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Abstract
Astrocytes are key homeostatic cells of the central nervous system. They cooperate with neurons at

several levels, including ion and water homeostasis, chemical signal transmission, blood flow regulation,

immune and oxidative stress defense, supply of metabolites and neurogenesis. Astroglia is also impor-

tant for viability and maturation of stem-cell derived neurons. Neurons critically depend on intrinsic

protective and supportive properties of astrocytes. Conversely, all forms of pathogenic stimuli which

disturb astrocytic functions compromise neuronal functionality and viability. Support of neuroprotec-

tive functions of astrocytes is thus an important strategy for enhancing neuronal survival and

improving outcomes in disease states. In this review, we first briefly examine how astrocytic dysfunc-

tion contributes to major neurological disorders, which are traditionally associated with malfunctioning

of processes residing in neurons. Possible molecular entities within astrocytes that could underpin the

cause, initiation and/or progression of various disorders are outlined. In the second section, we explore

opportunities enhancing neuroprotective function of astroglia. We consider targeting astrocyte-

specific molecular pathways which are involved in neuroprotection or could be expected to have a

therapeutic value. Examples of those are oxidative stress defense mechanisms, glutamate uptake, puri-

nergic signaling, water and ion homeostasis, connexin gap junctions, neurotrophic factors and the

Nrf2-ARE pathway. We propose that enhancing the neuroprotective capacity of astrocytes is a viable

strategy for improving brain resilience and developing new therapeutic approaches.
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1 | INTRODUCTION

The central nervous system (CNS) represents a very challenging target

for therapeutic interventions. Even though numerus centrally acting

drugs are currently in use, these are largely molecules discovered deca-

des ago, sometimes with only minor modifications. It is generally

accepted that, for many diseases, effective therapies are lacking and

that many of the currently used drugs are only used due to the lack of

better ones, in spite of their adverse effects. For decades, the logic for

pursuing a potential drug target in the brain was its association with

processes localized to neurons, sometimes more and sometimes less

specifically aimed at a particular neuronal population. To some extent

that reflected the general “neurocentrism” in neuroscience, whereby

other components of the brain such as glial and vascular cells were

seen as irrelevant. More recently, we have learned of a wide range of

mechanisms which astrocytes employ to sustain neuronal networks

and sometimes directly affect their operation. One could argue that

even though targeting processes which are primarily compartmental-

ized to astrocytes may not lead to a quick modification of the activity

of such networks, in the long term, this approach can be better suited

for the chronic human diseases. In this review, we first briefly present

evidence that dysregulation of astrocytic functions is a common fea-

ture of many CNS diseases and then highlight some of the potentially

targetable processes in astrocytes which might be of value for future

drug development. For recent reviews on the potential drug targets in

microglia see (Moller and Boddeke, 2016; Noda, 2014).
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2 | ASTROCYTES IN THE DISEASED BRAIN
ARE CENTRAL TO NEUROPATHOLOGY

Considering the pivotal role of astrocytes in brain homeostasis and the

strong metabolic cooperation between neurons and astrocytes, one

can postulate that astrocytic dysfunction may lead to neurological dis-

ease. These diseases share common pathogenic processes, such as oxi-

dative stress, excitotoxicity, metabolic failure or inflammation, many of

which are counteracted by astrocytes in the healthy brain. Thus, dis-

ease progression is associated with escalating harmful stimuli that

eventually exhaust the neuroprotective mechanisms of astrocytes.

Even worse, sometimes deleterious pathways may be switched on in

astrocytes, directly contributing to the pathology. Some excellent

reviews were published on this topic in recent years (Parpura et al.,

2012; Pekny et al., 2016; Sofroniew and Vinters, 2010; Verkhratsky

and Parpura, 2016).

2.1 | Alexander disease—a case of “primary”
astrocytic disease

A classic example of a “primary” astrocytic disease is Alexander disease

(AxD), a human neurological disorder unequivocally caused by a dys-

function of astrocytes due to mutations in the gene encoding glial

fibrillary acidic protein (GFAP) (Brenner, Goldman, Quinlan, & Messing,

2009; Messing, Brenner, Feany, Nedergaard, & Goldman, 2012). A

characteristic feature of this fatal disorder is the widespread presence

of intracellular protein aggregates in astrocytes, called Rosenthal fibers

(RF)—bundles of intermediate filaments surrounding irregular deposits

of dense material (Herndon, Rubinstein, Freeman, & Mathieson, 1970).

RF are composed of mutant GFAP in association with other constitu-

ents, especially the small stress proteins B-crystallin and heat shock

protein 27 (Iwaki, Kume-Iwaki, Liem, & Goldman, 1989). AxD is consid-

ered a gain-of-function disorder in the sense that the GFAP mutations

produce consequences that differ dramatically from those caused by

the absence of GFAP (Brenner et al., 2009; Messing et al., 2012). This

makes gene therapy based on expression of wild type GFAP in AxD

patients impossible since it may instead exacerbate disease by increas-

ing the GFAP load. One of the most notable functional changes in

Alexander astrocytes is the decreased glutamate transport across the

cell membrane. More than 75% reduction of glutamate transporter 1

(GLT1, also known as excitatory amino acid transporter 2, EAAT2, or

solute carrier family 1 member 2, SLC1A2) immunoreactivity was

observed in mouse models of AxD and astrocytes in hippocampal CA1

region of human patients show variable to complete loss of immuno-

staining for EAAT2 (Tian et al., 2010b). EAAT2 is preferentially localized

in astrocytes and is the major mediator of glutamate clearance in

humans. Reduced glutamate uptake puts neurons at risk of glutamate

overload and excitotoxicity, explaining why seizures are common in

Alexander disease (Messing et al., 2012).

TABLE 1 Evidence for astrocytic dysfunction in neuro-psychiatric diseases

CNS disorder Evidence for the dysfunction of astrocytes Examples

AD · Intracellular accumulation of Aß in astrocytes
· Astroglial degeneration and atrophy
· Release of glia-derived inflammatory molecules
· Reactive astrogliosis
· Disturbed calcium homeostasis
· Upregulated gap junction
· Downregulation of EAAT2 which affects glutamate homeostasis
and induces excitotoxicity

(Douen et al. 2000; Filous and Silver 2016;
Jack et al. 2010; Kuchibhotla et al. 2009;
Meda et al. 2001; Parpura et al. 2012)

ALS · Decreased expression of EAAT2
· Expression of mutant SOD1
· Astroglial degeneration and atrophy
· Reactive astrogliosis

(Rossi and Volterra 2009; Turner and Talbot 2008;
Valori et al. 2014)

Epilepsy · Reactive astrogliosis
· Upregulation of glutamate dehydrogenase and downregulation of
glutamine synthetase

· Alterations of K1 buffering, calcium signaling and glutamate and
water homeostasis

· Deficiency in GABAergic inhibition

(Amiry-Moghaddam et al. 2003; Bedner and
Steinhauser 2013; Coulter and Steinhauser 2015;
Robel et al. 2015; Robel and Sontheimer 2016)

HD · Selective expression of mutant huntingtin
· Decreased expression of EAAT2
· Downregulation of Kir4.1 channel
· Reactive astrogliosis

(Hsiao et al. 2013; Mangiarini et al. 1996;
Maragakis and Rothstein 2001)

Ischemia/stroke · Compromised glutamate, ion and water homeostasis
· Reactive astrogliosis

(Liu and Chopp 2015; Zhao and Rempe 2010)

PD · Selective expression of mutant a-synuclein, which induces
widespread glial activation and neurodegeneration

· Excessive production of cytokines and neurotoxic free-radicals
· Reactive astrogliosis

(Adams et al. 2001; Cabezas et al. 2014; Spillantini
et al. 1997; Stefanis 2012; Wang et al. 2015)
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2.2 | Other pathologies involving astrocytes

Astrocytic dysfunction has been extensively implicated in the pathoge-

nesis of numerous diseases for which the primary cause has not yet

been identified. These include Alzheimer’s disease (AD), Amyotrophic

lateral sclerosis (ALS), Epilepsy, Huntington’s disease (HD), Ischemia/

stroke and Parkinson’s disease (PD), some of which are listed in

(Table 1).

2.2.1 | AD

AD is one of the most common neurodegenerative disorder character-

ized by progressive memory loss and a range of cognitive deficits

(McKhann et al., 1984). Aggregation and deposition of b-amyloid (Ab)

and the formation of neurofibrillary tangles are classical hallmarks of

AD (Hardy and Selkoe, 2002). Ab deposition in the brain seems to pre-

cede neurofibrillary tangle formation, neuronal cell death and subse-

quent functional decline (Jack et al., 2010). Astrocytes play an

important neuroprotective role in AD by internalizing and degrading

Ab peptides, thus helping to avoid formation of the deposits of toxic

extracellular Aß (Koistinaho et al., 2004; Kurt, Davies, & Kidd, 1999).

