.

malayi development, mosquitoes were injected with 150 ng Bm-cpl-

1 dsRNA 10 dpi then microdissected four d post-injection,

partitioning the mosquitoes into head, thorax and abdomen

preparations. Control worms from mosquitoes injected with either

saline or eGFP dsRNA were found exclusively (100%) in head

preparations as expected. Bm-cpl-1 suppressed worms were most

frequently observed escaping from the thorax and abdomen

(Fig. 7). Parasites in Bm-cpl-1 dsRNA-injected mosquitoes,

however, did not leave the thorax (94% of worms were found

here) or abdomen (6%). Bm-cpl-1 suppression, therefore, prevents

worm migration to the head of the mosquito, effectively preventing

Table 1. Reportable information on RT-qPCR experiment.

Bm-cpl-1 Bm-flp-14 Bm-tph-1

siRNA dsRNA siRNA dsRNA siRNA dsRNA

RT-qPCR efficiency (%) 84.7 65 108.2 116.5 104.2 96.4

Calibration curve y intercept 30.6 32.9 33.9 35.9 29.5 33

Calibration curve r2 0.98 0.97 0.91 0.88 0.99 0.88

Mean Cq 30.460.06 33.060.48 34.360.13 35.760.19 30.060.08 33.160.10

NTC Cq 50 50 50 50 50 50

doi:10.1371/journal.ppat.1001239.t001

Figure 4. Aberrant motility of dsRNA Bm-cpl-1-exposed B.
malayi. Frequency distribution for motility of L3 stage B. malayi
recovered from Ae. aegypti showing significantly reduced motility of
Bm-cpl-1 suppressed worms. Parasitized mosquitoes were injected with
saline (control), 150 ng eGFP dsRNA, or 150 ng Bm-cpl-1 dsRNA at 7 or
10 d post-infection (dpi), then dissected to obtain parasites at 14 dpi.
Parasite motility was scored on a 1–5 scale, with 1 = immobile and 5 =
all parts of worm in constant motion (control n = 101, dseGFP n = 68,
dsBm-cpl-1 10 dpi n = 70, dsBm-cpl-1 7 dpi n = 48, P,0.001).
doi:10.1371/journal.ppat.1001239.g004

Figure 3. Quantitative PCR demonstrates significant reduction
in Bm-cpl-1 transcript levels as a result of siRNA and dsRNA
RNAi trigger injection into B. malayi-infected Ae. aegypti. Both
siRNA (A) and dsRNA (B) injection reduces Bm-cpl-1 transcript by 83%
compared to controls (saline injected Ae. aegypti infected with B.
malayi). Bm-cpl-1 and control gene, Bm-flp-14, are normalized to a
reference gene Bm-thp-1. qPCR was performed 48 h post-injection of
RNAi trigger at 10 d post-infection. Each bar represents 13 mosquitoes
from three biological replicates.
doi:10.1371/journal.ppat.1001239.g003

In Vivo RNAi in Brugia malayi
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normal progression of the parasite life cycle and thus abolishing

the potential for parasite transmission.

A significant negative effect also was seen on growth and

development of parasites subjected to Bm-cpl-1 suppression.

Parasitized mosquitoes were injected with 150 ng Bm-cpl-1 dsRNA

seven dpi then microdissected 14 dpi and the length, width and

appearance of the worms recorded. Mosquitoes were injected

seven dpi because the previous motility experiments dictated that

this experimental timing generated the most pronounced motility

phenotypes. Bm-cpl-1 suppression significantly reduced the length

of L3 worms by 48% (P,0.0001)(Fig. 8). The mean length of

control L3, removed from mosquitoes seven d after saline injection

and 14 dpi, was 1347618 mm. This was reduced to 700649 mm

after RNAi treatment. Unlike parasite length, width was not

significantly affected by Bm-cpl-1 suppression, although a slight

decrease of 5% was observed (P = 0.39) from 3161 mm in control

worms to 3062 mm in RNAi worms. In addition to worm length,

the majority of Bm-cpl-1 dsRNA parasites also presented with

additional aberrant developmental phenotypes. Most evident was

a disruption of the cuticle (Fig. 8B), which extended significantly

beyond the body of the worm. Some degree of this cuticular

sloughing was noticed in most worms but the severity of this

phenotype was variable. Finally, the integrity of the gut appeared

compromised in Bm-cpl-1 worms. In such instances, the gastroin-

testinal tract of the parasites appeared incomplete and porous

when examined at the light microscope level.

