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Abstract

Clinical data management systems typically provide caregiver teams with useful information, 

derived from large, sometimes highly heterogeneous, data sources that are often changing 

dynamically. Over the last decade there has been a significant surge in interest in using these data 

sources, from simply re-using the standard clinical databases for event prediction or decision 

support, to including dynamic and patient-specific information into clinical monitoring and 

prediction problems. However, in most cases, commercial clinical databases have been designed to 

document clinical activity for reporting, liability and billing reasons, rather than for developing 

new algorithms. With increasing excitement surrounding “secondary use of medical records” and 

“Big Data” analytics, it is important to understand the limitations of current databases and what 

needs to change in order to enter an era of “precision medicine.” This review article covers many 

of the issues involved in the collection and preprocessing of critical care data. The three challenges 

in critical care are considered: compartmentalization, corruption, and complexity. A range of 

applications addressing these issues are covered, including the modernization of static acuity 

scoring; on-line patient tracking; personalized prediction and risk assessment; artifact detection; 

state estimation; and incorporation of multimodal data sources such as genomic and free text data.
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I. Introduction

THE intensive care unit (ICU) treats acutely ill patients in need of radical, life saving 

treatments. ICUs have evolved from the notion that specialized units used for close 

monitoring and treatment of patients could improve outcomes; many predecessors of the 

modern ICU were established in the late 1950s to provide respiratory support during a polio 

epidemic [1]. ICUs frequently have a high number of staff compared to other hospital 

departments, and studies have shown reduced incidence of mortality, lower hospital length 

of stay, and fewer illness complications [2][3], corroborating the efficacy of the intensive 

monitoring approach. However, real world constraints restrict the number of nurses and 

doctors attending to the patients in the ICU [4]. ICUs cost $81.7 billion in the US, 

accounting for 13.4% of hospital costs and 4.1% of national health expenditures [5]. 

Between 2000-2005, the number of hospital beds in the US shrank by 4.2%, but the number 

of critical care beds increased by 6.5% with occupancy increasing by 4.5%.

The ubiquitous monitoring of ICU patients has generated a wealth of data which presents 

many opportunities but also great challenges. In principle, the majority of the information 

required to optimally diagnose, treat and discharge a patient are present in modern ICU 

databases. This information is present in a plethora of formats including lab results, clinical 

observations, imaging scans, free text notes, genome sequences, continuous waveforms and 

more. The acquisition, analysis, interpretation, and presentation of this data in a clinically 

relevant and usable format is the premier challenge of data analysis in critical care [6].

In this review we highlight how machine learning has been used to address these challenges. 

In particular, we posit that data analysis in critical care faces challenges in three broad 

categories: compartmentalization, corruption, and complexity. Critical care data has 

historically been compartmentalized, with many distinct measurements of patient health 

being stored separately, even within the same institution. These data warehouses have been 

likened to silos, and the integration of data across these silos is a crucial first step before any 

insight can be gleaned. In the US, integrating the Medicare and Medicaid records is 

necessary because Medicare does not pay for nursing home services, and only by connecting 

these databases can costs associated with both acute and long-term care be ascertained [7]. 

National critical care audits have been established in many other countries including the 

United Kingdom, Australia, and Canada, but these databases frequently require manual entry 

by a skilled worker at each individual institution, rather than the automatic synchronization 

which is feasible with modern technology. The second challenge is the corruption of data 

collected during critical care. Researchers must address a multitude of sources of data 

corruption including sensor drop off, artifacts related to treatment interventions, and 

incomplete measurements. Johnson and colleagues [8] demonstrated that removal of outliers 

during preprocessing of data prior to development of a mortality prediction model was as 

important, or even more important, than the use of non-linear machine learning classifiers 

capable of capturing higher order interactions. Finally, and perhaps most self-evident, is the 

complexity inherent to critical care. ICUs provide technologically advanced life saving 

treatments that aim to both recover and maintain a healthy state in a very intricate and 

multifaceted system: the human body. The high level of monitoring in the ICU provides a 
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unique opportunity for machine learning to provide new insights and has stimulated research 

into novel methods for this purpose.

This review provides an overview of each of these challenges and presents techniques from 

the field of machine learning that have been used to address them. We also discuss the future 

directions of research necessary to advance the field of data analytics in critical care. Figure 

1 provides a diagram outlining the paper and briefly describing the topics covered. It 

illustrates how this article is organised along the lines of the three key challenges (the three 

data “C's”) in the field: Compartmentalization, Corruption and Complexity.

II. Challenge 1: Compartmentalization

There are a multitude of measurements possible to quantify the current state of a patient. 

These measurements range from laboratory measurements performed on blood samples, real 

time monitoring devices quantifying vital signs, billing codes for health care visits, 

procedure codes for services provided within health care environments, and more. For 

patients admitted to the ICU, the data volume is even higher as devices continuously monitor 

and provide information about the patient's state. However, due to a variety of factors, all 

data relating to a patient's health is rarely integrated into a single system. In fact, data 

collected at the same institution are frequently compartmentalized. The reasons for this 

phenomenon are primarily as follows: the private nature of the data, the technical difficulty 

in integrating heterogeneous sources of data into a single location, and the challenge of 

harmonizing of data to facilitate its analysis.

A. Privacy

Fundamental to the analysis of any data related to human subjects is respect of the private 

nature of the data. In 1996 the US Congress passed the Health Insurance Portability and 

Accountability Act (HIPAA) [9] which mandated confidential handling of protected health 

information (PHI). The National Health Service (NHS) in the United Kingdom outlined 

similar regulations regarding the safe keeping of PHI [10]. These acts, and their respective 

counterparts in different countries, are crucial for protecting the subjects of health research. 

While openly available computer programs and data are highly desirable to ensure the 

reproducibility of science [11], the private nature of the data prohibits this approach with any 

PHI. Data protection is achieved by health care institutions through the use of encryption 

protocols, access restricted systems, and strict regulations regarding the breadth and quantity 

of patient data which can be archived.

Inevitably, these systems have erected barriers for research using human subjects. In a 

survey by Ness et al. [12] 67.8% of respondents said that HIPAA made research more 

difficult (level 4 to 5 on a Likert scale), and the proportion of institutional review board 

applications in which the privacy rule was detrimental was significantly higher than the 

number of applications where the rule was beneficial.

Enabling the use of health data can be done in two formats: restricted access and altered data 
[13]. Restricted access entails sharing the data with a subset of approved researchers, usually 

at some cost and only allowing for data storage in well secured restricted locations. The 
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second method, altered data, involves removing some aspect of the data to allow for its more 

general release. This could involve removing PHI from the dataset (release of data in this 

manner is allowed for under HIPAA safe harbor or, less frequently, the expert determination 

rule [14]), providing high level statistics of the data, or grouping subsets of individuals 

together. Selecting the optimal balance between providing useful statistical data from data 

and ensuring the privacy of individuals - so called “statistical disclosure control” - has been 

a heavily researched area [15].

Automated de-identification of free-text medical records is often the initial barrier to the 

analysis. Neamatullah et al. developed a software package which used lexical look-up tables, 

regular expressions, and simple heuristics to de-identify free-text medical records from PHI 

including doctors' names and years of dates. The investigators reported a precision and recall 

of 0.749 and 0.967 respectively with a fallout value of 0.002 on a test corpus [16].

The Integrating Biology and the Bedside (i2b2) project is a successful application of both 

methods: data is stored locally at each institution with PHI, and researchers can query for 

aggregate summaries of the data without access to individual level information [17]. i2b2 

has also provided open access to various medical notes to encourage research in natural 

language processing to de-identify medical records, among other tasks. Building on this is 

the concept of differential privacy, where the probability of data output is almost equally 

likely to have been drawn from all nearly identical input data, which consequently 

guarantees that all outputs are insensitive to any individual's data [18]. Research has 

extended this concept into the unique setting of health care data and evaluated the utility of 

data after being anonymized using differential privacy; this may be a useful tool for future 

release of critical care data [19].

A notable success in the release of data in critical care is the PhysioBank component of 

PhysioNet [20], and in particular the Multiparameter Intelligent Monitoring in Intensive 

Care II (MIMIC-II) database [21], [22]. PhysioNet is a resource for openly available 

physiologic signals, many of which are collected during a patient's stay in critical care. 

MIMIC-II is a large openly available clinical database which provides de-identified patient 

records for over 30,000 patients admitted to the Beth Israel Deaconess Medical Center in 

Boston, MA, USA. The data is provided to researchers after certification of completion of a 

human subjects training course and the signing of a data use agreement. The database is a 

great step towards removing barriers between researchers and real world data necessary to 

validate their work. MIMIC-III has recently been released, which includes more patients and 

additional information regarding their individual stays (e.g. additional discharge 

information).

B. Integration

There are over 200,000 medical devices registered by the U.S. Food and Drug 

Administration [23]. Yet there is a scarcity of interoperability among these devices. 

Monitoring patients in the ICU generates large volumes of data, but these data cannot be 

thought of as comprising one entity. Devices to measure various aspects of patient health 

have been developed independently and organically. One of the first treatments provided by 

ICUs was respiratory support [1], and ventilators, which initially only provided positive 
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pressure through gas or pneumatic driven processes, can now electronically control volume 

and pressure while recording many other parameters. The ECG is one of the most frequently 

used measurement devices, but the data available can vary greatly: almost all devices 

calculate and record heart rate, but others automatically determine rhythm, ST elevation, or 

QT interval. Oxygen saturation devices began to be routinely used in the ICUs in the 1980s, 

most providing a measure of blood oxygen saturation, but some also providing heart rate. 