The precise mechanism by which astrocytes recognize and degrade Ab

is not known, but apolipoprotein E (APOE), which is almost exclusively

expressed in astrocytes, has been proposed to be responsible for this

function (Koistinaho et al., 2004). The APOE gene found in humans on

chromosome 19 has three loci: APOE-e2, APOE-e3 and APOE-e4. In

1993 it was demonstrated that homozygocity for APOE-e4 greatly

increases the risk for late onset AD, being almost sufficient to cause it

in patients by the age of 80 (Corder et al., 1993). Shortly afterwards it

was reported that the other allele, APOE-e2, in contrast, is rather “pro-

tective” against AD (Corder et al., 1994). These two isoforms of APOE

have an opposite effect on the phagocytic activity of astrocytes

whereby APOE-e2 increases their ability to “digest” synapses while

APOE-e4 reduces it, making synapses more vulnerable to complement-

mediated degeneration (Klionsky et al., 2016). Literature on the role of

APOE in AD is extensive and its detailed revision is outside of the

scope of this review.

Current medicines are ineffective and only temporarily alleviate

symptoms, or slightly slow down AD progression in some people. Two

types of medication are currently approved by the FDA for use against

memory loss in AD, acetylcholinesterase inhibitors and memantine.

Memantine is classified as an NMDA receptor antagonist, originally

developed as anti-diabetic drug. It is interesting that NMDA receptors

on astrocytes and neurons have different subunit compositions and

memantine blocks astroglial NMDA receptors with five times lower

IC50 than those on neurons (Palygin, Lalo, & Pankratov, 2011). Even

though therapeutic activity of memantine in AD is subtle, it is still one

of the very few drugs clinically approved for moderate-to-severe AD.

Recent studies from M. Nedergaard’s laboratory opened a very

interesting line of thought in this field. It was shown that the extracel-

lular space which is to a large extent, regulated by the subtle changes

in the volume of astrocytes has a dramatic effect on the movement of

macro-molecules and their drainage through the so-called “glymphatic”

system (Iliff et al., 2012; Thrane, Rangroo Thrane, Plog, & Nedergaard,

2015). During wakefulness this extracellular trafficking pathway for

tracer molecules and Ab shrinks, but during sleep it opens up, facilitat-

ing brain clearance of potentially toxic products. Coordinated expan-

sion of the glymphatic clearance pathway seems to be controlled via

norepinephrine receptors on astrocytes (Xie et al., 2013). Therefore,

AD could be to some extent seen as a result of failure of the “brain

drain” pathway.

Reactive astrogliosis is another well-known feature of AD (Meda,

Baron, & Scarlato, 2001). Astrogliosis tends to be focal in AD such that

reactive astrocytes are associated with amyloid plaques and surround

them with layers of processes as if forming miniature scars in an

attempt to create neuroprotective barriers (Olabarria, Noristani, Verkh-

ratsky, & Rodriguez, 2010). The intensity of astrogliosis increases with

progression of AD, while the levels of astrocyte glutamate transporters

decline, exposing neurons to additional excitotoxic damage (Simpson

et al., 2010). The glutamate transporter EAAT2 is downregulated in AD

(Tian, Kong, Lai, Ray-Chaudhury, & Lin, 2010a). Calcium homeostasis is

also affected. Both resting calcium and intracellular calcium waves in

astrocytes near plaques are increased, indicating that the astrocyte net-

work contributes to AD pathology (Kuchibhotla, Lattarulo, Hyman, &

Bacskai, 2009). Additionally, gap junctions between astrocytes are

altered in AD (Nagy, Li, Hertzberg, & Marotta, 1996). Increased gluta-

mate and ATP release has been linked to altered gap junction expres-

sion, suggesting that blocking hemichannels in neurons could be

neuroprotective in AD (Orellana et al., 2011).

AD is also accompanied by signs of inflammation (Douen et al.,

2000). Increased cerebral levels of Ab peptides and their subsequent

deposition lead to the activation of the surrounding microglia and

astrocytes (Li et al., 2011). Upon activation, both microglia and astro-

cytes release pro- and anti-inflammatory mediators, thereby establish-

ing a chronic parenchymal inflammation (Orre et al., 2014). Chronic

inflammatory stimulation of astrocytes reduces their capacity to release

neurotrophic factors, for example glia-derived neurotrophic factor, pos-

sibly contributing to cognitive decline in AD (Parpura et al., 2012). At

later stages, inflammation becomes directly damaging to the brain and

glial cytokines and chemokines lead to destruction of axons, dendrites

and synapses (Pekny et al., 2016).

Accumulation of Ab increases oxidative stress (Radi, Formichi, Bat-

tisti, & Federico, 2014), possibly due to a decrease in antioxidants and

antioxidant enzymes in astrocytes (Canevari, Abramov, & Duchen,

2004; Zhao and Zhao 2013), or mitochondrial dysfunction which occur

already at the early stages of AD (Gandhi and Abramov 2012; Kim,

Kim, Rhie, & Yoon, 2015).

To sum up, astrocytes may be involved in the pathogenesis of AD

at multiple levels. They might be driving neurodegeneration, but also

be elements of defense. Multiple neuroprotective pathways residing in

astrocytes have not been fully explored in AD.

2.2.2 | HD

HD is a genetic neurodegenerative disorder characterized by progres-

sive motor, cognitive and psychiatric decline (Ghosh and Tabrizi, 2015).

HD is caused by an expanded chain (more than 36) of glutamines in

the N-terminal region of the huntingtin protein, causing intracellular
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accumulation and aggregation of mutant huntingtin (mHTT) (Mangiarini

et al., 1996). At the cellular level, neurodegeneration in HD is most evi-

dent in striatal medium spiny neurons (MSN) (Vonsattel et al., 1985).

However, the expression of mHTT in neurons alone cannot recapitu-

late the key features of HD (Gu et al., 2005). Indeed, mHTT is accumu-

lated in astrocytes, whose function is altered in HD (Shin et al., 2005).

Astrocytic glutamate uptake is defective in the R6/2 HD mouse model,

where levels of EAAT2 are reduced, leading to increase in striatal

extracellular glutamate and excitotoxicity (Maragakis and Rothstein,

2001). Recently, astrocytic Kir4.1 was reported to be significantly

downregulated in HD mouse models, independently of overt astroglio-

sis (Ben Haim et al., 2015). Decreased expression of Kir4.1 K1 channels

leads to elevated striatal extracellular K1 in vivo which can result in

depolarization of neurons. Genetic restoration of Kir4.1 levels in striatal

astrocytes returned extracellular K1 and MSN excitability to normal,

along with improvement of some motor functions in R6/2 mice (Tong

et al., 2014). Recent work confirmed that the loss of astrocytic Kir4.1-

and EAAT2-mediated homeostatic functions in R6/2 mice compro-

mises glutamate handling and Ca21 signaling, contributing to MSNs

pathology in the striatum (Jiang, Diaz-Castro, Looger, & Khakh, 2016).

It follows, that the loss of astrocytic control over glutamate and potas-

sium extracellular levels may contribute to pathology seen in HD and

the proteins affected by HD in astrocytes, such as EAAT2 and Kir4.1

channels, might represent therapeutic targets in HD. The difficulty,

however, is that in both cases we would need positive modulators

which is usually a more difficult task than development of blockers.

Other astrocytic functions which have been implicated in pathoge-

nesis of HD are release of GABA, trophic factors, and inflammatory sig-

naling (Filous and Silver, 2016). Astrocytes in HD models release less

GABA, resulting in impaired tonic extra-synaptic inhibition (Wojtowicz,

Dvorzhak, Semtner, & Grantyn, 2013). Both human and mouse data

consistently show increased activation of the NFkB signaling in astro-

cytes, leading to enhanced inflammation (Hsiao, Chen, Chen, Tu, &

Chern, 2013). Inhibition of astrocyte-mediated TNFa signaling

enhanced motor function and reduced aggregates of mutant huntingtin

in a mouse model of HD, suggesting that targeting of this pathway

may be a viable strategy to slow the progression of HD (Hsiao et al.,

2013). Additionally, accumulation of mHTT aggregates in astrocytes

reduces secretion of brain derived neurotrophic factor (Wang et al.,

2012). These events induce a reactive state in astrocytes, leading to

release of the precursor form of NGF which may promote apoptosis of

motor neurons (Domeniconi, Hempstead, & Chao, 2007).

Thus, poor astrocytic clearance of glutamate, improper control of

extracellular K1, and reduced release of neurotrophic factors are plau-

sible contributors to the pathogenesis of HD.

2.2.3 | ALS

ALS is an adult-onset disorder caused by selective degeneration of

cortical and spinal motor neurons, leading to progressive paralysis and

muscle atrophy (Gordon, 2013). Both familial and sporadic forms of

ALS exist, with �20% of familial forms associated with dominant muta-

tions in the gene encoding Cu/Zn-superoxide dismutase (SOD1). The

mutated human hSOD1 has been used for generating experimental

models of ALS (Turner and Talbot, 2008). Analysis of various types of

these models revealed the primary role of astroglia in pathology. Astro-

glial degeneration and atrophy associated with the loss of function pre-

cede neuronal death and occur before the emergence of clinical

symptoms (Valori, Brambilla, Martorana, & Rossi, 2014; Verkhratsky,

Parpura, Pekna, Pekny & Sofroniew, 2014). When SOD1 was specifi-

cally expressed in astrocytes, it made them highly vulnerable to extrac-

ellular glutamate and resulted in secretion of several neurotoxic

factors. Silencing of mutant hSOD1 in astrocytes markedly decelerated

the progression of experimental ALS (Yamanaka et al., 2008).