Bm-cpl-1 suppression enhances mosquito survival and
decreases parasite prevalence

Phenotype data resoundingly demonstrate that Bm-cpl-1 sup-

pression decreases B. malayi viability. It is logical to predict that this

Figure 5. Disrupted motile phenotypes of dsRNA Bm-cpl-1-
exposed B. malayi. Frequency distribution for parasites exhibiting
rigorous knotting behavior at both ends of worm, one end, or not at all
showing normal terminal curvature is inhibited by Bm-cpl-1 suppres-
sion. Parasitized mosquitoes were injected with saline (control), 150 ng
eGFP dsRNA, or 150 ng Bm-cpl-1 dsRNA at 7 or 10 d post-infection (dpi),
then dissected to obtain parasites at 14 dpi (control n = 101, dseGFP
n = 68, dsBm-cpl-1 10 dpi n = 70, dsBm-cpl-1 7 dpi n = 48).
doi:10.1371/journal.ppat.1001239.g005

Figure 6. The frequency of caudal paralysis and kinked posture
of dsRNA Bm-cpl-1-exposed B. malayi. The frequency of both caudal
paralysis and kinked posture is significantly increased with Bm-cpl-1
suppression. Parasitized mosquitoes were injected with saline (control),
150 ng eGFP dsRNA, or 150 ng Bm-cpl-1 dsRNA at 7 or 10 d post-
infection (dpi), then dissected to obtain parasites at 14 dpi (control
n = 101, dseGFP n = 68, dsBm-cpl-1 10 dpi n = 70, dsBm-cpl-1 7 dpi
n = 48, P,0.001).
doi:10.1371/journal.ppat.1001239.g006

Figure 7. dsRNA Bm-cpl-1-exposed B. malayi fail to migrate to
the head of the mosquito. Frequency distribution of infectious (L3)
stage B. malayi recovered from Ae. aegypti in the head, thorax or
abdomen of the mosquito host. Parasites were dissected from Ae.
aegypti mosquitoes 14 d post-infection and 4 d post-injection of saline
(control), 150 ng eGFP dsRNA or 150 ng Bm-cpl-1 dsRNA. One worm
was recovered from each mosquito. Numbers of mosquitoes dissected
from three biological replicates: n = 18 (control), n = 20 (dseGFP), and
n = 31 (dsBm-cpl-1).
doi:10.1371/journal.ppat.1001239.g007

Figure 8. Bm-cpl-1-suppressed B. malayi are significantly shorter
than control worms. Parasites were dissected from Ae. aegypti
mosquitoes 14 days post-infection and 4 d post-injection of saline
(control, A) or 150 ng Bm-cpl-1 dsRNA (B). Scale bar 250 mm. (C) RNAi-
exposed parasites are significantly shorter in length, but not width, than
control worms. Numbers of parasites from three biological replicates:
n = 19 (control) and n = 13 (dsBm-cpl-1) (P,0.001).
doi:10.1371/journal.ppat.1001239.g008

In Vivo RNAi in Brugia malayi
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decreased viability would also have an impact on mosquito