With just these few examples, it becomes clear that the integration of information from 

various devices into a single data management system is non trivial, requiring well defined 

standards for transferred packets of data, interoperability of devices, and cooperation among 

competitive device manufacturers. Unfortunately, there has been a lack of standardization 

among clinical devices [24]. The consequence of the lack of standardization and 

interoperability is a heterogeneous landscape of databases and record systems which can 

only be integrated with a great deal of labor.

The US has recently passed the Health Information Technology for Economic and Clinical 

Health (HITETCH) act, enforcing interoperability among various systems and partly 

addressing this issue. The consequences of this have been immediately apparent in the 

uptake of electronic health records (EHRs): in 2008 the number of US hospitals with EHRs 

was 9.4%, while in 2014 it had grown to 75.5% [25]. Furthermore, over 95% of these EHRs 

were certified, indicating that they possessed a required minimum level of interoperability. 

Black et al. [26] proposed a system for defining the quality of a database, though their 

concepts of coverage and accuracy do not sufficiently summarize the utility of a database, 

due to an equal weighting of the various components [27]. Cooke and Iwashyna [27] provide 

an excellent approach for selecting an existing database to address a proposed research 

question. The authors highlight the advantage of integrating, or linking, two datasets, 

providing an example where Iwashyna et al. [28] study quality of life among severe sepsis 

survivors by using an already-established link between the Health Retirement Study and 

Medicare files for patients admitted to ICUs. Finney et al. developed a data linkage scheme 

that allowed their hospital trust to link data from distinct databases using various identifiers 

with 99.8% positive predictivity [29].

Cooke and Iwashyna [27] conclude with a poignant statement - that the major barrier for 

optimal care for all critically ill patients is a lack of an integrated openly available data 

warehouse - even though this is a feasible goal. The MIMIC database has demonstrated that 

integration of data from disparate sources of the hospital is possible even when it requires 

integration of distinct databases for provider order entries, laboratory measurements, 

echocardiogram notes, discharge summaries, clinical observations, and mortality outcomes 

[21]. Furthermore, the large multi center eICU database, collected from units which take 

advantage of Philips Healthcare's telemetry services, has successfully integrated data from 

hundreds of hospitals across the continental US [30].

C. Harmony

The integration of databases, while in itself a monumental and difficult task, provides no 

guarantees of a usable data set. The reason for this is the lack of data harmony, where a 

concept in one database is not linked with a concept in the other database, or the definition 
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of concepts in one database is not congruent with the linked concept in another. An ontology 

is a systematic categorization of concepts, and matching ontologies is one of the largest 

challenges to overcome when integrating two databases. The APACHE IV mortality 

prediction system utilizes 114 admission diagnostic categories, and the difficulty in mapping 

a given ICU's diagnosis ontology to these categories has been listed as one of the major 

barriers to its clinical acceptance [31], [32]. Many coding schemes have been devised that 

aim to standardize ontologies across databases to facilitate harmonizing of their respective 

contents. The International Classification of Diseases (ICD) aimed to standardized all 

possible disease categories for patients [33], though variation in coding practice has been 

highlighted as a potential source of error [34]. As these codes are frequently retrospectively 

assigned by trained human coders reading patient notes, there is a great opportunity for 

natural language processing techniques to automate and improve the current work flow. The 

2007 Computational Medicine Challenge provided a corpus of de-identified radiology 

reports and gave participants the task of assigning two codes from a set of 45 ICD-9 codes 

[35]. The highest performing participants used medically informed features in combination 

with machine learning classifiers such as C4.5. SNOMED-CT is another coding system [36] 

which has been shown to cover 93% of clinical concepts in a problem list [37]. Another 

coding system is LOINC [38], which was originally purposed for laboratory measurements 

but has since been extended to other clinical concepts. In fact, the growing number of 

distinct ontologies, many of which overlapping in purpose, has led researchers to create a 

database of ontologies [39]. As mentioned, the concept of interoperability has become a 

major area of interest due to recent US legislation changes which penalize hospitals without 

EHRs and stipulate requirements for their communication [25]. Yet harmony among these 

EHRs has yet to be achieved [40]. While other disciplines have benefited from the use of 

machine learning on large datasets, the lack of harmony among EHRs in critical care has 

stymied applications.

III. Challenge 2: Corruption

Once data has been merged, linked, and stored in a single unified location, it is necessary to 

evaluate the data using some measure of quality. While preprocessing the data is a common 

step in many machine learning applications, it becomes critical in the medical environment 

because the data is collected with the intention of enhancing patient care, not to facilitate 

analysis. A prominent example of this phenomenon is the use of free text comments to 

highlight spurious readings: a high potassium measurement can be explained by a comment 

stating that the sample has been hemolyzed and is not an accurate reflection of the patient's 

health, and while this comment is trivial for a care giver to parse, it complicates retrospective 

analysis. Discerning true measurements from noisy observations, the hallmark of processing 

so called “dirty” data, is non-trivial and many pioneers in the field have created elegant 

solutions to these problems. Data corruption in this review has been classified into three 

variants: erroneous data, occurring when a value is not an accurate reflection of the true 

measurement; missing data, occurring when data is unavailable for a parameter of interest; 

and imprecise data, occurring when surrogate labels are provided instead of the desired 

concept label. Note that we have made a distinction between erroneous data, which has been 

modified by an aberrant phenomenon to no longer reflect the truth, and imprecise data, in 
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which the data collected is accurate but does not explicitly capture the concept of interest 

(e.g. an ICD-9 code relating to diabetes is not identical to a diagnosis of diabetes).

A. Erroneous data

As the removal of untrustworthy data is an important step in the training and testing of any 

predictive model, there is a justifiable need for algorithms that can identify artifactual data or 

utilize an inherent confidence measure to inform the user of questionable data. In a review 

by Nouira et al. [41], the authors note that many methods have been proposed for the task of 

outlier rejection in time-series analysis in the intensive care unit, including autoregression, 

integration, moving average (ARIMA) models [42], Bayesian forecasting [43], and a variety 

of robust signal estimators [44]. Three broad categories in which there can be erroneous data 

are explored here: waveforms, observations, and data fusion. These categories have been 

chosen as the type of data determines the types of artifacts possible, and consequently the 

various methods used to rectify the data. Waveform data continuously recorded from sensors 

is susceptible to high frequency artifacts associated with patient movement or clinical care. 

Periodic clinical measurements can be contaminated by data collection and coding practices 

(e.g. monitors recording missing heart rates as 0). The last category is less data specific than 

the previous categories, and highlights methods that take advantage of the redundant 

information streams in the ICU to extract data that is robust against artifacts. As these 

methods can be equally applied to either waveforms or observations, they have been 

discussed independently.

An example of data corruption, which resulted in a false alarm in the ICU, is given in Figure 

2.

1) Waveforms—A comprehensive review of artifact detection techniques in critical care is 

given by Nizami et al. [45]. The review highlights the complexity of artifact detection and 

removal: algorithms must be shown to generalize across units, manufacturers and varying 

patient demographics. Most algorithms utilize a signal quality index (SQI) which assesses 

how physiologically reasonable a signal is, excluding the data if it appeared invalid. Overall, 

the authors conclude that most existing algorithms were developed in an ad-hoc manner, 

lacked proper validation, were rarely evaluated in real-time, and usually not implemented in 

clinical practice. The authors also noted that the proprietary nature of many monitors creates 

an unknown element when analyzing derived signals from these monitors (e.g. unknown 

filters are used to process the signal prior to acquisition). This ambiguity complicates 

reproducibility in research and prevents algorithms developed on data acquired from one 

manufacturer being extended to another. Nizami et al. [45] also noted that a paucity of the 

commercially implemented signal quality indices were evaluated in the literature.

Signal quality is frequently an important quantity for real time alerting systems currently 

utilized in clinical practice. In a real time alerting system, the aim is to detect a sudden 

change in the patient state (e.g. transition from normal sinus rhythm to life threatening 

arrhythmia) and subsequently alert the clinical staff to this event. As discussed by Nouira et 
al. [41], these change-points are often life threatening, and ICU alarm systems were 

developed to alert the clinical staff with a minimal delay so as to not compromise patient 
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care. Unfortunately, many sources of noise in the ICU are transient and imitate these change-

points. This problem is further exacerbated by the simplicity of rules behind most ICU alarm 

systems, often utilizing simple magnitude thresholds to indicate a change of state [46], [47].

In order to evaluate the level of noise or conversely the signal quality, Li and Clifford 

proposed a series of techniques for pulsatile signals based on a fusion of different “simple” 

features [48], [49]. These features can be classified into three general categories, given their 

nature. The first category is based on the agreement of two independent beat detectors with 

different noise sensitivities. Both detectors are run simultaneously on the ECG signals, the 

first one being based on the detection of the ECG peak's energy [50], [51] and the second 

being based on the length transform [52]. Since the length transform is much more sensitive 

to noise than the energy detector, the level of agreement between the two detectors tends to 

be proportional to the level of signal quality. Other SQIs were also proposed, including 

features based on the power spectral density, statistical moments, and “flat line” detectors. In 

general, it appears that the extraction of SQIs, followed by their fusion in a machine learning 

framework, has had success in the literature. Behar et al. [53] utilized a support vector 

machine (SVM) [54] to directly estimate signal quality of ECG leads (achieving 95% 

accuracy across a variety of heart rhythms), while Li et al. [55] suppressed false arrhythmia 

alarms using SQIs and a relevance vector machine (RVM) [56] and achieved false alarm 

suppression rates between 17.0% for extreme bradycardia and 93.3% for asystole. Both Li et 
al. [55] and Behar et al. [53] highlighted the impact of rhythm type on signal quality, noting 

that SQIs must be tailored to a variety of arrhythmias and calling for more labelled training 

data to facilitate this task. More recently Morgado et al. [57] estimated the cross-correlation 

across a 12-lead ECG in combination with machine learning classifiers CART [58], C4.5 

[59], RIPPER [60], and a SVM [54] to achieve an accuracy of up to 92.7% and an AUROC 

of up to 0.925 for the task of signal quality estimation. This method is similar to the 

Riemannian “potato” [61], which also uses the covariance matrix of a set of simultaneous 

leads to estimate signal quality. The averaging of data across time periods has also been 

shown to improve robustness to noise. Tsien et al. [62] employed decision tree induction 

classifiers to classify a variety of artifacts from carbon dioxide, blood pressure, heart rate 

and oxygen saturation trends, showing that models developed from one minute aggregations 

of second by second data were more accurate than those built on second by second data.