Another critical pathogenic factor in ALS is the deficient glutamate

clearance by astroglia. Selective loss or dysfunction of astrocytic gluta-

mate transporters in spinal cord and cerebral cortical areas might

account for the glutamate excitotoxicity to neurons. Genetic deletion

of astrocytic EAAT2 in mice caused death of motor neurons, thus repli-

cating some features of ALS (Staats and Van Den Bosch, 2009). In line

with this, immunohistochemistry revealed a selective loss of astroglial

EAAT2 in the motor cortex and ventral horn of the spinal cord of tis-

sues from patients with sporadic ALS (Rossi and Volterra, 2009). It has

been proposed that the reduced activity of glutamate transporters in

familial ALS could be a result of the malfunction of SOD1, leading to

long-lasting oxidation of transporter proteins’ sulfhydryl groups (Seifert,

Schilling, & Steinhauser, 2006; Trotti, Rolfs, Danbolt, Brown, & Hediger,

1999). At the later stages of ALS, reactive astrogliosis as well as the

activation of microglial cells become particularly prominent (Turner

et al., 2004; Valori et al., 2014).

To summarize, at the initial stages of ALS, compromised astroglial

glutamate clearance may be the cause of glutamate excitotoxicity.

Later, reactive responses of astrocytes and microglia progress in paral-

lel with the loss of motor neurons (Zhu et al., 2015).

2.2.4 | PD

PD, the second most common age-associated neurodegenerative disor-

der, affects �1% of the population over 60 years of age. Its main histo-

pathological features are the loss of dopaminergic neurons and the

presence of a-synuclein-containing aggregates (so-called Lewy bodies)

in the substantia nigra (SN) (Spillantini et al., 1997). In addition to the

commonly known motor symptoms, PD is accompanied by autonomic

dysfunction, cognitive, psychiatric, sensory symptoms and sleep

disturbances.

Oxidative stress and mitochondrial dysfunction are probably the

key events which cause degeneration and death of dopaminergic neu-

rons in the SN (Adams, Chang, & Klaidman, 2001; Sayre, Smith, &

Perry, 2001). Oxidative stress in PD manifests as low levels of the anti-

oxidant glutathione (GSH) (Bharath, Hsu, Kaur, Rajagopalan, & Ander-

sen, 2002), increased lipid peroxidation (Dexter et al., 1989), nucleic

acid oxidation (Alam et al., 1997) and increased iron content in the

dopaminergic zones of the brain (Sofic, Paulus, Jellinger, Riederer, &

Youdim, 1991). Astrocytes are important for the antioxidant protection

via secretion of various antioxidant molecules (Sidoryk-Wegrzynowicz,

Wegrzynowicz, Lee, Bowman, & Aschner, 2011). However, in PD,

astrocytic protection of neurons is limited, possibly due to a decline in

GSH trafficking caused by chronic iNOS induction (Heales, Lam,
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Duncan, & Land, 2004). Depletion of GSH may facilitate production of

reactive oxygen and reactive nitrogen species, causing alterations in

neuronal proteins such as a-synuclein. Furthermore, the nitration of

a-synuclein by reactive nitrogen species significantly enhances the for-

mation of synuclein fibrils in vitro, resembling the situation in PD brains

(Chinta and Andersen, 2008; Paxinou et al., 2001).

Chronic neuroinflammation is another hallmark of PD pathophysi-

ology. Post-mortem analyses of human PD patients and experimental

animal studies demonstrate activation of glial cells and increases in

pro-inflammatory factors (Wang, Liu, & Zhou, 2015). Although micro-

glia is the major cell type involved in the inflammatory responses, astro-

cytes are also involved. A suggested scenario is that a-synuclein

aggregation activates microglia, which then leads to activation of astro-

cytes by pro-inflammatory cytokines (Saijo et al., 2009). Uncontrolled

neuroinflammation caused by the synergic activation of microglia and

astrocytes ultimately results in production of neurotoxic factors which

trigger death of dopaminergic neurons in the SN (Glass, Saijo, Winner,

Marchetto, & Gage, 2010).

2.2.5 | Epilepsy

Epilepsy affects more than 50 million people worldwide (Hesdorffer

et al., 2011). The main clinical manifestation are seizures, sudden, and

unpredictable episodes of abnormal electrical brain activity which can

lead to convulsions. Seizures are signs of excessive synchronisation of

neuronal activity and the search for anti-epileptic drugs have been

largely concentrated on compounds that affect neurons, for example

ion channel blockers or agonists of GABAA receptors. The efficacy of

these drugs, old and newly created, has not improved substantially

over the past decades and the drugs merely suppress symptoms with-

out treating the underlying processes. Resistance to treatment is also

common. There is, therefore, an urgent need for more efficacious med-

ications. Astrocytes might offer some interesting targets here. Speci-

mens from patients with pharmacoresistant temporal lobe epilepsy and

animal epilepsy models revealed alterations in expression, localization

and function of astrocytic connexins, K1 and water channels. In addi-

tion, disturbed gliotransmission as well as malfunction of glutamate

transporters and of the astrocytic glutamate- and adenosine-

converting enzymes—glutamine synthetase and adenosine kinase,

respectively—have been documented in epileptic tissues (Coulter and

Steinhauser, 2015).

Downregulation of inward-rectifying Kir4.1 channels in astrocytes

in hippocampus of epileptic patients points to impaired K1 clearance

from the extracellular space and increased seizure susceptibility

[reviewed by (Bedner and Steinhauser, 2013)]. Global knockout of

Kir4.1 leads to postnatal lethality (Neusch, Rozengurt, Jacobs, Lester, &

Kofuji, 2001), whereas conditional Kir4.1 knockout in astrocytes alone

is able to trigger epilepsy (Chever, Djukic, McCarthy, & Amzica, 2010;

Haj-Yasein et al., 2011a). In the same vein, mutations or single nucleo-

tide polymorphisms in the genes encoding Kir4.1 are associated with

human epilepsy (Bedner and Steinhauser. 2013). Much of Kir4.1 pro-

tein co-localizes with the water channel AQP4 in the astroglial endfeet

(Nielsen et al., 1997), suggesting that K1 clearance might depend on

concomitant transmembrane flux of water. In line with this idea, reduc-

tion in perivascular AQP4 was associated with compromised clearance

of extracellular K1 and impaired K1 buffering (Amiry-Moghaddam

et al., 2003). Prolonged seizures occur in AQP4 knockout mice (Binder

et al., 2006).

It is unsurprising that excess of extracellular glutamate characteris-

tic of human epileptic tissue can be linked to recurrent seizures and

neuronal death (Glass and Dragunow, 1995). In mice, knockout of

EAAT2 results in spontaneous seizures and hippocampal pathology.

Pharmacological inhibition of EAAT2 reduced the threshold for evoking

epileptiform activity (Campbell and Hablitz, 2004; Demarque et al.,

2004). Reduced expression of EAAT2 and glutamate-aspartate trans-

porters (GLAST, SLC1A3) also occurs in a tuberous sclerosis epilepsy

model (Wong et al., 2003). However, the studies investigating the func-

tional expression of astrocytic glutamate transporters in human epi-

lepsy are inconsistent. Some studies reported a downregulation of

EAAT1 and EAAT2 (Proper et al., 2002), but others reported no signifi-

cant changes (Eid et al., 2004). For effective removal of excess extracel-

lular glutamate, the transmitter must be sequestered and metabolized

once taken up by astrocytes. Glutamate can be de-hydrogenated into

a-ketoglutarate by glutamate dehydrogenase. Alternatively, glutamate

can be converted into glutamine by glutamine synthase and then

returned to neurons. Loss of this astrocyte-specific enzyme is found in

epilepsy (Seifert and Steinhauser, 2013). A likely consequence is that

the shortage of glutamine can affect the pool of GABA which is syn-

thesized from glutamate in the inhibitory neurons, thus weakening inhi-

bition and precipitating seizures (Alvestad et al., 2011).

A novel and a rather unexpected approach to treatment of epi-

lepsy have been recently proposed by (Sada, Lee, Katsu, Otsuki, &

Inoue, 2015). These authors took their inspiration from the fact that

some patients with drug-resistant epilepsy benefit from a ketogenic

diet which limits the intake of carbohydrates. Why this is beneficial is

not known but the authors argue that it could be due to the impact on

the “lactate shuttle” (Allaman, Belanger, & Magistretti, 2011; Mosienko,

Teschemacher, & Kasparov, 2015; Pellerin and Magistretti 2003),

whereby astrocytes supply lactate to the actively firing neurons to be

used as energy substrate. Reduced supply of carbohydrates theoreti-

cally could limit utilization of glucose and therefore production of pyru-

vate and lactate by astrocytes in the brain. Sada et al. found that neural

activity and seizures can be suppressed by lactate dehydrogenase

(LDH) inhibition and suggested that LDH could be a target for treat-

ment of epilepsy (see below).