survival and prevalence of parasite infection. To examine this,

mosquitoes were injected with 150 ng Bm-cpl-1 dsRNA 10 dpi and

the number of mosquitoes that survived through the development

of parasites to the infectious stage, 14 dpi, was counted. Surviving

mosquitoes then were microdissected to determine the proportion

that harbored parasite infections. Bm-cpl-1 suppression increases

host mosquito survival. The survival rate of control mosquitoes

injected with saline or eGFP dsRNA was 62% and 65%

respectively (P = 0.6) as compared to 80% in Bm-cpl-1 RNAi-

exposed mosquitoes (P,0.001) (Fig. 9A). Early suppression of Bm-

cpl-1 at seven dpi enhanced the phenotype even more significantly

such that 93% of mosquitoes were alive at the termination of the

experiment (P = 0.007). This increased mosquito survival rate

after Bm-cpl-1 suppression may be as a result of the parasite’s

compromised ability to feed on, and migrate through, the host or

may result from a more successful or effective host response

against parasites with decreased viability. This hypothesis is

supported by our observation that Bm-cpl-1 suppression also

decreased prevalence of infection – fewer surviving mosquitoes

harbored parasites after Bm-cpl-1 RNAi (Fig. 9B). Every surviving

mosquito injected with saline or eGFP was found to contain

parasites 14 dpi, but 14 dpi Bm-cpl-1 suppressed parasites (exposed

to dsRNA at 10 dpi) were found in just 76% of mosquitoes, a

significant reduction in prevalence (P,0.001). Prevalence was

further reduced to 62% in parasites exposed to Bm-cpl-1 dsRNA at

seven dpi, a statistically significant decrease compared to worms

exposed to the dsRNA trigger at 10 dpi (P = 0.03).

Discussion

Here we report the development of a novel in vivo approach to

RNAi in the filarial nematode Brugia malayi, and describe its

application first to suppress the expression of Bm-cpl-1, a B. malayi

gene encoding a cathepsin L-like cysteine protease, then to

validate this gene as a potentially potent anthelmintic drug target.

To the best of our knowledge, this is the first description of in vivo

RNAi in parasitic nematodes and represents an advance in the

study of filarial nematode biology that may aid in the development

of drugs to combat parasitic nematode infection. The rationale for

developing an in vivo RNAi protocol stems from the hypothesis that

RNAi is ineffective in animal parasitic nematodes because the

supply of an RNAi trigger to the worms is inappropriate [29]. Our

overarching hypothesis was that RNAi would work effectively and

robustly if a trigger is supplied to healthy, viable worms in a host

environment. Supporting this hypothesis, we were able to

specifically reduce target gene transcript abundance in B. malayi

larvae by 83% by supplying an RNAi trigger to parasites

developing within the mosquito host. This level of transcript

knockdown has not previously been reported using current in vitro

RNAi soaking methods. The ‘in squito’ approach to RNAi we

describe is effective for the specific suppression of cathepsin genes

in Brugia larval stages as they develop within their cognate

mosquito host; it is therefore possible that this in vivo approach may

represent a more effective means of eliciting gene suppression in

filarial nematodes.

The mechanism by which the RNAi trigger is delivered to the

parasites ‘in squito’ is unclear, but could be a result of bathing the

parasite in the trigger within a cell, or as a result of uptake by tissue

ingestion. In support of the former, Cy3-labeled siRNA injected

into the haemocoel rapidly disseminates throughout the mosquito

supporting a hypothesis that the developing parasites are

effectively incubating in a host milieu containing an RNAi trigger,

essentially a scenario analogous to in vitro RNAi by soaking. If this

is the case, the ‘in squito’ approach represents an efficient way to

generate gene suppression by soaking. Most successful animal

parasitic nematode in vitro soaking protocols use large amounts of

ds- or siRNA with concentrations of 1 mg/ml typical, meaning

anywhere between 25 mg and 2 mg of RNAi trigger are required

per suppression experiment [10–19], with the exception of one

report showing that lower trigger concentrations could still be

effective at producing gene suppression by soaking [20]. Here we

showed that gene suppression can be achieved using just 150 ng of

ds- or siRNA per RNAi event, and indeed, a reduction in

transcript abundance was observed after injecting as little as 15 ng

dsRNA. In addition to the obvious cost saving advantages to

performing RNAi experiments in this manner, such low RNA

concentrations may also improve the specificity of gene suppres-

sion. Soaking plant parasitic nematodes in serial dilutions of ds-

and siRNAs has been shown to reduce off-target effects in RNAi

experiments [28,36]. A second delivery hypothesis is that the

developing parasites are ingesting the RNAi trigger. Microfilariae

Figure 9. Ae. aegypti survival significantly increases as infection
prevalence decreases in Bm-cpl-1-dsRNA exposed mosquitoes.
The effects on survival (A) and infection prevalence (B) are most
profound in parasites exposed to Bm-cpl-1 dsRNA at the L2/L3 transition
(7 d post-infection, dpi). Parasites were exposed to saline (control),
150 ng eGFP dsRNA or 150 ng Bm-cpl-1 dsRNA at 7 or 10 dpi, then were
dissected from Ae. aegypti mosquitoes at 14 dpi.
doi:10.1371/journal.ppat.1001239.g009
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taken in during the blood meal rapidly penetrate the mosquito