Low signal quality has a large impact on alarm systems currently in place in ICUs. Most 

manufacturers are conservative with alarm thresholds and tune algorithms to be extremely 

sensitive, resulting in a false alarm rate of up to 95% [63]. This in turn has resulted in “alarm 

fatigue,” which creates an unsafe patient environment due to desensitization of caregivers - 

life threatening events can potentially be missed. [64], [65]. Zong et al. [66] proposed a 

fuzzy logic approach to accept or reject alarms on the arterial blood pressure waveform. The 

algorithm maintains a running average of various physiologic measurements derived from 

the waveform and suppresses an alarm if one of these components is not physiologically 

plausible (e.g. a systolic blood pressure above 300). Additional measures of signal quality 

were based on comparison of the current measurements to a running average.

The recent PhysioNet / Computing in Cardiology Challenge 2015 provided a public database 

of 750 training and 500 test alarms to stimulate research into the area of false alarm 
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reduction [67]. Participants in the Challenge were given samples of ICU patient waveforms 

that were identified by the bedside monitor as falling into one of five rhythms: asystole, 

extreme bradycardia, extreme tachycardia, ventricular tachycardia and ventricular 

fibrillation, or flutter. All submitted methods involved a form of signal quality estimation: 

Plesinger et al. [68] used physiologic thresholds on extracted features including heart rate 

and blood pressure, Antink et al. [69] used autocorrelation and a linear discriminant analysis 

classifier, and Fallet et al. [70] used mathematical morphology to provide additional 

robustness to noise in the underlying signal. Winning competitors were able to suppress 88% 

of the false alarms with a corresponding 8% true alarm suppression rate. This true alarm 

suppression rate dropped to 1% (with a suppression of 80% of the false alarms) when the 

algorithm was given an extra 30 seconds for rhythm classification. For a more detailed 

review of the specific issues around time-series data collection and signal processing, we 

would refer the reader to previous work in the literature [71].

2) Observations—The framework for quality assessment and artifact removal is much 

more established for high resolution physiologic waveforms as compared to lower resolution 

clinical measurements contained in an electronic data management system (referred to here 

as “observations”). For such less granular information, a commonly employed technique for 

handling artifacts is the use of domain knowledge to remove (or disallow on input) 

physiologically implausible values [31], [72]. Certain measurements intrinsically lend 

themselves to this approach: oxygen saturation values cannot go above 100%, biochemical 

concentrations have known reference ranges, vital signs have implausible ranges, etc. 

However, the domain knowledge approach of outlier rejection has limitations. Certain 

variables, especially those that have logarithmic distributions, with orders of magnitude 

between plausible values, are not easily processed using domain knowledge. Furthermore, 

due to the primary use of the data for clinical care, and not retrospective modelling, these 

errors are often not easily corrected at the source of the data collection. Other statistical 

rules-of-thumb are commonly employed in place of domain knowledge (e.g. the removal of 

extreme percentiles, sometimes referred to as “Winsorization”) [73], [74].

Fialho et al. [75] classified outliers as datum that were further than 1.5 times the interquartile 

range away from either the 25th or 75th percentile (for normally distributed data, this is 

approximately 2.7 standard deviations and 99.3% of the distribution resides within these 

limits). The authors replaced these outliers using the previous value in time, frequently 

referred to as sample and hold, and predicted fluid response using disease specific models. 

They were able to achieve AUROCs 0.04 higher than general purpose models. Johnson et al. 
demonstrated that a regularized logistic regression with no preprocessing (AUROC of 0.832) 

was inferior to a RF (AUROC of 0.841), but use of either domain knowledge based 

thresholds or an automatic method for outlier rejection resulted in the logistic regression 

model outperforming the RF (AUROC of 0.848 versus 0.843). They also demonstrate 

equivalent performance between rejection methods using automatic outliers and those 

relying upon domain knowledge. In their discussion of the challenge of applying knowledge-

based methods, they highlight the problems of cross-institution differences in unit of 

measurement, labor intensity, and the lack of known thresholds for heavy tailed distributions 

(as noted earlier). An example of the difficulty in the identification of outliers is given in 
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Figure 3, where the respiratory rates are implausible but may represent true respiratory 

distress.

Aleks et al. [76] considered the problem of modeling arterial-line blood pressure sensors, 

which are subject to frequent data artifacts and frequently cause false alarms in the ICU. 

They utilized a dynamic Bayesian network to model the sensor artifacts in a generative 

manner and reported an artifact classification performance on par with the experienced 

physician's. As pointed out by the authors, the problem of artifact detection is complicated 

by the fact that (depending on the bedside monitor brand and data archiving and streaming 

protocols) the sensor data are often averaged over fixed intervals, whereas the events causing 

data artifacts may occur at any time and often have durations significantly shorter than the 

data collection interval. Factorial switching linear dynamical systems (FSLDS) have been 

used to switch between latent modes representing stable physiology, known artifact types, 

and unknown noise types [77]. In particular, the authors' use of the “X-factor,” a single latent 

mode that captures both unknown artifact and novel physiology, gave the model additional 

flexibility to classify uncertain signals as abnormal, rather than forcing a decision between 

classifications.

Recent extensions to the FSLDS model [78] utilise a supervised framework to create a 

discriminative model (as opposed to a generative model) to first classify the sensor data as 

belonging to one of several clinical/sensor factors (e.g., blood sampling via arterial line, 

suction, sensor detachment, etc.) followed by inferring the underlying physiological state of 

the patient conditioned on each factor. This approach allows for incorporation of a richer set 

of features for patient state estimation and was shown to perform better for certain classes of 

artifact. However, the learning algorithm relies on availability of labeled data to provide a 

training dataset for learning various artifacts and clinical states.

Finally, we note that incorrect values are often physiologically plausible, particularly as the 

source monitors are designed to provide data within such ranges in the first place. Brutal 

filters such as sample and hold are often employed by the manufacturers (because 

persistence is a good estimate of physiology in the short term, and many monitors have been 

designed to present the best estimate “right now”). However, when using parameters derived 

from bedside monitors, or “clinically validated parameters,” there is a danger that significant 

bias and variance is introduced into the estimate, and that clinically relevant events can be 

missed for long periods of time. Hug et al. [79] demonstrated that by re-deriving blood 

pressures from the raw arterial blood pressure waveform, and using stringently validated 

signal quality indices to remove erroneous data, it is possible to see that clinical teams miss 

significant episodes of transient hypotension (leading to subsequent sepsis, which in turn is 

connected to higher mortality rates) for an average of four hours. This is an example of how, 

by rolling back to the original waveform data, significant extra clinical information can be 

extracted.

Of course, this leads to the enormous issue of labeling data (for developing quality indices 

and predictive algorithms). In practice, labeling of clinical data is often expensive, labor 

intensive, and consensus is difficult to obtain due to variations in clinical practice, inter-

observer variability, human biases, and incomplete capturing of clinical context in the EHR. 
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However, recent advances in clinical data crowd-sourcing may mitigate the problem of 

obtaining labeling consensus [80], [81].

As we have noted, some progress has been made in developing signal quality indices, but the 

vast majority of signals in the ICU lack any confidence levels. In many cases, the 

manufacturers of ICU medical equipment themselves generate such confidence or quality 

indices, but these are rarely shared (and if provided, the information is usually only 

displayed in the form of a traffic light system on a monitor). There is a need to open up such 

algorithms and require manufacturers to routinely report the confidence levels in their 

parameter estimates.

3) Data fusion—The high level of monitoring in the ICU provides ample opportunity for 

methods that can fuse estimates of a given physiologic parameter from multiple sources to 

provide a single measurement, with high confidence in its veracity. One commonly 

encountered example is the estimation of heart rate, which is essential in many applications, 

such as the identification of extreme bradycardia or tachycardia. Such conditions frequently 

require immediate intervention. Since the ECG generally comprises a series of large 

amplitude spikes corresponding to each beat, heart rate can be estimated by event or “beat” 

detection algorithms [82]. Although beat detection has been well explored over the last four 

decades, good beat detection algorithms can still be easily confused by the high level of 

noise encountered in challenging recording environments. In order to increase the robustness 

of the heart rate extraction, fusing the estimations from different ECG channels can be 

highly beneficial.

Several methods have been proposed in order to improve the estimation of other 

physiological parameters from noisy measurements. Among the different approaches, the 

most obvious solutions consist in, again, aggregating the estimated values on each channel 

(for those parameters estimated from physiological signals collected through multiple 

measurement channels). For example, Jakob et al. [83] demonstrated that a median filter was 

useful for removing a large proportion (41-98%) of artifacts from blood pressure signals in 

post-operative cardiac patients. Yang et. al [84] described a technique based on an hybrid 

median approach where the median of a single channel is combined with median values 

from other channels. The resulting estimate will be accurate when no more than half the 

channels are corrupted, or when artifacts span less than half the width of the median 

window. Techniques based on signal quality assessment, a topic which has been extensively 

covered in the previous section, have also been successfully applied to fuse estimates of 

physiologic parameters from multiple signals [85], [86], [87], [88].