Finally, astrocytic domain organization is disrupted in epilepsy

which may, for example, affect K1 buffering or neurotransmitter clear-

ance (Oberheim et al., 2008). Interestingly, wide-spread reactive astro-

gliosis which develops in a mouse with a conditional deletion of b1-

integrin leads to spontaneous seizures, most likely due to the impaired

uptake of glutamate (Robel et al., 2015). For further information on the

role of astrocytes in epilepsy, see (Coulter and Steinhauser 2015; Robel

2016) .

2.2.6 | Ischemia/stroke

Stroke is one of the main causes of death worldwide and the leading

cause of long-term neurological disability. The only treatment with
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proven efficiency is thrombolysis by intravenous administration of

recombinant tissue plasminogen activator. The role of astrocytes in

stroke recently attracts more and more attention. Indeed, astrocytes

are involved in a number of processes which profoundly influence tis-

sue viability during and after ischemia. It is generally acknowledged

that astrocytes are substantially more ischemia-resistant than neurons

and survive in conditions of limited blood supply, characteristic for

penumbra surrounding the core of the ischemic infarction (Swanson,

Farrell, & Stein, 1997; Vangeison, Carr, Federoff, & Rempe, 2008).

These surviving astrocytes undergo activation and are involved in neu-

roprotection and post-ischemic regeneration (Takano, Oberheim,

Cotrina, & Nedergaard, 2009; Zhao and Rempe 2010). Astroglia contri-

butions to brain resilience could include clearance of glutamate, control

over K1 concentration, supply of lactate to the stressed neurons,

secretion of neuroprotective factors, and scavenging reactive oxygen

species by releasing GSH and ascorbic acid (Liu and Chopp 2015; Zhao

and Rempe 2010). Recently, using optogenetic control of H1 pumps

expressed on astrocytes, it was demonstrated that alkalinisation of

astrocytes could reduce glutamate release and limit the ischemic brain

damage in a cerebellar ischemia model. Therefore, controlling glial pH

may be an effective therapeutic strategy (Beppu et al., 2014). In the

absence of astroglia, the vulnerability of neurons to ischemia is greatly

increased (Tanaka et al., 1999). Reactive astrocytes surrounding the

ischemic core are the main contributors to the glial scar, along with oli-

godendrocytes and microglia, establishing a barrier between the dam-

aged and surviving tissue. At the same time, astrocytes are involved in

the pathology of stroke by production of neurotoxic substances,

release of reactive oxygen species and by being a part of the brain

edema mechanism (Liu and Chopp, 2015; Zhao and Rempe, 2010).

After the stroke, scar formation and expression of proteoglycans might

impede neurite outgrowth and inhibit structural and functional recov-

ery (Cregg et al., 2014; Silver and Miller, 2004). Glial scars represent

powerful barriers for re-growth of axons, also in the case of mechanical

trauma where astrogliosis is seen as a contributor to post-traumatic

epilepsy (Robel, 2016; Verellen and Cavazos, 2010). The triggers of glial

transformation and activation in stroke or trauma remain elusive.

Thus, astrocytic processes may be either pathogenic in stroke/

reperfusion or act as brain defense mechanisms which potentially could

be harnessed for therapeutic benefits.

3 | POTENTIAL THERAPEUTIC TARGETS IN
ASTROCYTES

Astrocytes possess a number of potentially targetable and therapeuti-

cally plausible biochemical or signaling pathways. In the following sec-

tion, we summarize some of such candidate pathways and molecules

and discuss their therapeutic potential. The key known neuroprotective

pathways in astrocytes mentioned in this review are illustrated in Fig-

ure 1.

3.1 | Glutamate transporters, glutamate transmission

and excitotoxicity

As mentioned earlier, high concentrations of glutamate are neurotoxic.

The most abundant glutamate transporter in the brain is EAAT2 (syno-

nyms: GLT1 and SLC1A2) which is mainly expressed by astrocytes,

making them a vital element of the defense against excitotoxicity (Fon-

tana, 2015; Kim et al., 2011). Not surprisingly, loss or attenuation of

glial glutamate transporters have been implicated in the pathogenesis

of many CNS disorders, such as ALS (Rothstein, 2009), PD (Plaitakis

and Shashidharan, 2000), stroke (Lai, Zhang, & Wang, 2014), epilepsy

(Tanaka et al., 1997; Wetherington, Serrano, & Dingledine, 2008), HD

FIGURE 1 Major known neuroprotective pathways in astrocytes. Various pathways as discussed in the text demonstrate the multitude of
potentially therapeutically exploitable neuroprotective mechanisms in astrocytes. Molecules which have been proposed as their activators
or inhibitors are indicated in red (red arrows—putative activators; red T signs—putative inhibitors; red “?”—compounds with unclear mode of
action). Metallothioneins (MT) and AQP4 water channels are also labeled with question mark signs since, so far, there is no established
pharmacology for these pathways. For further details see the respective sections of the main text
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(Arzberger, Krampfl, Leimgruber, & Weindl, 1997), AD (Jacob et al.,

2007; Masliah, Alford, DeTeresa, Mallory, & Hansen, 1996), and major

psychiatric disorders (Choudary et al., 2005; Lauriat and McInnes,

2007; Miguel-Hidalgo et al., 2010). To the contrary, many animal stud-

ies indicate that upregulation of EAAT2 provides significant beneficial

effects in models of disease (Harvey et al., 2011; Kong et al., 2012;

Miller et al., 2012a; Takahashi et al., 2015b). Thus, EAAT2 represents a

pharmacological target which may modify neuronal function or protect

neurons.

The expression or activity of EAAT2 is regulated both transcrip-

tionally and post-transcriptionally (Grewer, Gameiro, & Rauen, 2014;

Takahashi, Foster, & Lin, 2015a). Therefore, theoretically, upregulation

of EAAT2 could be achieved at transcriptional or translational level. By

screening of 1,040 FDA-approved drugs and nutritionals, Rothstein

et al. discovered some molecules which could increase transcription of

the EAAT2 gene (Rothstein et al., 2005). The antibiotic ceftriaxone is

one of the best-studied candidates amongst this group, it has the lon-

gest half-life of available ß-lactam antibiotics and is believed to pene-

trate blood brain barrier (Yogev, Shulman, Chadwick, Davis, &

Glogowski, 1986). Ceftriaxone reduces glutamate excitotoxicity in ani-

mal models of PD, HD, ischemia, and multiple sclerosis (Cudkowicz

et al., 2014; Hu et al., 2015; Kelsey and Neville, 2014; Miller et al.,

2008). Ceftriaxone also delays loss of neurons and prolongs survival in

mouse models of amyotrophic lateral sclerosis and stroke (Guo et al.,

2003; Thone-Reineke et al., 2008). In a clinical trial where ceftriaxone

was tested for treatment of ALS patients, it was well tolerated in stages

I and II (Berry et al., 2013). Unfortunately, stage III was discontinued

because no increase of the length of survival or prevention of a func-

tional decline was achieved (Cudkowicz et al., 2014). However, it may

still be possible to develop derivatives of ceftriaxone with improved

properties. It is also possible that ALS was not the best disease target

for it.

Currently, riluzole is the only FDA-approved drug for the treat-

ment of ALS, although it prolongs the life of ALS patients by only 7

months (Miller, Mitchell, & Moore, 2012b). A major action of riluzole is

the inhibition of glutamate release from presynaptic neurons, but it

also enhances astrocytic glutamate uptake by upregulating EAAT2

gene expression (Liu et al., 2011).

Colton et al. developed a cell-based enzyme-linked immunosor-

bent assay approach to search for translational enhancers and identi-

fied 61 compound which increased EAAT2 protein levels (Colton et al.,

2010). These compounds enhanced glutamate transport without

changing EAAT2 mRNA level (Colton et al., 2010). The same group

developed thiopyridazine and pyridazine derivatives that increase

EAAT2 expression (Xing et al., 2011). Analog LDN/OSU-0212320, a

pyridazine derivative, protected cultured neurons from glutamate-

mediated excitotoxic injury. It also delayed motor function decline and

extended lifespan in an animal model of ALS (Kong et al., 2014). Fur-

ther tests of this analog in a range of animal models will potentially

reveal other diseases where reduction of excessive extracellular gluta-

mate can provide therapeutic advantage. Wider testing of these com-

pounds in other models and species but mice should verify the

therapeutic potential of this strategy.

In addition to EAAT2 transcriptional and translational activators,

there are chemicals that directly modulate the function of EAAT2. Par-

awixin1, purified from the venom of the spider parawixia bistriata,

enhances directly and selectively EAAT2 function by facilitating confor-

mational transitions involved in substrate translocation (Fontana et al.,

2007). Site-directed mutagenesis identified a structural region within

EAAT2 which is important for the transporter-enhancing activity in

transmembrane domains 2, 5, and 8 (Mortensen, Liberato, Coutinho-

Netto, Dos Santos, & Fontana, 2015). This unique structural informa-

tion could be employed in hybrid structure-based virtual screening of a

large library to identify novel allosteric modulators of EAAT2. Another

EAAT2 activator is the pyrazoline compound MS-153 ([R]-5-methyl-1-

nicotinoyl-2-pyrazoline) (Shimada et al., 1999) although recently it has

been questioned whether its effects are actually attributable to action

on EAAT2 or are a consequence of other effects such as inhibition of

Ca21 channels.