midgut [37], and migrate to the thoracic musculature where they

grow and develop to the L3 stage [38,39], a process completed in

under two weeks [35]. From the L2 stage, the developing larvae

are active feeders and consume host tissue [35,40,41], a behavior

that would lead to the ingestion of an injected RNAi trigger in our

experimental model. RNAi by feeding is a well-established method

in free-living nematodes [22,23,42,43]; by feeding these worms

bacteria expressing dsRNA, systemic gene suppression can be

effected in a relatively simple and efficient manner. This approach

has not been successful with parasitic nematodes, however, as most

parasitic species are not bacteriotrophic, and even for those species

with bacteriotrophic life stages, this method is unreliable [30].

Resolution of the RNAi trigger delivery mechanism afforded by

our in vivo protocol may come through targeting B. malayi L1

worms in the mosquito. If target gene expression can be reduced in

this non-feeding stage, this would support soaking as the prime

mechanism.

The in squito suppression of Bm-cpl-1 reveals new phenotypes

associated with molting, growth and development, and motility

that shed light on the important biological functions of this gene

family in larval stages of B. malayi. Nematode molting is a three-

stage process characterized by a shedding or separation of the old

cuticle from the epidermis (apolysis), generation of a new cuticle,

then the shedding of the old cuticle (ecdysis). The use of specific

cysteine protease inhibitors markedly inhibits the L3 to L4 molt in

filarial worms implicating cysteine proteases in general in this

process [34,44,45]. More explicitly, both apolysis and ecdysis are

disrupted giving rise to L4 parasites constrained within an L3

cuticle, termed an ‘accordion’ phenotype [34]. Multiple members

of the cathepsin L-like family appear to be involved in molting as

the specific suppression of cpl-1 alone in Onchocerca vovlvulus reduced

but did not abrogate the L3 to L4 molt [18]. We show that Bm-cpl-

1 is also involved in similar processes in B. malayi as its suppression

manifested an aberrant cuticular phenotype in L3 worms.

Examination of worms suppressed at seven dpi revealed an

apparent sloughing of the cuticle without the accordion pheno-

type. As the L3 to L4 molt occurs in the vertebrate host this

phenotype is not a disruption of the L3 to L4 molt, but rather a

dysfunction in L3 cuticle formation, maintenance or development.

Alternatively, we could be observing a disruption of the L2 to L3

molt. Bm-cpl-1 expression is up-regulated in the L3 stage but the

exact timing of this up-regulation as it relates to the transition from

L2 to L3 stages is unclear. Guiliano et al. [34] report Bm-cpl-1 up-

regulation at six dpi, a window consistent with the L2 to L3

transition. If Bm-cpl-1 performs the same function for the L2 to L3

molt as for the L3 to L4 molt, then the sloughed cuticle we observe

upon dsRNA injection at seven dpi could be that of the L2, with

Bm-cpl-1 suppression preventing ecdysis. Further examination of

cuticle ultrastructure in these suppressed worms at the electron

microscope level could provide evidence to this effect.

We observed a stunting of Bm-cpl-1 suppressed L3 growth

compared to control worms, a phenotype previously unreported

either after chemical inhibition of cysteine proteases or gene

suppression in other parasite stages. Normally at the end of the L2

stage parasites are 750–795 mm long and increase in length to

approximately 1350 mm at the L3 stage within four d [38]. Our

control L3, taken from mosquitoes injected with saline, had a

mean length of 1347 mm corresponding closely with the published

data. The mean length of Bm-cpl-1 suppressed L3, however, was

significantly shorter (700 mm). Suppression of this gene at the L2/

L3 interface (seven dpi) arrests parasite growth and the L3 worms

remain L2-sized within the mosquito. One explanation for this

observation is that Bm-cpl-1 suppression at the L2/L3 interface is

inhibiting the L2 to L3 molt, L2 cuticle ecdysis is not successful

and therefore the worms are constrained within it, unable to

increase their length. Alternatively, the stunting may not be due to

aberrant molting but rather an inhibition of normal CPL-

regulated development or cellular remodeling post-molt as is seen

in other nematodes [46]. RNAi suppression of cpl-1 in C. elegans L3

by soaking produced significantly shorter and thinner adults [46]

and the localization of cpl-1 to the hypodermis in C. elegans, O.

volvulus and B. malayi is consistent with a developmental role in

nematodes [18,34,46]. Further, germline suppression of cpl-1 in C.

elegans by dsRNA injection generated an embryonic lethal

phenotype but some embryos did progress to the L1 stage and

those had incomplete gut development [46]. A repeatedly

observed phenotype in our Bm-cpl-1 suppressed L3 was a

compromised gut that appeared fenestrated and poorly developed.