While the median is a robust method of fusing multiple sources of data, a variety of tractable 

approaches to data fusion have also been applied. The Kalman filter (KF), a state space 

approach, is naturally suited for the processing of time-series that frequently have artifacts 

[89]. KFs treat measurements, such as heart rate, as noisy observations of an underlying 

state (e.g. “true” heart rate), and update the state only if the confidence in the current 

observation is high, conditioned on the previous observation. New observations with high 

“innovation” are more likely to be artifacts, and these are consequently down weighted in 

the calculation of the state. KFs can be seen as a natural evolution of the hybrid median 
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approach within a well defined paradigm. KFs offer the advantage of incorporating 

knowledge about the dynamics of the underlying signal, even in situations of great 

uncertainty in the observations. KF methods can identify trends and abrupt changes in the 

underlying (or latent) state without a large computational cost [90], [91], [92]. An approach 

initially proposed by Tarassenko and Townsend [93] used the KF innovation to weight heart 

rate derived from multiple channels. Li and Clifford [48] extended this method to include 

signal quality in the state updates and fusion step, thereby ensuring that low quality data and 

artifacts are de-weighted in the estimate of the physiological parameters.

Bayesian fusion has also recently been proposed to fuse estimates of heart rate [94], [95]. 

These methods treat each sensor as an independent measurement of heart rate and apply 

Bayes' rule to estimate the current state given the current and previous observations. Oster et 
al. [96] applied a switching KF for beat classification, allowing automatic selection of beat 

type from multiple “modes,” which were simultaneously evaluated. Furthermore, in a 

similar manner to the approach presented above [77], the method contains an extra mode 

unrelated to beat type, the “X-factor”, which facilitates classifying unrecognized signals as 

unknown. The use of an unknown class is a form of uncertainty: if the algorithm cannot be 

sure of a heart beat type, it is not forced to choose and can instead default to an uncertain 

classification. Incorporating uncertainty in medical practice has been highlighted as one of 

the most important components of quality improvement [97], and this should be 

acknowledged in models intended for use in clinical practice.

B. Missing data

Missing data is common and difficult aspect of data collection and analysis and has been 

heavily researched to date [98]. Yet, clinical care infrequently acknowledges the challenges 

associated with the phenomenon. Vesin et al. [99] found that out of 44 published clinical 

studies, 16 did not make any mention of missing data. Worse still, only 2 out of 44 studies 

(less than 5%) acknowledged the importance of missing data and explicitly described the 

methods they addressed it with. There are three types of missing data: missing completely at 

random (MCAR), missing at random (MAR) and missing not at random (MNAR). Data is 

MCAR when the mechanism causing its absence is completely random, for example, if a 

laboratory machine breaks down and is unable to supply measurements for a patient. In this 

case, imputation of values will result in unbiased estimates. Data is MAR if the missingness 

mechanism is unrelated to the value of the variable. An example of data MAR would be 

subsequent troponin values: while an initial value may be useful in diagnosis of MI 

subsequent values may not be of interest and consequently would be MAR. Finally, the most 

difficult mechanism occurs when data is MNAR and whether the data is missing or not 

depends on the value of the measurement. This may be the most common mechanism of 

missing data as many measurements are not performed if the clinician suspects them to be 

normal and provide no prognostic benefit. It is worth emphasizing however that these 

concepts are best considered as assumptions made during an analysis, rather than properties 

of the data, and an analysis is not invalidated solely for making an assumption regarding the 

mechanism behind the missingness which may not entirely reflect reality [100].
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Many methods either remove missing cases with too many missing values or impute 

plausible values in their place. Shah et al. [101] used an iterative approach incorporating 

singular value decomposition to impute missing data under the assumption that data were 

MAR. Waljee et al. [102] compared missing value imputation methods and demonstrated 

that a RF based missing value imputation method performs best in their simulation study 

using data which was MAR. Kim et al. [103] use principal component analysis in 

combination with EM to estimate the value of missing data from physiologic time-series.

Mean imputation remains one of the most common methods of missing data handling [104], 

and does not appear to degrade performance of various prediction systems in critical care 

greatly even though it assumes data is MAR [31], [72], [105]. Nevertheless, missing value 

imputation tends to bias the uncertainty in subsequent model estimates downward [106]. In 

the 1970s Dempster et al. [107] published an algorithm for performing Expectation-

Maximization (EM) with missing data, and this represented a fundamental shift of thought 

among statisticians from removing missing data as a nuisance toward averaging over the 

uncertainty caused by missing data [106]. This paradigm shift has slowly begun to occur in 

critical care, though most studies have yet to acknowledge the impact of missing data [99]. 

Multiple imputation, a technique which involves repeatedly imputing plausible values for 

missing data and averaging over many instances of imputation [108], [109], has received 

wide praise among the medical literature but has yet to gain traction in the critical care 

literature [99], though this is changing [110]. Gaussian Processes (GPs) have been proposed 

as well as a principled method for handling missing data [111]. An example of a GP 

inferring data is given in Figure 4.

Lasko [112] used a nonstationary GP regression approach to explicitly estimate the time-

varying volatility of latent functions to describe four laboratory values: Uric Acid (UA), 

Thyroid Stimulating Hormone (TSH), Creatinine (Cr), and LDL Cholesterol (LDL). Lasko 

estimated that these clinical laboratory tests were undersampled on average by 190% (as 

judged by the variables' information rate) but oversampled only by 27%. While GPs are a 

theoretically appealing method due to their ability to handle missing data, their use has yet 

to become widespread.

C. Imprecise data

Supervised learning is a large area of machine learning that involves learning a mapping 

between data and an output label; learning this mapping requires training data with known 

labels. Unfortunately, as labels collected in critical care databases are usually recorded for 

purposes other than retrospective data analysis, it can be difficult to define a true “ground 

truth.” Frequently only surrogate annotations are available, which capture only some 

component of the label of interest. A further complication is the fuzzy nature of most 

classification tasks of interest. For example, the definition of sepsis has evolved over time, 

and patients who were once classified using a dichotomous diagnosis are now thought to 

reside within a spectrum of the disorder [113]. Even mortality, a relatively robust outcome 

used in many prediction tasks, is primarily used as a surrogate to quantify patient severity of 

illness. ICD-9 codes are frequently used to define patient diagnosis, but the use of ICD-9 

codes for billing purposes has detrimentally affected the accuracy of the codes: since they 
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are used to maximize costs, they do not necessarily best reflect patient etiology [7]. The use 

of ICD-9 codes as labels in supervised learning is further complicated by the fact that the 

codes are susceptible to coding practice changes, and patients with the same disease profile 

may be assigned different codes [114].

An approach used by Halpern et al. to derive labels from the noisy codes available in the 

EHR is through the use of “anchors” in place of accurate labels [115]. The authors define a 

feature, such as the appearance of an ICD-9 code in discharge documentation, as an anchor 

if and only if it is always positive when the label of interest is positive. For example, the use 

of insulin therapy would be an effective anchor for diabetes. A set of anchors is used to 

create a dataset of only positive cases, and a classifier learned using this subset of data can 

be generalized to apply to all positive and negative cases [116]. Through the use of a 

“human-in-the-loop” framework, Halpern et al. demonstrate that a subset of anchors can be 

defined which facilitate large scale unsupervised classification (since humans are required to 

label a subset of the data, this process is frequently referred to as semi-supervised learning).

Another common source of ground truth annotations against which an algorithm or 

treatment is evaluated is through manual labels provided by clinical experts. However, 

significant intra-and inter- observer variability and various human biases limit accuracy 

[117]. Even in the case of a well-described and explored field such as electrocardiography, 

inter-rater disagreements in ECG diagnoses and labels can be as high as 20-40% [118]. This 

may be due to intrinsic difficulties in interpreting the signals that are linked to the level of 

training or experience of the annotators [119]. Disagreements may be exacerbated by 

significant noise contamination due to motion artifacts, electrode contact noise, and baseline 

drift [120]. Moreover, the temporal window to which a label applies is often arbitrary and 

undefined, resulting in labels being applied to transient segments of data which fall either 

partially into two or more classes, or perhaps none.

Historically, inter- and intra-rater disagreements have often been ignored, and the errors 

associated in noisy labels have not been associated with performance measurements of 

classifiers. Even in cases where consensus or voting procedures have been applied, there is a 

risk of significant bias in the labeling. However, there have been several principled 

approaches which have attempted to address the issue of bias and variance in weighted 

voting strategies. Dawid and Skene [121] first proposed a model to probabilistically combine 

multiple expert annotations in an application to identify patients fit for general anaesthesia. 

In brief, the model learns a precision for each annotator which represents the accuracy of 

their annotations compared to the consensus. The estimated ground truth is calculated as a 

weighted sum of each annotators' label, using their precision as the weight. One of the major 

strengths of the approach is the ability of the EM algorithm to handle missing annotations 

[107]. Raykar et al. [122], [123] extended the algorithm to jointly model the ground truth 

and a regression model. Zhu et al. [124] demonstrated that the inclusion of contextual 

features, such as heart rate and signal quality, ensured that the estimated ground truth in a 

QT interval labelling task was always as accurate as the best human annotator without any 

knowledge of which annotator performed best. Welinder and Perona [125] proposed a 

similar model in a Bayesian framework, again estimating the precision (or inverse variance) 

associated with each annotator's labels. Annotator bias was incorporated into the same 
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model for binary classification tasks by Welinder et al. [126]. Zhu et al. [127] outlined a 

fully Bayesian description of the model, which is capable of estimating both the precision of 

an annotator and their bias for continuous labels. Crowd sourcing of medical labels may be 

an important component in future machine learning research as it facilitates creation of large 

annotated databases and provides better estimates of ground truth for studies employing two 

or more domain experts for labeling.