3.2 | GSH

Decreased brain content of GSH is an indicator of oxidative stress

which, in turn, is recognized as a central contributing factor to neurode-

generative diseases (Kim et al., 2015). Although GSH can cross the

blood-brain barrier, blood is probably not the major source of cerebral

GSH (Anderson, Underwood, Bridges, & Meister, 1989). Instead, the

predominant source in the brain is astrocytes, and this allows neurons

to maintain a sufficient antioxidant defense. Hence upregulating astro-

cytic GSH production could be a potential neuroprotective strategy.

Zonisamide, a novel anti-PD agent used in Japan, increased GSH levels

in the striatal astrocytes and demonstrated neuroprotective effects

against dopaminergic neurodegeneration in PD mice (Asanuma et al.,

2010). However, this drug upregulates expression of a whole range of

factors which are also potentially neuroprotective and neurotrophic.

3.3 | Metallothioneins

Metallothioneins (MT) are a family of low molecular weight and

cysteine-rich proteins with antioxidant, anti-apoptotic, and anti-

inflammatory properties (Bolognin, Cozzi, Zambenedetti, & Zatta,

2014). MT has been implicated in neurodegenerative diseases including

PD, AD, and also brain trauma and ischemia (Hozumi, 2013). Neuropro-

tective properties of MT are well documented (Chung, Hidalgo, &

West, 2008; Vasak, 2005). Deficiency in MT generally worsens the

damage caused by neurotoxic factors or trauma (Giralt et al., 2002).

However, in glioblastoma multiforme patients, high levels of MT are a

negative prognostic factor, probably because MT make tumors more

resistant to therapy (Mehrian-Shai et al., 2015).

The MT family is comprised of four main members, MT1 to MT4.

MT1 and MT2 are primarily expressed in astrocytes and it is thought

that astrocyte-derived MT facilitate neuronal survival and axonal

regeneration (Aschner, 1997; Hidalgo, Aschner, Zatta, & Vasak, 2001).

Exogenous MT1 and MT2 improved neuronal survival and axonal out-

growth in cortical, hippocampal, and dopaminergic cultures (Chung,

Vickers, Chuah, & West, 2003), and astrocytic MT protected dopami-

nergic neurons in a PD model (Miyazaki et al., 2011). In contrast, MT1
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and MT2 double knockout mice demonstrated impaired axonal regen-

eration after sciatic nerve crush and MT2A treatment promoted neurite

elongation and post-injury reactive neurite growth (Chung et al., 2003).

The exact mechanism of MT-mediated neuroprotection is not

known but possibly it involves zinc-mediated transcriptional activation

of genes involved in growth, proliferation, and differentiation (Sharma

and Ebadi, 2014; Sharma, Rais, Sandhu, Nel, & Ebadi, 2013). MT also

regulates copper metabolism and potentially by this route MT1 overex-

pression can slow disease progression in SOD1 (G93A) mice (model of

ALS) (Tokuda, Okawa, Watanabe, & Ono, 2014). MT also reduce oxida-

tive damage (Bolognin et al., 2014; Uttara, Singh, Zamboni, & Mahajan,

2009).

Interestingly, ageing is often accompanied by various late-life neu-

rodegenerative diseases, while MT show strong anti-ageing effects

(Sharma and Ebadi, 2014). Dietary supplements combined with geneti-

cally increased MT1 have been demonstrated to increase lifespan in

mice (Yang et al., 2006). Interestingly, exercise induces MT, at least in

the spinal cord (Hashimoto, Hayashi, Inuzuka, & Hozumi, 2009). So far,

no pharmacological compounds have been reported to specifically

induce MT synthesis in astrocytes or non-selectively in the brain.

Nevertheless, given the example of EAAT2 inducers (see above), this

does not look like an implausible idea.

3.4 | Aquaporin 4

The AQP4 water channel is exclusively expressed by astrocytes and

constitutes an astrocyte-specific mechanism regulating fluid homeosta-

sis which is fundamental for brain function (Badaut, Lasbennes, Magis-

tretti, & Regli, 2002; Nielsen et al., 1997). The enrichment of AQP4 in

astroglial endfeet surrounding blood vessels suggests that it regulates

not only astrocyte volume, but also the water traffic between vascular

and interstitial compartments, as well as the size, shape and diffusion

characteristics of the extracellular space (Xiao and Hu, 2014). AQP4 is

co-localized with Kir4.1, indicating that coordinated action of both

channels is required to maintain K1 homeostasis (Masaki et al., 2010).

Neuronal activity leads to transient increases in the extracellular K1

concentration and clearance of the excess K1 from the extracellular

space is an important function of astrocytes.

AQP4 knockout mice (both non-selective and glia-targeted) have a

significantly reduced tendency to develop cerebral edema following

water intoxication and stroke, as well as better survival and neurologi-

cal outcomes (Haj-Yasein et al., 2011b; Manley et al., 2000). Given the

role of AQP4 in K1 and water homeostasis, it seems rational to

develop AQP4 modulators as drugs against diseases involving brain

edema (King, Yasui, & Agre, 2000). Unfortunately, limited progress has

been made in AQP4-targeted therapeutics (Verkman, Anderson, &

Papadopoulos, 2014). This is partly due to the lack of robust assays of

AQP4 activity. The small size of the functional AQP4 monomer and its

very small pore diameter, which prevents the access of conventional

small molecules, translates to poor “druggability” (Verkman et al.,

2014). As AQP4 are simple passive pores, they lack sophisticated gat-

ing and transport mechanisms suitable for targeting with small mole-

cules. Furthermore, mutations in the extracellular and cytoplasmic

domains of AQP4 generally have little effect on water permeability

through the channel, which suggests that the binding of an inhibitor

has to occur deep in the narrow pore to physically prevent water con-

duction (Papadopoulos and Verkman, 2013; Verkman et al., 2014).

Nevertheless, further large-scale screening of random and computa-

tionally biased libraries in search of AQP4 blockers is warranted.

Rigorous tests for validation of putative lead compounds also need to

be developed.

3.5 | Connexin gap junctions

In contrast to most mature neurons, astrocytes are usually coupled

through gap junctions (GJ) to form large intercellular networks (Rouach,

Glowinski, & Giaume, 2000). GJ channels are built of connexin (CX)

proteins, of which CX43 and CX30 are the major subtypes in astro-

cytes (Giaume and McCarthy, 1996). Individual CX assemble into hex-

amers to form transmembrane channels, termed connexons, which

couple with apposing connexons on neighboring cells. Dense GJ pla-

ques may contain thousands of channels (Unwin and Zampighi, 1980).

GJ couple the cytoplasm of connected cells and permit movement of

ions and low molecular weight molecules (about 1–2 kDa (Loewen-

stein, 1981).We still do not know to what extent selectivity of the GJ

can change under different circumstances.

GJ between astrocytes allow movement of metabolic substrates

and support astrocytic spatial K1 buffering to modulate and potentially

synchronize neuronal activity (Gardner-Medwin, 1983). GJ are also

dense at the endfeet of astrocytes where they provide a perivascular

route that facilitates intercellular trafficking between neighboring end-

feet (Simard, Arcuino, Takano, Liu, & Nedergaard, 2003). Connexons

exist also on their own as single membrane hemichannels which con-

nect the cell cytoplasm to the extracellular milieu (Giaume, Leybaert,

Naus, & Saez, 2013). It is now known that under certain conditions CX

hemichannels can release ATP (Huckstepp et al., 2010) or lactate (Kara-

giannis et al., 2016).

Intercellular communication among astrocytes is lost in CX43/

CX30 double knockout mice, demonstrating their pivotal role in astro-

glial connectivity (Dermietzel et al., 2000; Giaume and Theis 2010).

CX43/CX30 double knockout leads to impaired potassium clearance

and disrupts synaptic transmission and plasticity (Pannasch et al., 2011;

Wallraff et al., 2006). CX43/CX30 double knockout also causes astro-

cyte endfeet edema and weakens the blood-brain barrier (Ezan et al.,

2012). Under pathological conditions, altered CX expression may lead

to a failure of glial communication (Rouach et al., 2002). Changes in

CX43 expression have been detected in animal models and human

patients with epilepsy, in ischemia and stroke, autism and neurodege-

nerative diseases (Takeuchi and Suzumura 2014).