Finally, Bm-cpl-1 suppression reduced normal L3 motility by up

to 69%, increased atypical postural phenotypes including caudal

paralysis, kinked appearance and reduced normal convolution at

the head and tail of B. malayi L3 as compared to control worms.

These behaviors made it impossible for the treated L3 to progress

through to the culmination of development in the mosquito host,

i.e., transfer to the definitive host. The dystaxic behaviors

produced by the suppression of Bm-cpl-1 suggest this gene has

some role, directly or indirectly, in the neuromuscular activity of B.

malayi L3 in the mosquito. It is certainly true that cathepsins are

required for normal neuromuscular behavior in other helminths;

suppression of a cathepsin L-like gene in the flatworm Fasciola

hepatica generated several aberrant motile phenotypes including

paralysis [47].

This study is the first to use the host as a delivery mechanism for

animal parasitic nematode RNAi. The model of using the host as a

delivery mechanism for RNAi has been established but has been

restricted to plant pathology where the concept has an applied use

with transgenic plants helping to control nematode infestation by

RNAi mechanisms in planta [48–50]. An alluring corollary is that

by generating transgenic mosquitoes capable of suppressing key

nematode genes in vivo we may be able to abolish parasite

transmission. We have already demonstrated here that Bm-cpl-1

suppression in vivo prevents parasites migrating to the mosquito

head and proboscis thus eliminating transmission potential.

Transformation of a mosquito with an inverted-repeat (IR)

transgene derived from Bm-cpl-1 may result in endogenous

transcription of a hairpin dsRNA, a trigger that conceptually

would induce RNAi in vivo as described here and produce a

mosquito incapable of transmitting lymphatic filariasis-causing

worms. Methods to introduce transgenes into mosquito germlines

are well established [51–55] and proof of this principle has already

been demonstrated for a mosquito-borne virus; transgenic lines of

Dengue virus-resistant mosquitoes were generated using a Dengue

virus IR transgene driven by the carboxypeptidase A promoter,

reducing virus transmission by an RNAi mechanism [56]. The

viability of this approach is enhanced not only by the ability to

transform important vector species but also by the identification of

tissue-specific promoters to drive transgene expression in favorable

tissues, for example, act88F [57] is a fly-specific promoter that

drives gene expression in the flight musculature – the precise site of

parasite development. Another positive impact this protocol may

have on lymphatic filariasis control is as a means of better

understanding the biology of current putative drug targets and

generating new data that may validate proposed novel drug

targets. This protocol introduces the ability to investigate

mosquito-borne parasite life stages, allowing the critical examina-

tion of gene function in worms growing and developing in an

optimum environment. This makes it possible to assay genes that
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encode known or proposed drug targets in a parasite within its

native intermediate host, contextualizing the null phenotypes in

vivo and accurately determining the consequences of target gene

suppression producing a more valuable target validation. As an

illustration, nematode cathepsins have been proposed as attractive

novel drug targets [58] and we have further validated these drug

targets in vivo, revealing new phenotypes, defining new biological

roles and showing that B. malayi sans Bm-cpl-1 are incapable of

completing their life cycle. These data enhance the appeal of

cathepsins as novel anthelmintic drug targets. Beyond cathepsins,

this technique will have most utility in the investigation of known

and potential antifilarial drug target genes expressed in both the

mosquito-borne life stages and those life stages that are vulnerable

to chemotherapeutic intervention.

In summary, we have developed an innovative RNAi protocol

using B. malayi that differs conceptually from present RNAi

protocols in that parasite gene expression is suppressed within the

mosquito intermediate host. Using this protocol we suppressed a B.

malayi gene in vivo, eliciting aberrant developmental and motility

phenotypes in the parasite – phenotypes that eliminate transmis-

sion potential. In contrast to present RNAi methods, we have

found the protocol to be reliable and effective, providing a major

advancement in our capability to better understand filarial

nematode gene function to the benefit of human health.