IV. Challenge 3: Complexity

Having addressed the issues around data collection and validation, the final challenge is at 

the core of this review: machine learning of complex data. Machine learning is 

simultaneously the most exciting task and the most challenging issue in critical care data 

analytics. The high volume of data, which frequently overwhelms care providers [128], 

provides ample opportunity for computerized algorithms. The research covered in this article 

has been grouped as follows: models that aim to predict an outcome (prediction), inferences 

about a latent state using measurements (state estimation), and models that analyze multiple 

types of data regarding a patient, including physiology or free text notes (multimodal data).

A. Prediction

1) Mortality prediction—One of the first applications of (supervised) machine learning in 

critical care, and indeed one of the most readily obvious applications in a unit with such 

severely ill patients, is the prediction of patient mortality. Prediction of patient outcomes, 

either time based (30 day mortality) or event based (in-hospital mortality), has been 

highlighted as a key component in the efficient and optimal delivery of ICU care [129]. The 

first model aimed at predicting severity of illness of a general ICU population was the Acute 

Physiology, Age, and Chronic Health Evaluation (APACHE) system [130]. The APACHE 

system was originally created by a panel of experts who collectively assigned higher scores 

for increasing physiologic abnormality. Over time, data driven analysis was incorporated 

into the creation of the APACHE systems to provide better models with higher performance. 

APACHE II simplified APACHE I by using correlation between each feature and outcome to 

reduce the number of features from 34 to 12 [131]. APACHE III was the first generation to 

utilize multivariate logistic regression to estimate the weights for each component of the 

model [132]. Finally, APACHE IV, the latest generation, used step-wise feature selection 

techniques to select a subset of covariates in the model. The steady progression of the 

APACHE system towards increasing reliance on data more for each subsequent generation 

has been echoed by other mortality prediction systems, including the Simplified Acute 

Severity Score (SAPS) [133], [134], [72], [105] and the Mortality Prediction Model (MPM) 

models [135], [136], [137]. Recent work has shown that the combination of feature selection 

techniques (in this case a genetic algorithm) with non-convex optimization can result in a 

parsimonious feature set, which provides equivalent performance to previous higher 

dimensional severity scores [138].

While none of the aforementioned models attained the calibration necessary to be utilized on 

a patient to patient basis, they have paved the way for more sophisticated machine learning 

methods to predict mortality and other outcomes of interest. Dybowski and colleagues [139] 
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developed an artificial neural network (ANN) model optimized using a genetic algorithm for 

the purposes of mortality prediction. They demonstrated that neural networks had the 

flexibility to model complex patient physiology, and that this non-linear technique improved 

upon a logistic regression (LR) model with only linear terms. While in retrospect the study 

had limited power (due to the low training set size of 168 patients and large number of 

parameters in the neural network), it nevertheless demonstrated that the advances in machine 

learning could be translated into clinical practice. Clermont and colleagues later directly 

compared LR and ANN models [140]. When isolating the ANN's ability to model variable 

interactions, they showed no difference in discrimination between the LR and ANN models 

(AUROC of 0.848 for both). However, when allowing the ANN to directly model the 

relationship between the variable and the outcome, the ANN's AUROC increased to 0.857. 

They further demonstrated that the capability of the ANN to predict patient mortality was 

greatly reduced for sample sizes below 800 patients. Wong and Young similarly found a gain 

in discrimination from ANN models as compared to LR models (0.84 vs 0.83) [141].

The PhysioNet/Computing in Cardiology 2012 Challenge [142] aimed to stimulate research 

in patient specific mortality prediction systems. The primary evaluation metric, the 

minimum of the sensitivity (Se) and positive predictivity (PPV), was chosen to encourage 

algorithms to optimally classify patients who eventually died in the hospital (true positives). 

The best performing method, a tree based classifier with surrogate importance learned for 

missing data, achieved a score of 53.53%, indicating that it correctly classified half of the 

patients who eventually died [143]. Similar performance was achieved by set of SVMs, 

which were combined in a final regression step, acting as a bias correction and recalibration 

stage (minimum Se/PPV of 53.52%) [144]. This was a vast improvement over the 

(recalibrated) severity score SAPS I [133], which only achieved a score of 31.25% [142]. In 

a study using the openly available MIMIC-II database [20], Pirracchio and colleagues 

developed 12 models and an aggregate model which fused the outputs of the prior twelve 

(the so called “super learner”) [145]. Again, gains in performance were similar to before, 

with the AUROC of a regression model (0.84) increasing with the use of a more flexible 

model such as a random forest (0.88).

Clearly the use of regression models for prediction has been a boon for critical care, but 

more complicated models seem to provide little benefit in this area. One possible 

explanation is the exclusive use of aggregate features over large temporal windows, such as 

the lowest value over 24 hours. Indeed, the incorporation of features derived from patient 

time-series is a promising and challenging task. The concept of entropy, or the amount of 

disorder in the signal, can be calculated in a multitude of ways; the optimal quantification of 

this concept as a feature in predictive models continues to be an open area of research [146].

Saria et al. provide an example of how features derived from shorter-range time frames can 

be used in ICU prediction, in this case for preterm infants [147]. The authors used vital signs 

(HR, respiratory rate, and oxygen saturation) from 138 preterm infants to create a predictive 

risk score for severe co-morbidities. They first preprocessed the time-series data to obtain 

the mean and variance of both long-term and short-term trends. The resulting summary 

features were then modeled using long-tailed distributions, and patient log-odds ratios used 

to train a LR classifier to distinguish between low- and high-morbidity infants. The resulting 
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scoring system attained an AUROC of 0.92 for predicting high morbidity, in comparison to 

alternative available risk scores, which had AUROCs in the range of 0.70 - 0.85.

Imhoff et al. [42] discuss the application of time-series analysis in the ICU for monitoring 

lab variables and prediction of individual patient response to therapeutic interventions, in the 

context of monitoring of blood pressure lactate after liver resections and acute respiratory 

distress syndrome.

2) Medication dosing—Another important predictive question encountered in the ICU is 

that of medication dosing. A recent study by Ghassemi et al. [148] highlighted that the mis-

dosing of medications in the ICU is both problematic and preventable. Their paper showed 

that up to two-thirds of patients at the study institution received a non-optimal initial dose of 

heparin and that the problem persisted regardless of the initial dose, due to the highly 

personal and complex factors that affect the dose-response relationship. They utilized a joint 

LR model and routinely collected clinical variables (e.g. race, ICU type, gender, age, and 

Sequential Organ Failure Assessment) to estimate a personalized initial dose of heparin. 

Their model had improved performance compared to a model based on weight alone 

(Increase in Volume Under Surface, a multi-class version of the AUC measure, of 0.06).

Ghassemi et al. extended their work to consider the problem of learning an optimal 

medication dosing policy individualized to a patent's phenotype and evolving clinical state. 

[149]. They describe a method for dose estimation similar to [148], but estimate optimal 

model parameters for each patient using a weighted combination of the incoming data from 

the individual and available data from a population of similar patients. They demonstrated an 

average improvement in AUC of 0.25, 0.19, and 0.25 for the classification of sub-

therapeutic, therapeutic, and supra-therapeutic patients, respectively, and an average 

improvement in AUC between their personalized and a non-personalized model of greater 

than 0.05 for all three therapeutic states.

Recently, Nemati et al. proposed a deep reinforcement learning approach to sequential 

optimization of medications in the ICU [150]. Their technique aimed to learn latent factors 

in routinely collected clinical time-series, which can be directly optimized to assist in 

sequential adjustment of heparin dosage. They utilized a discriminative HMM for state 

estimation, followed by function-approximation approach to Q-learning to learn an optimal 

medication dosing policy. They showed that end-to-end training of the discriminative HMM 

and the Q-network yielded a dosing policy superior to the hospital protocol. In fact, while 

the expected reward over all dosing trajectories in their cohort was negative, patients whose 

administered heparin trajectory most closely followed the reinforcement learning agent's 

policy could on average expect a positive reward (that is, spending the majority of their time 

within the therapeutic range).

In another example, many ICU patients experience hyperglycemia in the ICU, even if not 

diabetic. To predict future insulin requirements, Nachimuthu, et al. used an expert-informed 

Bayesian network structure, with the values of its parameters determined using expectation 

maximization (to accommodate missing data) [151].
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B. State estimation

Even with the vast resources available in modern intensive care, there remain many 

parameters that cannot be directly measured in the ICU. For example, while many clinicians 

are primarily interested in evaluating cardiac output, no thoroughly validated device for its 

measurement is available, and various models or approximations must be utilized for its 

estimation. In this instance, cardiac output can be considered as a latent state, from which 

we measure noisy observations. In general, many aspects of patient health are not directly 

measurable, but can be inferred through the use of state space approaches.

1) Time-series-based estimation of physiological states—Application of KFs in 

critical care has a long history extending beyond the artifact detection approaches discussed 

earlier. For instance, in the early 1980s Smith et al. [152] applied a KF to the time-series 

data from a group of kidney transplant patients, where they were able to show that in some 

patients, algorithmic detection of kidney rejection preceded that of experienced clinicians.