Specific small molecule modulators of CX43/CX30 are not avail-

able and, at present, the best-characterized tools to target specific CX

are peptides that mimic a short stretch of amino acids on the extracel-

lular loop motifs of the target connexons. These interfere with GJ for-

mation and inhibit hemichannel activity (Evans and Boitano, 2001;

Leybaert et al., 2003). Because their initial characterization (Dahl, Non-

ner, & Werner, 1994), a series of ‘‘Gap’’ peptides with specificity for

certain CX were developed (Abudara et al., 2014; Chaytor, Evans, &
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Griffith, 1997; Evans and Boitano 2001; Gomes, Srinivas, Van Dries-

sche, Vereecke, & Himpens, 2005; Leybaert et al., 2003). A promising

new report shows that Gap19, a nonapeptide derived from the cyto-

plasmic loop of CX43, inhibits astroglial CX43 hemichannels, while not

affecting GJ channels (Abudara et al., 2014). Moreover, Gap19 is spe-

cific to CX43 and was demonstrated to cross the blood–brain barrier

when coupled to the HIV-derived TAT internalization sequence (Abu-

dara et al., 2014). The effect of this peptide in neuroprotection is cur-

rently being explored (Freitas-Andrade and Naus, 2016).

Because of their importance for astrocytic functions, CX30 and

CX43 represent potential drug targets of interest, although further

studies are needed in order to understand the precise molecular mecha-

nism regulating their gating properties. However, development of small

molecules for such targets clearly requires thinking out of the box.

3.6 | PAR-1 receptors

Protease-activated receptors (PAR) are G-protein-coupled receptors

(GPCR) activated by extracellular serine proteases. The thrombin recep-

tors PAR-1, 23 and 24 and the tryptase/trypsin receptor PAR-2 are

abundant in CNS (Ramachandran, Noorbakhsh, Defea, & Hollenberg,

2012). PAR are characterized by the presence of a tethered peptide

ligand in their N-terminal part which, when released by cleavage, acts

on the ligand binding site and activates the receptor. The expression of

PAR in the brain is differentially regulated in neurodegenerative disor-

ders like PD, AD, multiple sclerosis and stroke (Luo, Wang, & Reiser,

2007). Activation of PAR can lead to cell death or cell survival, depend-

ing on the magnitude and the duration of agonist stimulation.

PAR-1 is the best characterized receptor of this family which is

activated by the cleavage of the extracellular N-terminal domain by

thrombin. This releases a tethered ligand (SFLLRN) that activates the

receptor and initiates signaling through Gq/11, Gi/o, or G12/13 G-proteins

(Coughlin 2000; Traynelis and Trejo, 2007). In the CNS, PAR-1 is

expressed mainly (and in some areas almost exclusively) by astrocytes

although in the hippocampus PAR-1 is also present in some neurons

(Junge et al., 2004; Niclou, Suidan, Brown-Luedi, & Monard, 1994;

Wang, Ubl, & Reiser, 2002). Activation of PAR-1 leads to increases in

astrocytic [Ca21]i and astrocytes activated by PAR-1 agonists can

release glutamate which, in turn, may activate NMDA receptors on

adjacent neurons (Lee et al., 2007; Vance, Rogers, & Hermann, 2015).

Activation of PAR-1 might produce bimodal effects. Low-level

PAR-1 activation seems to be protective whereas high levels of PAR-1

activation compromise cell viability (Acharjee et al., 2011; Donovan,

Pike, Cotman, & Cunningham, 1997; Vaughan, Pike, Cotman, & Cun-

ningham, 1995). The neuroprotective effects of thrombin via PAR-1

activation have been confirmed in several independent studies both in

vitro and in vivo. PAR-1 activation protected neurons and astrocytes

against chemical insults, via regulation of the secretion of cytokine-

induced neutrophil chemoattractants (Wang, Luo, & Reiser, 2007).

PAR-1 activation by thrombin, further, diminished ceramide-induced

astrocyte death via upregulation of JUN N-terminal kinase (Wang, Luo,

Stricker, & Reiser, 2006), and rescued astrocytes through the PI3K/Akt

signaling pathway from chemically induced apoptosis (Zhu and Reiser,

2014). In vivo PAR-1 activation was neuroprotective in a 6-

hydroxydopamine model of PD (Cannon et al., 2006).

In contrast, a number of studies suggest a pathophysiological role

for PAR-1 in various types of brain damage (Gutierrez-Rodriguez and

Herranz, 2015). In a murine model of stroke, neurotrauma and brain

hemorrhage, PAR-1-mediated signaling had deleterious effects on neu-

ronal survival and function. PAR-1 deficiency or its pharmacological

inhibition with an antagonist BMS-200261 reduced infarct volume in

the transient occlusion of the middle cerebral artery model (Junge

et al., 2003). PAR-1 deficiency or the central application of PAR-1

antagonists also reduced neuronal injury following intrastriatal injection

of NMDA in rats (Hamill, Mannaioni, Lyuboslavsky, Sastre, & Traynelis,

2009). PAR-1 inhibitors reduced brain damage caused by the neuro-

toxic effects of blood in intracerebral hemorrhage (Xue, Hollenberg,

Demchuk, & Yong, 2009). PAR-1 could also be involved in the patho-

genesis of chronic neurodegenerative and/or inflammatory conditions.

Post-mortem tissue samples from patients affected by HIV-associated

dementia, a neurodegenerative condition affecting patients with AIDS,

show that PAR-1 expression is enhanced in astrocytes, which in turn

could induce expression of inflammatory mediators by these cells

(Acharjee et al., 2011; Boven et al., 2003). PAR-1 deficiency, as well as

the intraventricular administration of PAR-1 antagonists, also reduced

dopaminergic neuron damage and microgliosis in a MPTP model of PD

(Hamill et al., 2007). Possibly, reports of a potential pathogenic role of

PAR-1 signaling can be linked to facilitation of glutamate release activa-

tion of NMDA receptors as mentioned above.

Importantly, there are already small molecule PAR-1 antagonists

such as vorapaxar, also known as Zontivity, marketed as anti-platelet

drug (Bhandari and Mehta, 2014) and other prototype molecules such

as RWJ-56110 (Andrade-Gordon et al., 1999).

To summarize, PAR-1 modulation may be seen as a fairly

astrocyte-specific intervention within the brain. However, a major con-

cern with the systemic use of PAR-1 antagonists is their anti-

thrombotic effect. Therefore, a centrally acting drug which modulates

astrocytic PAR-1 would need to be devoid of hematinic side effects,

which may be achievable using a pro-drug strategy.

3.7 | Astrocytic GPR37 and GPR37L1

GPR37 and GRP37L1 are two closely related GPCRs which are almost

exclusively expressed in CNS in mammals. GPR37 is alternatively

known as the Parkin-Associated Endothelin-Like receptor (Pael-R) (Imai

et al., 2001), while GP37L1 is named for its similarity to GPR37. The

interest to GPR37 was boosted by its potential link to PD. Parkin is an

E3 ubiquitin-protein ligase and mutations in this gene are directly

linked to autosomal recessive juvenile PD (AR-JP). Although parkin has

many substrates, GPR37 attracted interest because GPR37 is up-

regulated in brains of AR-JP patients (Takahahshi, 2006). In addition,

GPR37 is present in the core of Lewy bodies, thus suggesting a role of

GPR37 aggregates in PD. Also, viral vector-mediated GPR37 overex-

pression in substantia nigra results in progressive degeneration of nigral

dopaminergic neurons (Dusonchet, Bensadoun, Schneider, & Aebischer,

2009; Low and Aebischer, 2012).
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Under normal conditions, correctly folded GPR37 is trafficked to

the cell surface but it has a high propensity to misfold. Parkin ubiquiti-

nates misfolded GPR37 targeting it for proteasomal degradation. If this

process fails, misfolded GPR37 forms aggregates. Mutations in the par-

kin gene enhanced dopaminergic neuronal cytotoxicity by failing to

remove aggregated GPR37 and other substrates. This leads to activa-

tion of the unfolded protein response and cell death, a process that

can be rescued by re-expression or overexpression of wild type parkin

(Imai et al., 2001). GPR37L1 does not undergo ubiquitination and thus

the phenomenon is limited to GPR37.

Up until relatively recently, the physiological functions of GPR37

and GPR37L1 were assessed mainly through use of knockout mice.

The connection between GPR37 and parkin has led to a focus on the

dopaminergic system in GPR37 knockout mice which exhibit progres-

sive loss of dopaminergic neurons, various subtle alterations to dopami-

nergic signaling and significantly reduced locomotor activity (Marazziti

et al., 2004, 2007, 2011). In humans, dysregulation of GPR37 has

recently been linked to major depressive disorder, bipolar disorder and

autism spectrum disorder (Cruceanu et al., 2015; Fujita-Jimbo et al.,

2012; Tomita et al., 2013). In contrast to GPR37, the phenotype of

GPR37L1 knockout mice is less well characterized. The most remark-

able observation in these animals is that they are hypertensive (Min

et al., 2010) and have cardiac hypertrophy probably due to hyperten-

sion (Min et al., 2010). The link between GPR37L1 and blood pressure

control remains elusive. Another study reported abnormal cerebellum

development in GPR37L1 knockout mice that was a direct conse-

quence of premature downregulation of granule neuron precursor cell

proliferation and concomitant premature development and maturation

of Bergmann glia and Purkinje neurons (Marazziti et al., 2013).