Materials and Methods

Mosquito maintenance and injection protocol
Aedes aegypti (Liverpool strain), previously selected for suscepti-

bility to filarial parasites [59], were maintained in a contained

environment at a constant temperature of 25uC, 80% relative

humidity and a 14 h light to 10 h dark photoperiod. The

mosquitoes were fed a diet of 0.3 M sucrose. Throughout the

study mosquitoes to be injected were anaesthetized on ice and

immobilized on a vacuum saddle before being microinjected

intrathoracically at the base of the head using a pulled borosilicate

glass pipette attached to a manual syringe for injection by volume

displacement. A maximum volume of 0.5 mL can be injected using

this approach with a high mosquito survival rate (.95%).

Establishing Brugia infection
B. malayi microfilaria (mf) infected cat blood was obtained from

the University of Georgia NIH/NIAID Filariasis Research

Reagent Resource Center. To establish a consistent and

repeatable parasitemia, mf were first purified using a filtration

protocol [60]. Blood containing the parasites was diluted with

phosphate buffered saline (1:5 ratio, blood:PBS) then syringe

filtered through a 0.45 mm Millipore filter. Captured mf were

washed three to five times with PBS then a further three to five

times with Aedes physiologic saline [61] before centrifugation at

6,8006g for five min. Supernatant was removed and the pelleted

mf resuspended in fresh Aedes saline to a concentration of 40

worms per mL. To inoculate mosquitoes, 20 mf were injected as

described. Microdissection of the mosquitoes throughout a 14 dpi

period confirmed this method established a controlled infection

that progressed in a predictable and consistent manner. We also

tried a blood feeding approach to establish infection but this

produced an inconsistent worm burden that is too variable to

reliably assess subsequent gene suppression experiments.

siRNA and dsRNA generation and injection
Short interfering RNAs (siRNA) targeting a B. malayi cathepsin

L-like gene (Bm-cpl-1 AF331035 [34]) were generated commer-

cially (Qiagen, CA) and modified with a 39-Cy3 fluorophore on

the sense strand. The location of each siRNA was optimized using

a proprietary algorithm and the sequence of each siRNA is as

follows: BmCL1-1, AAGGCTTAGTTTCTTATACAA; BmCL1-

2, CCGAATGGAAAGATTATGTAA; BmCL1-3, CAGAA-

GTGCATTGAAGGAATA; and BmCL1-4, CCGGTATTT-

ACTCCAGTAATA. Equimolar amounts of each siRNA were

combined and this mix was used for injection and gene

suppression experiments. dsRNA duplexes were generated in-

house using a T7 transcription-based approach. A 410 base pair

transcription template was polymerase chain reaction (PCR)

amplified from a B. malayi L3 stage cDNA library (kindly provided

by Dr. S. Williams, Smith College, MA) using gene specific

oligonucleotides designed to incorporate a T7 promoter sequence

(TAATACGACTCACTATAGGGTACT) at both the 59 and 39

ends of the amplicon. For the Bm-cpl-1 template, oligonucleotide

sequence was: L1T7dsRNAF 59 TAATACGACTCACTA-

TAGGGTACTACGGTTACCAAATTC 39 and L1T7dsRNAR

59 TAATACGACTCACTATAGGGTACTCGACAACAACA-

GGTC 39. The location of this transcription template was

carefully chosen so as to exclude the pro region of Bm-cpl-1, a

domain with high sequence homology to other cathepsin L family

genes, and consequently increase the specificity of this dsRNA

duplex. Transcription templates were gel purified and dsRNA

duplexes synthesized using the MEGAscript RNAi Kit (Ambion,

TX) according to manufacturer’s protocols. dsRNA species were

quantified with a NanoVue spectrophotometer (GE Healthcare,

NJ) prior to use. The timing of siRNA or dsRNA injection into B.

malayi-infected mosquitoes coincided with the presence of the

parasite stage of interest: to target second larval stage (L2) parasites

siRNA or dsRNA were injected five to eight dpi; to target third

larval stage (L3) parasites siRNA or dsRNA were injected nine to

12 dpi (and for the lifespan of mosquito) [35]. The mosquitoes

were processed to confirm suppression of the target gene, as

described below, 48 h post-injection of siRNA or dsRNA.