Another method for incorporating temporal information into disease prognosis is through 

dynamic Bayesian networks (DBNs), which are extensions of probabilistic graphical models 

to allow modelling of temporal data. The nodes of a DBN correspond to the random 

variables of interest, edges indicate the relationship between these random variables, and 

additional edges model the time dependency. DBNs have the desirable property that they 

allow for interpretation of the interactions between different variables, which is not the case 

for “black box” methods such as SVMs and the traditional ANNs. Gather et al. [153] 

pioneered the application of DBNs to model the conditional dependence structure of 

physiological variables. DBNs have been applied to the problem of parsing continuous 

waveforms collected at the bedside of an adult or neonatal patient for clinically significant 

events [154]. van der Heijden et al. used a DBN to model variables such as sputum volume, 

temperature, and blood oxygen saturation for patients with chronic obstructive pulmonary 

disease in order to predict exacerbation events [155].

Lehman et al. [169] propose an unsupervised approach for the discovery of patient state. A 

switching vector autoregressive (SVAR) model was applied to minute-by-minute heart rate 

and blood pressure measurements, with the goal of patient state estimation and clinical 

outcome prediction. In the absence of clinical labels for the patient time-series, an 

expectation-maximization algorithm was used to simultaneously segment the patient data 

into several phenotypic dynamical states and learn parameters of an AR model to best 

explain each segment. The proportion of time spent within a given dynamical region was 

then used as an input to a classifier for patient outcome prediction.

This approach has the advantage of automating the process of finding dynamical motifs in 

patient data in the absence of clinical labels, at the expense of an increase in complexity of 

the inference and learning algorithm. These methods have a further advantage of 

maintaining a belief state (that is, a probability distribution over the unobserved state 

variables) over the true physiological values of a patient when these cannot be directly 

observed due to artifact. They thus are able to provide the clinician with an estimate of the 

underlying true physiology, even in the presence of total corruption by noise.
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2) Time-series search and clustering—To enable personalized treatments, one may 

need to query a database for patients who match static and dynamics features of a given 

patient. Although much work has been performed in the field of relational database 

searching, the issue of searching though time-series is relatively unexplored in critical care 

data. Time-series search has a broad range of applications from finance to medical 

informatics, however, robust algorithms for finding predictive patterns in long sequences of 

nonstationary multivariate time-series are sparse [156]. Moreover, robust navigation and 

mining of physiological time-series often requires finding similar temporal patterns of 

physiological responses. Detection of these complex physiological patterns not only enables 

demarcation of important clinical events but can also elucidate hidden dynamical structures 

that may be suggestive of disease processes. Some specific examples where physiological 

signal search may be useful include real-time detection of cardiac arrhythmias, sleep staging 

or detection of seizure onset. In all these cases, being able to identify a cohort of patients 

who exhibit similar physiological dynamics could be useful in prognosis and informing 

treatment strategies. However, pattern recognition for physiological time-series is 

complicated by changes between operating regimes and measurement artifacts.

A very related topic to time-series similarity is that of time-series clustering. Clustering 

methods for time-series data is often more challenging than clustering of static data 

primarily because the distance metric between two time-series is less well-defined. 

Numerous distance metrics have been proposed, including the Euclidean distance, Pearson's 

correlation factor and dynamic time warping. As categorised by Liao, there are three 

different approaches for clustering time-series data: using the raw time-series as input, using 

features extracted from the raw data, or by presuming an underlying model of the data [157]. 

Unsupervised approaches can be used not only as standalone analyses, but also within two-

step algorithms to generate features as input for secondary supervised analyses. This is 

particularly appropriate when it is unclear which aspects of the data may be discriminatory 

(e.g. within a complex physiologic time-series), or when it is suspected that the underlying 

structure in the data correlates with the desired outcome predictor variable.

Saeed et al. transformed patient time-series into a symbolic representation using wavelet 

decomposition and subsequently applied term informativeness techniques [158] to identify 

similar patterns in blood pressure waveforms. Lehman et al. [159] developed a vectorised 

threshold and gradient-based search engine, which allowed users to identify patients (and 

episodes) which fit specific criteria. By precomputing maximum values, minimum values, 

and gradients over multiple scales for all time-series for all patients, the authors were able to 

accurately identify episodes indicative of acute myocardial infarction, lactic acidosis, acute 

kidney injury, hemodynamic instability, multi-organ failure, and paroxysmal 

tachyarrhythmia. Subsequent work by the same authors [160] employed a Gaussian mixture 

model approach to learn the dynamic patterns in physiology through expectation 

maximization. Similarity between segments was computed using the Mahalanobis distance. 

Sow et al. [161] demonstrated that clustering similar patients together using locally 

supervised metric learning reduced the error in physiology forecasting algorithms.

In [162] authors proposed a framework for distributed identification of dynamical patterns in 

physiological time-series using a switching KF. Moreover, they described a fast and 
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memory-efficient algorithm for learning and retrieval of phenotypic dynamics in large 

clinical time-series databases. Through simulation they showed that the proposed algorithm 

is at least an order of magnitude faster that the state of the art, and provided encouraging 

preliminary results based on real recordings of vital sign time-series from the MIMIC-II 

database. The switching KF framework allows for defining a notion of “similarity” among 

multivariate physiological time-series based on their underlying shared dynamics. Therefore, 

one may consider two subjects to be similar if their underlying vital sign time-series exhibit 

similar dynamics in response to external (e.g., tilting of body) or internal perturbations (e.g., 

onset of blood infection). This approach provides an improvement over time-series similarity 

measures based on trend-detection [163], wavelet-based symbolic representations [164], or 

Gaussian mixture modeling [160] due to its compact representation and sharing of the model 

parameters within and across time-series.

Hauskrecht et al. [165] applied time-series similarity measures for the opposite task: to 

locate abnormal patients and alert physicians when possible. The authors built a model for 

many possible clinical treatment actions using archived data collected in a patient's EHR. 

The model they developed would alert if the probability of an event, either administration of 

treatment or omission of treatment, strongly differed from the action taken. An example task 

was heparin delivery, and the model would alert if heparin was given to the current patient 

when the probability of heparin being given to similar patients in the past was very low. 

These alerts were generated using a SVM trained for each possible action, and the features 

were extracted from a 24 hour segmentation of patient time-series data.

[166] framed neonatal vital-signs as having an underlying set of “topics,” in an analogous 

manner to document clustering. This approach allowed the authors to learn the associations 

between different “words,” or features of the signal, and these larger “topics.” Such 

unsupervised analyses provided insight into patient similarities, which can drive the 

generation of features that are important for discrimination between patient states [147].

Schulam et al. [167] took a different approach to a time-series clustering model, in which 

they defined a set of generative linear prototype functions to describe the behaviour of 

individual clinical features over time for patients with scleroderma (a connective tissue 

disease). Ross and Dy [168] developed a set of nonparametric models for clustering patient 

time-series data that use a Dirichlet mixture of GPs, as well as take into account domain 

knowledge. In their application area of COPD patients, they were able to relate their 

identified subgroups to the presence of several genetic mutations known to be associated 

with certain forms of COPD. Though these latter two examples are drawn from applications 

of chronic disease, similar approaches are relevant for critical care situations.

In some applications, this two-stage procedure – unsupervised feature extraction followed by 

supervised learning for outcome discrimination – may be suboptimal, since the latent 

dynamics that are important to the supervised target may only be weakly related to those that 

are best for explaining the raw statistics of the time-series. Additionally, generative 

approaches to unsupervised feature learning [169], [170] may be hamstrung by the 

shortcomings of approximate inference, or the underlying models may be underspecified 

with respect to the nuanced features associated with the outcomes of interest. For instance, 
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in a neurophysiological experiment involving EEG recordings, it may be the case that only a 

single low amplitude oscillation is the distinguishing feature of successful trials, and 

therefore a reduced-model specifically trained to capture that oscillation may provide a more 

parsimonious solution to the problem of predicting outcomes of each trial. It is therefore 

desirable to learn models of time-series dynamics in which the latent variables are directly 

tuned towards the supervised task of interest.

In Nemati and Adams [171], a learning algorithm specifically designed to learn dynamical 

features of time-series that are directly predictive of the associated labels was presented. 

Rather than depending on label-free unsupervised learning to discover relevant features of 

the time-series, a system that expressly learns the dynamics that are most relevant for 

classifying time-series labels is built. The goal is to obtain compact representations of 

nonstationary and multivariate time-series, a task frequently referred to as (representation 
learning) [172]. To accomplish this the authors used a connection between DBNs (e.g., the 

switching VAR model) and ANNs to perform inference and learning in state-space models, 

in a manner analogous to backpropagation in neural networks [173]. This connection stems 

from the observation that the directed acyclic graph structure of a state-space model can be 

unrolled both as a function of time and inference steps to yield a deterministic neural 

network with efficient parameter tying across time (see Fig. 5). In contrast to generative and 

maximum likelihood-based approaches to feature learning in time-series, the outcome-

discriminative learning framework provides the learning algorithm with the outcomes 

(labels) corresponding to each time-series sample (e.g., supine, slow-tilt, etc) or the entire 

time-series (responders vs. non-responders), and learns time-series features that are 

maximally discriminative. The method allowed for combining unsupervised dynamics 

discovery with supervised fine-tuning to design and initialize a new class of models for 

dynamic phenotyping, and development of phenotype-informed predictive models.

C. Specific advances in modeling

There are some modeling advances that are worth mentioning specifically, as they are 

particularly useful in the face of the complexity of data found in critical care settings.

1) Non-parametric Bayesian Approaches—The new field of Bayesian nonparametrics 

has gained much attention in recent years due to the fact that it offers a tractable means of 

tackling “big data” problems, where the complexity of models can scale with the increasing 

size and complexity of the data that are encountered.

As with conventional (parametric) Bayesian methods, non-parametric Bayesian algorithms 

allow the specification of prior knowledge in a principled manner, but where the 

distributions involved are typically defined over objects of infinite dimensionality [174]. 