Deorphanisation of GPR37 and GPR37L1 had been a difficult pro-

cess. Although they were originally identified through searches for

homologs of endothelin and bombesin receptors, neither GPR37 nor

GPR37L1 bind endothelins or related peptides (Leng, Gu, Simerly, &

Spindel, 1999; Zeng, Su, Kyaw, & Li, 1997). Eventually, an extracellular

peptide, prosaposin, and its active peptide fragments, prosaptides

(including the synthetic analog TX14A), were identified as agonists of

GPR37 and GPR37L1 (Meyer, Giddens, Schaefer, & Hall, 2013). Both

prosaposin and prosaptides have long been known as powerful and

essential neuroprotective and glioprotective factors (O’Brien et al.,

1995; Obrien, Carson, Seo, Hiraiwa, & Kishimoto, 1994). Mutations in

prosaposin in mammals result in severe neurodegeneration (Sikora,

Harzer, & Elleder, 2007; Yoneshige, Suzuki, Suzuki, & Matsuda, 2010).

Prosaposin and prosaptides were shown to couple via Gai and Gao

proteins which are pertussis toxin-sensitive (Hiraiwa, Campana, Martin,

& O’Brien, 1997; Yan, Otero, Hiraiwa, & O’Brien, 2000). The peptides

interacted with, at the time, unknown receptors with nanomolar affin-

ity and stimulated ERK phosphorylation (Subramaniam and Unsicker,

2010). Indeed, recently Meyer and colleagues found that GPR37 and

GPR37L1 met all these previously established characteristics (Meyer

et al., 2013).

Within the brain, GPR37 mRNA was detected both in neurons and

glia (Zeng et al., 1997) but it seems that only some neuronal types such

as dopaminergic (and probably other catecholaminergic neurons)

express it at high level. In contrast to the mixed distribution of GPR37,

GPR37L1 is highly expressed in astrocytes, with in situ hybridization

revealing greatest density of GPR37L1 within the Bergmann glia of the

cerebellum (Valdenaire et al., 1998). Microarray studies reported more

than 100 times higher expression of GPR37L1 in rat and mice astro-

cytes compared with neurons (Cahoy et al., 2008; Lovatt et al., 2007;

Zhang et al., 2014). GPR37L1 is also expressed in oligodendrocytes

(Zhang et al., 2014). These results are consistent with our own, yet

unpublished, transcriptomic analysis of rat brainstem astrocytes.

Given that the ligands of these receptors have well established

neuroprotective activities and that GPR37 and GPR37L1 are highly

expressed in astrocytes, one may speculate that the beneficial effects

of prosaposin and its derivatives might be mediated at least partially by

astrocytes rather than by a direct action on the neurons. Prosaptide

acting on GPR37/GPR37L1 clearly protected cultured astrocytes from

oxidative stress (Meyer et al., 2013). One important direction of current

research is to assess how these two receptors regulate astrocytic func-

tion and, via this route, modulate activity and survival of neurons. An

important question is also whether these effects are specific to only

some subtypes of neurons, for example catecholaminergic neurons.

Currently, no small molecule ligands for either GPR37 or GPR37L1 are

available, and thus the pharmacology of these receptors is unexplored

terrain that has the potential to yield clinically useful therapeutic drugs.

If any of the in vivo protective effects of prosaposin are indeed depend-

ent on astrocytic GPR37and/or GPR37L1, then a screen for small mol-

ecule agonists and/or positive allosteric modulators for these receptors

would be warranted. Such compounds may have outstanding therapeu-

tic value due to their potential to mimic and/or enhance the glio- and

neuroprotective actions of secreted prosaposin.

3.8 | Targeting astrocytic adenosine receptor A2a to

improve memory in AD

Adenosine is a potent neuromodulator derived from breakdown of

ATP and other adenine nucleotides. Adenosine and ATP are released in

the brain by diverse cell types (Burnstock, 2007). A1 and A3 are Gi-

coupled, while A2A and A2B are Gs-coupled receptors which inhibit

and trigger, respectively, cyclic AMP (cAMP)-mediated signaling. A2A

receptors are highly expressed in the brain and have been implicated in

diverse neuropathologies, including PD, ischemic brain injury, traumatic

brain injury and schizophrenia (Chen et al., 2007; Matos et al., 2015).

A2A receptors on glial cells and their impact on the neuroinflammatory

and neuromodulatory processes are likely to be involved in these dis-

eases. Indeed, the A2A receptor regulates astrocytic functions (Matos,

Augusto, Agostinho, Cunha, & Chen, 2013) and has been implicated in

AD (Albasanz, Perez, Barrachina, Ferrer, & Martin, 2008; Huang and

Mucke, 2012). Astrocytic A2A receptors seem to affect the ability of

Ab peptide to suppress glutamate uptake, which could be one of the

mechanisms of excitotoxicity in AD (Matos et al., 2012). Although

microglia also expresses A2A receptors, increased levels of A2A recep-

tor expression in humans with AD are found only in astrocytes. Similar

to AD humans, aging mice expressing human amyloid precursor protein
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also have increased levels of astrocytic A2A receptors (Orr et al.,

2015). Conditional genetic removal of these receptors enhanced mem-

ory in these mice, suggesting that inhibiting astrocytic A2A receptors

might be considered as a therapeutic strategy for memory enhance-

ment. In line with this speculation, there has been some evidence

showing that caffeine, whose main target is A2A receptors, can

improve normal memory function or even prevent AD symptoms in

older adults (Arendash and Cao, 2010; Borota et al., 2014; Carman,

Dacks, Lane, Shineman, & Fillit, 2014). However, the case is not clear,

because deletion of astrocytic A2A receptors disrupts glutamate home-

ostasis, leading to psychomotor and cognitive impairments which

resemble schizophrenia (Matos et al., 2015).

3.9 | Meteorin pathway

Meteorin was first identified as a retinoic-acid-responding gene

involved in glial differentiation and regulation of axonal extension

(Nishino et al., 2004). It is a fairly long peptide - 291 amino acids in the

mouse, including a 21 amino acid signaling peptide. Meteorin is mainly

produced and secreted by astroglia and, in addition to the effects on

glia and neurons, also acts on endothelial cells (Park et al., 2008). Lenti-

viral overexpression of meteorin protected striatal neurons from exci-

totoxicity caused by quinolinic acid in vivo (Jorgensen et al., 2011) and

reversed hypersensitivity in rat models of neuropathic pain (Jorgensen

et al., 2012). Meteorin is upregulated in reactive astrocytes in a photo-

thrombotic ischemia mouse model and functions as a negative feed-

back effector in reactive gliosis (Lee et al., 2015). However, the cellular

receptor(s) for meteorin are still unknown. It has been reported that

meteorin acts through the Jak-STAT3 pathway to promote glial differ-

entiation in neural stem cells (Lee, Han, Lee, Park, & Kim, 2010). How-

ever, exogenous treatment of astrocytes with meteorin did not

activate the same pathway (Lee et al., 2015). This might be due to the

existence of more than one meteorin receptor, with different signaling

mechanisms. Nevertheless, once identified, this receptor may become

an interesting therapeutic target for neuroprotection.

3.10 | Metabotropic octadecaneuropeptide (ODN)

receptor

The CNS is sensitive to oxidative stress due to its high metabolic rate

and high levels of unsaturated lipids. ODN is a peptide

(QATVGDVNTDRPGLLDLK) generated through the proteolytic cleav-

age of the 86-amino acid precursor protein “diazepam-binding inhibi-

tor” which is expressed by astrocytes (Burgi, Lichtensteiger, Lauber, &

Schlumpf, 1999; Malagon et al., 1993), although probably not com-

pletely exclusively (Alho, Harjuntausta, Schultz, Pelto-Huikko, & Bovo-

lin, 1991). ODN is a potent protective agent that prevents oxidative

stress-induced apoptosis and attenuates H2O2-evoked inhibition of

SOD and catalase activities in astrocytes (Hamdi et al., 2011). It has

been suggested that the anti-apoptotic activity of ODN is mediated

through a putative GPCR coupled to the adenylate cyclase/protein

kinase A pathway (Hamdi et al., 2012). Downstream of protein kinase

A, ODN induces ERK phosphorylation which, in turn, activates the

expression of the anti-apoptotic gene Bcl-2 and blocks the stimulation

by H2O2 of the proapoptotic gene Bax. The effect of ODN on the Bax/

Bcl-2 balance could possibly explain its antagonism of the deleterious

action of H2O2 on mitochondrial membrane integrity and caspase-3

activation (Hamdi et al., 2012, 2015). This anti-apoptotic effect of

ODN might be important in neurodegenerative diseases and stroke. If

a dedicated GPCR for ODN exists, it could be yet another potential

candidate for the development of small molecules agonists to be used

for the treatment of ischemia and neurodegenerative diseases.

3.11 | Serotonin 1A receptors on astrocytes as a

potential route for treatment of PD

The 5-HT1A receptor, one of 14 subtypes of metabotropic receptors

for serotonin, is widely distributed in brain (Barnes and Sharp, 1999).

As a key mediator of serotonergic signaling in the CNS, the 5-HT1A

receptor is involved in numerous effects of central serotonin, ranging

from cognition and emotion control to neurite outgrowth and synapse

formation (Filip and Bader, 2009; Ohno, 2011; Pucadyil, Kalipatnapu, &

Chattopadhyay, 2005).