Relative quantitative RT-PCR
Brugia infected, RNA-treated and control mosquitoes were cold-

anesthetized on ice. Total RNA was extracted from individual

mosquitoes using RNAqueous Kit (Ambion, TX) before DNase

treatment using the TURBO DNA-free Kit (Ambion, TX) in thin-

walled PCR tubes. The RNA was stabilized with RNase Out

Inhibitor (Invitrogen, CA) and stored in RNase-free microcentrifuge

tubes at 4uC. This RNA was used as a template for a relative semi-

quantitative multiplex RT-PCR using the SuperScript III One-Step

RT-PCR System with Platinum Taq DNA Polymerase (Invitrogen,

CA). The principle of this reaction is to amplify a target gene of

interest and compare its intensity with a multiplexed and

normalized internal standard during the linear phase of product

amplification. A putative neuropeptide encoding gene, Bm-flp-14

(Accession number AI508026) served this role. This gene was

chosen as we had previously determined its stable transcript

production during the B. malayi L3 stage by PCR (C. Song,

unpublished). The oligonucleotide primers used to amplify Bm-cpl-1

were: CPL-1 F 59 ACAGGGCAATATGACGAGAC 39 and CPL-

1 R 59 ATCGAAGCAACGTGGCACAT 39. These primer

locations flank the region of Bm-cpl-1 homologous to the dsRNA

construct. The oligonucleotide primers used to amplify the Bm-flp-

14 internal standard were: FLP-14 F 59 CTCGT-

CCACTCTTATCACTG 39 and FLP-14 R 59 ACCGCAATGA-

TATACAACATATA 39. The profile for this PCR was: cDNA

synthesis at 50uC for 30 minutes; an initial denaturation phase of

94uC for 2 min; 38 cycles of 94uC for 30 s, 60uC for 30 s, 68uC for

1 min and a final extension phase of 68uC for 5 min. Reactions

were visualized on a 1.2% agarose gel containing ethidium bromide.
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Quantitative RT-PCR
Total RNA was extracted from individual mosquitoes and

DNase-treated as described above for three replicated RNAi

experiments and before addition of RNase Out Inhibitor and

storage, each RNA sample was quantified spectrophometrically

per a previous report [62]. This RNA served as a template in our

RT-qPCR assays using the qScript One-Step Fast RT-PCR Kit

with ROX (Quanta BioSciences, MD).

Establishing PREXCEL-Q parameters. PREXCEL-Q, a

qPCR assay development and project management software, was

used to establish our RT-qPCR parameters and to determine valid

working ranges for all of our samples per target and reference

genes. A mixture of the RNA samples was used to determine the

optimum template to use while avoiding RT-qPCR inhibition for

each of the three targets at concentration ranges of between 0.01

and 0.08 ng/mL for the siRNA experiments and between 0.02 to

0.14 ng/mL for the dsRNA experiments. For subsequent

quantitative assessment of transcript abundance, each RNA

sample was diluted to 0.06 ng/mL for the siRNA RT-qPCR

study and 0.11 ng/mL for the dsRNA RT-qPCR study, with 6 mL

of sample used per 25 mL reaction.

Primers and probes. The target sequence under evaluation

in the RT-qPCR study was the B. malayi cathepsin L-like transcript

previously described. Two reference genes were used, a

neuropeptide-encoding gene Bm-flp-14 also previously described,

and Bm-tph-1 (Accession number U80971), a tumor protein

homolog-encoding gene that is a proven reference gene for

qPCR of Brugia development in mosquitoes [33]. TaqMan minor

groove binding (MGB) probes were used in this study to facilitate

the use of shorter gene specific primer-probe sets. All probes and

primers were designed using Primer Express v. 2.0 software

(Applied Biosystems, CA) and synthesized by Applied Biosystems.

The primer and probe sequences used are shown in Table 2.