This yields models that make fewer constraining assumptions about the underlying 

mechanism assumed to have generated the observed data, and which therefore offer the 

possibility of scaling to very large datasets that would otherwise not be possible. For 

example, rather than assuming that a time-series of physiological data comprises a number 

of individual data-points that are independent and identically-distributed (i.i.d.) with respect 

to some underlying probability distribution of constrained parametric form, the Bayesian 
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nonparametric approach is to define a probability distribution over the infinite-dimensional 

space of functions of which the observed data are an instantiation. That is, we move from the 

conventional notion of point-by-point analysis, which is the current state-of-the-art in patient 

monitoring, to one in which entire functions are analysed (i.e., functional data analysis) 

[175]. This latter approach closely matches the manner in which human experts perform 

inference: a clinician will analyse an entire time-series by comparing it with the prior 

knowledge gained from their clinical training and experience, rather than by performing a 

series of independent decisions on each data-point within a time-series.

Clifton et al. illustrate how patient-specific Gaussian Process (GP) regression can be used to 

identify patient deterioration much earlier than would be possible using traditional methods 

[176]. Using wearable ECG and pulse oximetry sensors to acquire data from ambulatory 

patients recovering from surgery [177], the authors use GPs to model the time-series of each 

vital sign. A functional approach was taken in [178], and related approaches [179], [180], 

[181] extend extreme value statistics over highly multivariate spaces, with applications in 

fusing data from patient monitoring systems. Such methods were shown to perform 

favourably with respect to non-probabilistic systems [182].

More recent work in the area of GP-based approaches to critical care [181] demonstrated 

their use in combining data from wearable sensors with those obtained from manual nursing 

observations in acute wards. The flexibility of the GP framework was demonstrated by 

Durichen et al. [183], in which multiple time-series were fused in a Bayesian non-parametric 

framework for further improvements in time-series patient monitoring.

The functional approach to data analysis in critical care was used to identify common 

trajectories of HR and breathing rate following surgery [184]. After fitting a GP to each 

patient's vital signs, the authors computed a likelihood-based similarity metric between each 

patient-specific GP (essentially determining the likelihood that one patient's GP accurately 

models a second patient's time-series data). Hierarchical clustering was then used on the 

values of the inter-GP similarity metric to group these trajectories. Previously-unseen test 

data were compared to the time-series clusters to determine if the test data were similar to 

“normal” or “abnormal” clusters. The GP-based approach was able to more accurately 

discriminate normal from abnormal physiological trajectories than the state-of-the-art 

dynamic time warping [157]. Such techniques allow for detection of impending 

physiological deterioration via time-series based similarity matching of a patient to the 

existing patients within a database with known outcomes.

2) Global optimization for cohort-specific parameter tuning—Many algorithms 

used for the analysis of physiological signals include hyper-parameters that must be selected 

by the investigator. The ultimate choice of these parameter values can have a dramatic 

impact on the performance of the approach [185]. Addressing this issue often requires 

investigators to manually tune parameters for their particular dataset. In general, global 

optimization approaches are best motivated for objective functions which are both costly to 

evaluate and whose performance is sensitive to parametrization. As concluded in Ghassemi 

et al. [186] recent advances in global optimization techniques provide an effective, and 
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automated framework for tuning parameters of such algorithms, and easily improve upon the 

default settings selected by experts.

Bayesian optimization (BO) [187] is one such methodology for global optimization that 

relies on building and querying a relatively inexpensive probabilistic surrogate of a more 

expensive objective function. In general, the surrogate is a GP, which when combined with 

observations yields a convenient posterior distribution over functions. Intuitively, the 

optimization routine proceeds by exploring through seeking regions of high posterior 

uncertainty in the surrogate and exploiting by evaluating regions with a promising expected 

value. At each iteration the routine proposes a set of hyperparameters that maximizes the 

expected improvement over the best result seen. An experiment is run with these 

hyperparameters and then the surrogate model is updated with the result. This process 

continues over several iterations until some threshold is reached, or a maximal number of 

iterations surpassed.

In Ghassemi et al. [186] it was shown that BO can outperform the traditional global 

optimization techniques such as the standard grid search, multi-start scatter search 

algorithm, and genetic algorithms, given the same computational and time constraints.

3) Growing volume of data—Many of the early studies on ICU patient prognosis relied 

on small samples sizes for model building, but recent trends in hardware and data collection 

have dramatically increased clinical database sizes. In 1981 the APACHE I system was 

validated on a data set of 581 admissions, while the APACHE IV system was validated in 

2006 on a data set of over 44,000 patients [130], [31].

As the number of examples and feature sets grow larger, fast and efficient algorithms 

become more important. Fan et al. present an efficient method for clustering large amounts 

of patient data by creating a hierarchical structure [188]. Kale et al. present a method they 

term “kernalized locality-sensitive hashing” for efficiently evaluating various similarity 

metrics for time-series data [189].

The increasing availability of large volumes of patient data is also making it possible to 

apply more powerful “data hungry” machine learning techniques to clinical problems. Lasko 

et al. [190] applied a deep learning-based approach to unsupervised learning of phenotypical 

features in longitudinal sequences of serum uric acid measurements. The resulting 

unsupervised phenotypic features were passed to a classifier to distinguish the uric acid 

signatures of gout vs. acute leukemia, with a performance level competitive with the gold-

standard features engineered by domain experts.

D. Multimodal data

While the majority of this review has focused upon vital sign data that are commonly 

available in the ICU, there are many additional sources of data that can be used to improve 

decision support in critical care. However, care must be taken: there is not always a benefit 

in incorporating certain types of additional data. For instance, Saria et al. found that adding 

laboratory test values as features did not improve prediction [147], consistent with other 
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studies that have found high amount of correlation among features [138]. The key therefore 

lies in appropriate combination of additional information available in the patient record.

In one novel approach, Wiens, et al. first created a day-by-day patient risk score for 

becoming infected by Clostridium difficile [191]. This risk score was derived from an SVM 

classifier with >10,000 features from the patient EHR as input. Features included the reason 

for admission, demographics, lab results, room location, vital sign measurements, etc 

(binary features were created from categorical variables, which accounts for most of the high 

dimensionality). The authors then modeled this risk score as a time-series, using three 

different approaches (extracted features, similarity metrics, and HMMs) to perform 

classification. Their methods were able to predict patient risk more successfully than 

traditional approaches of taking aggregate or daily features, with AUROCs of up to 0.79 in 

contrast to the traditional approaches' AUROC of 0.69.

1) Incorporation of Genomic Data—One particular data type that historically has not 

been used widely in patient decision support is that of genomic data. While our growing 

understanding of patient genomics and gene expression is likely to greatly improve our 

ability to treat disease in the future, there are a few medical areas in which machine learning 

applications of genomics are already being adopted.

Clinical microbiology is one such area, which impacts closely with critical care given the 

high risk of infection for patients who have extended ICU stays. While human genetic 

information is not yet available in most EHR and clinical decision systems, bacterial and 

viral DNA analysis is more manageable (due to the smaller size of such genomes when 

compared with the human genome) and has already started to be incorporated into some 

hospital systems. Using this available information, machine learning techniques have been 

employed to predict bacterial and viral phenotypes from the genotype. Prediction of viral 

drug resistance is a pressing problem for many viruses, such as Human Immunodeficiency 

Virus (HIV). Both rule-based methods (e.g., ANRS, Rega, and Stanford HIVdb [192]) and 

machine-learning techniques (e.g., geno2pheno [193]) have been developed to improve 

genotypic prediction of HIV drug-susceptibility. Machine-learning methods have been found 

to predict more accurately the response of patients to drugs in retrospective analysis than do 

rule-based methods used for the same task [194].

Machine learning techniques have also been used to predict virulence profiles of clinically-

relevant micro-organisms. In 2014, Laabei et al. used whole-genome data to predict the 

virulence of methicillin resistant S. aureus using random forests [195]. Alternative methods 

for bacterial resistance prediction has been attempted using LR, random forests, and set 

covering machines [196], [197], [198].

2) Mining of Free-Text Clinical Notes—Given the explanatory power of physician 

notes for discounting anomalous measurements (as discussed above) and their ability to 

capture information not easily obtained elsewhere, there is great potential for clinical notes 

to improve machine learning-based prediction in the ICU setting.
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Lehman et al. [199] used a Hierarchical Dirichlet Processes (HDP) to perform patient risk 

stratification by combining physiologic data and topics learned from unstructured clinical 

notes. The authors found that the learned topic structures significantly improved the 

performance of the SAPS-I algorithm for mortality prediction (from 0.72 to 0.82).

Ghassemi et al. [200] used a multi-step pipeline to predict ICU mortality. They first used 

latent dirichlet allocation (LDA) to identify common words and topics recorded in ICU 

patient notes. They then fit multi-task GPs to the proportion of topics observed in each note 

in each patient's record. Finally, as features for supervised learning to predict mortality, they 

used the GP hyperparameters, time-averaged topic membership, and a standard ICU-

admission clinical scoring system (simplified acute physiology score: SAPS-1), finding that 

the combination of these features provided improved predictive performance over the 

clinical scoring system alone.

Ghassemi et al. [201] also utilized an unsupervised approach to generate vector space 

representations of unstructured free text notes. They investigated the evolution of clinical 

sentiment and language complexity with respect to several categories including: mortality, 

time in the hospital, age, race and gender. Their analysis identified greater positive sentiment 

for females, unmarried patients, and patients of African ethnicity in the ICU.

Even simple counts of textual terms and completed fields in the EHR can be informative in 

risk prediction. Nurses have been found to document 0.9-1.5 more optional comments and 

6.1 to 10 more vital signs within the 48 hours before patient death [202].