Quite commonly, effects mediated through 5-HT1A receptors are

claimed to be mediated by neurons. However, since a very long time it

has been known that astrocytes also express serotonin receptors and

respond to serotonin with increases in [Ca21]i. Several studies pointed

at the therapeutic potential of astrocytic 5-HT1A receptors. Stimula-

tion of 5-HT1A receptors on astrocytes promotes astrocyte prolifera-

tion and neuroprotection both in vitro and in PD model mice (Miyazaki

et al., 2013). The 8-OH-DPAT [(R)-(1)28-hydroxy-2-(di-n-propyla-

mino)tetralin hydrobromide], a full 5-HT1A agonist, enhances astrocyte

proliferation in mouse striatum. The 8-OH-DPAT significantly up-

regulates astrocytic antioxidant pathways by increasing the expression

of erythroid 2-related factor 2 (Nrf2) (Miyazaki et al., 2013) which acti-

vates genes involved in anti-oxidant defense (see below). Nrf2-

regulated genes are preferentially activated in astrocytes, boosting

their detoxification and antioxidant functions (Vargas and Johnson,

2009). Activation of Nrf2 in astrocytes protects dopaminergic neurons

from oxidative stress (Miyazaki et al., 2011; Wong et al., 2003). Protein

S100ß is expressed in various cell types with the highest level in the

cytoplasm of astrocytes (Selinfreund, Barger, Pledger, & Vaneldik,

1991) which release it into the extracellular space. Extracellular S100b

has autocrine effects and promotes astrocytic proliferation (Donato,

2003). Stimulation of 5-HT1A receptors on astrocytes leads to secre-

tion of S100b which seems to be protective at nanomolar concentra-

tions although deleterious at micromolar concentrations. It is therefore

conceivable that pharmacological modulation of 5-HT1A receptors on

astrocytes could be astro- and neuroprotective [for more detail see

(Miyazaki and Asanuma, 2016)].

3.12 | Targeting of astrocytic LDH enzymes to

treat epilepsy

In addition to glucose, lactate is a major source of energy in the brain,

and a significant amount of lactate is produced through glycolysis by
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astrocytes (Dienel, 2012; Gladden, 2004). LDH catalyzes the intercon-

version of pyruvate and lactate; some of which is transported from

astrocytes to neurons via the so called “lactate shuttle” (Chih and Rob-

erts Jr., 2003; Pellerin and Magistretti, 1994). In addition, lactate may

have a signaling role in the brain (Tang et al., 2014), see also our recent

review (Mosienko et al., 2015).

In epilepsy where activity of hyperexcitable neurons is uncontrolla-

bly synchronized, abundant energy for these activities has to be sup-

plied (Bertram, Zhang, Mangan, Fountain, & Rempe, 1998). Expectedly,

high rates of glucose metabolism and elevated activity of LDH have

been shown in human epilepsy and in animal models (Dufour, Koning,

& Nehlig, 2003). A recent study suggested that the effectiveness of a

ketogenic diet against epilepsy is linked to bypassing glycolysis in astro-

cytes (Sada et al., 2015). It was found that that inhibition of LDH

hyperpolarised neurons, reducing their excitability, and that this could

be reversed by pyruvate, which supports the notion of it being a meta-

bolic, rather than receptor mediated action. It turned out that stiripen-

tol, which is sometimes used to treat epilepsy, is an LDH inhibitor.

Moreover, an analog of stiripentol was found which proved to be

effective in vivo in a rodent epilepsy model, thus potentially setting up

a new class of anti-epileptic therapies (Sada et al., 2015). Other findings

also implicate lactate in epilepsy, for example, altered level and cellular

distribution of monocarboxylate transporters (Perez et al., 2012).

In contrast, some studies suggested that lactate can be neuropro-

tective (Jourdain et al., 2016; Lee et al., 2012).Therefore, reduction of

lactate production by LDH inhibitors is a double-edged sword strategy

since compromising neuroprotection is undesirable. This issue requires

further exploration using new models and, perhaps, other species but

mice.

3.13 | Nrf2-ARE pathway

Maintaining redox homeostasis in the brain is essential for survival.

One critical pathway through which the cell regulates its antioxidant

defense is the Nrf2-antioxidant response element (ARE) (Johnson and

Johnson, 2015) which is a cis-acting regulatory element controlling

expression of phase II detoxifying and antioxidant genes (Rushmore,

Morton, & Pickett, 1991; Rushmore and Pickett, 1990). Nrf2 is a cyto-

plasmic protein sequestered by actin-bound protein Keap1 (Kelch ECH

associating protein) (Itoh et al., 1999; Zipper and Mulcahy, 2002).

Under normal unstressed conditions, Nrf2 is anchored to Keap1 and

rapidly degraded (Itoh et al., 2003; McMahon, Itoh, Yamamoto, &

Hayes, 2003). This process seems to be much more powerful in neu-

rons than in astrocytes (Jimenez-Blasco, Santofimia-Castano, Gonzalez,

Almeida, & Bolanos, 2015). Oxidative stress or exposure to electro-

philic agents that react with Keap1 slow down Nrf2 degradation and

lead to its nuclear accumulation. Nrf2 binding to the ARE drives

expression of several detoxifying and antioxidant genes including SOD,

GCL, GSH synthase, GSH peroxidase, GSH reductase and g-glutamine

cysteine synthase, boosting anti-oxidant defence (Kensler, Waka-

bayash, & Biswal, 2007; Sykiotis and Bohmann, 2010). Hence, the

Nrf2-ARE pathway is considered a high-value therapeutic target (de

Vries et al., 2008; Johnson and Johnson, 2015; van Muiswinkel and

Kuiperij, 2005). It is preferentially activated in astrocytes while neurons

largely depend on astrocytes for the antioxidant defense (Kraft, John-

son, & Johnson, 2004; Lee, Calkins, Chan, Kan, & Johnson, 2003; Shih

et al., 2003). Therefore, unsurprisingly, many studies report that activa-

tion of the Nrf2 pathway in astrocytes is neuroprotective (Calkins, Var-

gas, Johnson, & Johnson, 2010; Chen et al., 2009; Gan, Vargas,

Johnson, & Johnson, 2012; Vargas, Johnson, Sirkis, Messing, & John-

son, 2008). For example, astrocyte-specific overexpression of Nrf2 pro-

tects dopaminergic neurons in MPTP-injected Nrf2-deficient

parkinsonic mice (Chen et al., 2009). For further information see (Buen-

dia et al., 2016; Joshi and Johnson, 2012).

Numerous cell-based and in silico screens have identified Nrf2-

activating compounds (Schaap, Hancock, Wilderspin, & Wells, 2013;

Wang et al., 2013; Williamson et al., 2012; Wu, McDonald, Liu, Chagu-

turu, & Klaassen, 2012), including triterpenoid 2-cyano-3,12-dioxooleana-

1,9(11)-dien-28-oate-methylamide (CDDO-MA), puerarin, sulforaphane,

CDDO-ethyl amide and others. Nrf2 activators demonstrated activity in in

vitro and in vivo in different neurodegenerative mouse models, protecting

neurons, decreasing the accumulation of aberrant proteins and increasing

life span (Buendia et al., 2016; Joshi and Johnson 2012). The existing data

are strongest for PD, ALS, and multiple sclerosis models, but the therapeu-

tic potential of this pathway in AD and HD is under investigation. In con-

clusion, the Nrf2–ARE pathway is definitely a promising target in

neurodegenerative diseases with several classes of small molecules

already demonstrated to act as its inducers.

4 | CONCLUDING REMARKS

The mechanisms and pathologies mentioned in this review by no

means exhaust the list of known astroglial neuroprotective or thera-

peutic mechanisms. For example, astrocytes could be an important tar-

get for antidepressants which block re-uptake of noradrenaline (Hertz,

Chen, Gibbs, Zang, & Peng, 2004) and there is evidence that statins

can reduce release of APOE from astrocytes (Naidu, Xu, Catalano, &

Cordell, 2002). Only about 30 years ago, the very thought that a cen-

trally acting drug may target an astrocytic receptor seemed implausible.

For instance, monoamine oxidase B (MAO-B) which is a target for the

antidepressant deprenil and is localized almost exclusively in astrocytes

(Riederer et al., 1987), has recently attracted attention because it can

be used as an activator for pro-drugs that, after the reaction with

MAO-B, become cytotoxic for glioma cells, which typically upregulate

MAO-B (Sharpe and Baskin, 2016). Irrespective of glioma treatment,

MAO-B potentially could be used for local activation of other astroglia-

targeted molecules.

To sum up, the neurocentric view of brain function and disease

has been challenged by extensive data supporting the physiopathologi-

cal and therapeutic potential of astroglia. A solid body of evidence now

indicates that harnessing the natural capacity of astrocytes to protect

neurons is a promising clinical strategy. Modulation and protection of

astrocytes could in some cases become a more effective therapeutic

approach than the attempts to directly modify neuronal function or to

directly protect neurons from various insults or degeneration.
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