TaqMan RT-qPCR. 25 mL volume reactions were prepared

in duplicate for each RNA sample, and 20 mL of this reaction

mixture is applied per well on a 96-well plate (using white-well

reaction plates, Eppendorf, NY). Individual components of each

RT-qPCR reaction were as follows: 6 mL prediluted RNA (as

determined by PREXCEL-Q), 6.25 mL 4X One-step Fast Master

Mix with ROX, 1.25 mL qScript One-Step Fast RT, 775 nM each

primer, 150 nM probe, nuclease-free water to 25 mL. Cycling

conditions included an initial cDNA synthesis step of 50uC for

5 min followed by an RT denaturation/Taq activation phase of

95uC for 30 s then 45 cycles of 95uC for 3 s and 58uC for 30 s.

Four point standard curves were created for each target (within the

ng/mL ranges already specified above) by diluting the RNA sample

mixture in each case according to precise, PREXCEL-Q-

determined parameters (eight-fold dilution from highest to lowest

concentration). No-template control reactions substituted

nuclease-free water for RNA, and thermocycling was performed

on an ABI GeneAmp 5700 SDS (Applied Biosystems).

Quantification cycle (Cq) values were obtained at an appropriate

threshold per each target (,0.1 DRn in all cases), and data were

processed using custom Excel files by the efficiency-corrected

(EDDCq) relative quantification method [32].

Phenotype analysis
After confirmation of Bm-cpl-1 suppression, multiple assays were

performed to describe worm phenotypes. Each phenotypic assay

was performed 14 dpi and at either four or seven d post-injection.

Mosquitoes were cold-anesthetized then the wings and legs removed

and discarded using a dissecting microscope. The head, thorax and

abdomen were partitioned and further dissected to release the

parasites. The following characteristics of dissected parasites were

observed: (1) Parasite location. In order to be successfully transmitted,

these parasites have to actively migrate to the head of the mosquito

and vigorously writhe free of the proboscis. Parasite migration

through the mosquito was recorded and measured according to

escape point from the mosquito body (abdomen, thorax or head). (2)

Worm motility. A scoring schema of: one (immobile), two (compro-

mised motility, immobile for stretches of time), three (sluggish,

partial movement), four (in motion, some straight segments), or five

(all parts of the worm in constant motion) was used to quantify

parasite movement in a blind fashion by an independent evaluator.

Additional observations of aberrant motility included knotting at

one or both ends, paralysis of caudal region and presence of a

distinct angular kink were also recorded. (3) Parasite growth and

development. Digital images of RNAi and control worms were

captured so that length and diameter could be calculated using NIS

Elements D 2.30 software (Nikon, NY). (4) Parasite viability. The

number of parasites that survived to the infectious stage was

recorded so that infection prevalence and mean intensity could be

calculated. (5) Mosquito viability. We documented the number of

mosquitoes that survived through the development of parasites to

the infectious stage because these parasites inflict significant

pathology and decrease mosquito survival.

Microscopy
Nikon Eclipse 50i fluorescence microscope under UV light

(EXFO, ON) equipped with a Hy-Q FITC filter set (Chroma,

VT). Images were captured using a Digital Sight DS-2Mv camera

and NIS Elements D 2.3 software (Nikon, NY).

Statistical analysis
t-tests were used to analyze the effect of RNAi treatment on

gene expression in the RT-qPCR experiments and parasite size,

and ANOVA to analyze the effect of RNAi treatment on worm

motility based on our one through five blind-scoring schema. Chi

square tests were used to analyze the effect of RNAi treatment on

all other worm and mosquito behaviors assayed. In all tests, P

values #0.05 were considered statistically significant.
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Table 2. Primer and TaqMan probe sequences for RT-qPCR
experiment.

Gene Primer sequence (59 - 39)
Amplicon
Size (bp)

Bm-cpl-1
Forward
Reverse
Probe

GGTTACGGAACGCATCGAA
TGGGTTCCCCAGCTATTTTTAA
6FAM-TCACGGTGATTACTGGAT-
MGBNFQ

62

Bm-flp-14
Forward
Reverse
Probe

TGGGAAGAGGAAGCATGAATACTT
TGCAGCGGGAACTTTGATC
6FAM-AGATTTGGTCGTAAGTAGTTG-
MGBNFQ

66

Bm-tph-1
Forward
Reverse
Probe

TTGCAACGATATGTTGATCTTCAA
ACGAGTCCGACGCAAGCT
6FAM-ATGCATTCACAGATGAC-MGBNFQ

62

doi:10.1371/journal.ppat.1001239.t002
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