V. Discussion

This review has summarized the latest trends in machine learning in critical care. Focus has 

been given to all components necessary in this field: acquisition of data, assurance of 

quality, and final analysis. A large amount of effort has been invested in the processing and 

validation of data acquired within the ICU. Many of these methods are necessary due to the 

relatively unique format of data collection in the ICU. When developing algorithms in other 

domains, such as aircraft health monitoring or finance, researchers will specifically collect 

data for the purpose of analysis. However, most applications of machine learning in the ICU 

are secondary, that is, the data is collected for a purpose other than for the analysis proposed. 

Frequently, the data collected is acquired during routine clinical care where there are little to 

no incentives for acquisition of accurate data. In fact, those who record the data are 

frequently prevented from auditing and correcting the observations due to extreme time 

constraints. While advanced data management systems have the opportunity to improve 

clinical work flow and facilitate higher quality data collection, vendors in the health care 

field have produced notoriously inefficient systems which lag a great deal behind similar 

systems in “civilian” areas [203].

The end result is a wealth of data being collected in ICUs across the world daily going to 

waste [204]. Of the data that has been successfully archived and retrieved, a significant 

amount of effort must be employed to either transform the data into a usable form or correct 

a variety of artifacts present. As demonstrated in this review, a number of researchers have 
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developed excellent techniques which address these data quality issues. These methods have 

allowed for further processing of the data with confidence, either for outcome prediction, 

state estimation, or patient alerting.

While machine learning research in critical care has provided the community with a wealth 

of knowledge on how patient care could be improved by the use of automated algorithms 

assessing patients, two criticisms arise. First, while many high performance algorithms have 

been proposed, there has been a paucity of evidence for the efficacy of these algorithms once 

implemented in ICUs.

Second, an objective analysis would imply that the sophistication of the machine learning 

methods applied in the critical care domain lag behind those applied in other areas. Many 

explanations of this could be conceived, including the earlier discussed lack of consistent 

and reliable data management systems in hospitals. However, we would posit that one of the 

biggest barriers to research has been the lack of openly available standardized datasets for 

the purpose of benchmarking machine learning tasks. Recent advances in image 

classification have been achieved in no small part due to the openly available Imagenet 

database which contains 456,567 images for classification as of 2014 [206]. No equivalently 

sized database exists for critical care. Given the complexity and heterogeneity of critical care 

data, and the variance in clinical practices, millions of patients are needed to identify sub-

cohorts of particular disease processes and the range of applied clinical actions.

Yet, there are notable success stories surrounding open data in the past. The MIT-BIH 

arrhythmia database [207] galvanized manufacturers into reporting, and consequently 

improving, performance of their algorithms on ECG signals with arrhythmia. It was clear 

that, prior to the release of MIT-BIH, the lack of a well defined database for this purpose not 

only hindered academic progress on arrhythmia detection, but also hindered the ability of 

manufacturers to systematically evaluate their methods. Leaps in performance similar to 

those achieved after the release of MIT-BIH could be attainable in a variety of machine 

learning tasks after the creation of suitable standardized benchmark datasets. The need for 

high quality databases in critical care, with information that is complete and accurate, based 

upon standardized definitions of clinical disorders, interventions, and outcomes has already 

been recognized [208]. The creation of openly available databases such as MIMIC [22] is a 

key step towards this goal, and the recent announcement that a subset of the eICU database 

[30] will be made open to the public demonstrates that this practice is becoming more 

common. Future directions should strive to define and describe benchmark datasets, much 

like the PhysioNet/Computing in Cardiology 2012 challenge defined a benchmark dataset 

for mortality prediction [142]. It is worth noting that the benchmark dataset for mortality 

prediction resulted in state-of-the-art algorithms with over 170% higher performance than 

their severity score predecessors [143].

Many tasks reviewed here would benefit from benchmark datasets and, more generally, 

further research. A large proportion of work that addressed data corruption was ultimately 

used for the purpose of false alarm reduction. Drew et al. [65] reviewed the issue of alarm 

fatigue associated with false alarms and suggested alarm algorithms should focus on: using 

all available ECG leads and extracting at least one lead with high quality data if available, 
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providing contextual alarms based upon multiple features (e.g. only alerting staff to pre-

ventricular contractions if the patient has a prolonged QT interval), accommodating and 

learning from human alarm threshold adjustment, and “smart” defaults which adjust to the 

patient using some subset of initialization data.

Quantification of a signal into states is a principled and robust approach which has been 

shown to work well for both arterial blood pressure artifact detection [77] and ECG beat 

classification [96]. In terms of artifact detection, many known signal disruptions could be 

quantified in this way, including calibration artifacts, suctioning artifacts (which occur when 

a care provider is clearing ventilation equipment for a patient), and motion artifact. The 

automatic determination of artifact data would facilitate future research on the relationship 

between physiological dynamics and patient health. In terms of beat detection, previous 

research has primarily addressed ventricular ectopic beats, but many arrhythmia of interest 

have yet to be addressed, including atrial ectopics, asystole, atrial fibrillation, atrial flutter, 

bundle branch block, and so on. In general, there remains a need for openly available high 

performance algorithms capable of segmenting a physiologic waveform into components 

(e.g. segmentation of the ECG into ‘P’, ‘QRS’, and ‘T’). This could be facilitated if 

equipment manufacturers transmitted their confidence levels in parameter estimates. Such 

confidence levels could be incorporated into prediction algorithms, which could be used to 

greatly improve performance.

Mortality prediction models appear to have reached a plateau, with the performance of the 

latest generation models being fairly close to their predecessors. The primary reason for 

such is likely the very coarse data used in the model input, usually average values over 24 

hours. The incorporation of dynamics has been shown to improve these models [169], and 

future research is warranted in this exciting area. Many of these models could be applied to 

the technically similar task of predicting readmission, where a high performing model could 

have many ramifications due to the large economic penalties incurred to hospitals when a 

patient is readmitted within 30 days.

Looking even further forward, there is an urgent need for integrative and interactive machine 

learning solutions, with teams of machine learning researchers and clinicians – who are 

directly involved in patient care and data acquisition – working in tandem to generate 

actionable insight and value from the increasingly large and complex critical care data [205]. 

The data deluge has overwhelmed many clinicians and researchers, and in the future, smart 
hospitals, which utilize machine learning approaches to provide information in a context 

aware manner, will be necessary [128]. Dimensionality reduction and visualization 

techniques are exciting areas of research which have the potential of redefining the single 

sensor single input monitoring approach currently applied in clinical practice. Overall, a 

growing body of literature [6] is pointing to the clinical utility of big data in critical care to 

inform prognosis and to provide early predictors of potentially life-threatening conditions in 

the ICU. As researchers begin to pool resources to generate large open access datasets [22], 

the “Unreasonable Effectiveness of Data” is beginning to take effect. However, as we note in 

this article, the nuances of healthcare require extreme care to be taken in the acquisition and 

processing of critical care data. The meaningful secondary uses of EHRs can only take place 

if such issues are addressed. Careful consideration of the compartmentalization, corruption, 
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and complexity of clinical data has created a unique climate of research in critical care, 

which has great potential.

References

1. Vincent JL. Critical care-where have we been and where are we going. Crit Care. 2013; 17(Suppl 
1):S2. [PubMed: 23514264] 

2. Pronovost P, Angus D, Dorman TR, Dremsizov KA, Young TT. Physician Staffing Patterns and 
Clinical Outcomes in Critically Ill Patient: a Systematic Review. JAMA. 2002; 288(17):2151–2162. 
[PubMed: 12413375] 

3. Kane R, Shamliyan T, Mueller C, Duval S, Wilt TJ. The association of registered nurse staffing 
levels and patient outcomes: Systematic review and meta-analysis. Medical Care. Dec; 2007 45(12):
1195–1204. [PubMed: 18007170] 

4. Pastores SM, Kvetan V. Shortage of intensive care specialists in the united states: recent insights and 
proposed solutions. Revista Brasileira de terapia intensiva. 2015; 27(1):5–6. [PubMed: 25909306] 

5. Halpern NA, Pastores SM. Critical care medicine in the United States 2000–2005: An analysis of 
bed numbers, occupancy rates, payer mix, and costs*. Critical care medicine. 2010; 38(1):65–71. 
[PubMed: 19730257] 

6. Badawi O, Brennan T, Celi LA, Feng M, Ghassemi M, Ippolito A, Johnson A, Mark RG, Mayaud L, 
Moody G, et al. Making big data useful for health care: a summary of the inaugural MIT critical 
data conference. JMIR medical informatics. 2014; 2(2)

7. Riley GF. Administrative and claims records as sources of health care cost data. Medical care. 2009; 
47(7_Supplement_1):S51–S55. [PubMed: 19536019] 

8. Johnson, AEW.; Kramer, A.; Clifford, GD. Computing in Cardiology Conference (CinC), 2014. Vol. 
41. IEEE; 2014. Data preprocessing and mortality prediction: the Physionet/CinC 2012 challenge 
revisited; p. 157-160.

9. Centers for Medicare & Medicaid Services. The Health Insurance Portability and Accountability 
Act of 1996 (HIPAA). 1996. Online at http://www.cms.hhs.gov/hipaa/

10. Caldicott F. Information: To share or not to share. information governance review. Information: To 
share or not to share. 2013

11. Ince DC, Hatton L, Graham-Cumming J. The case for open computer programs. Nature. 2012; 
482(7386):485–488. [PubMed: 22358837] 

12. Ness, Roberta B.; Joint Policy Committee. et al. Jama. Vol. 298. American Medical Association; 
2007. Influence of the HIPAA privacy rule on health research; p. 2164-2170.

13. O'Keefe CM. Privacy and the use of health data-reducing disclosure risk. electronic Journal of 
Health Informatics. 2008; 3(1):5.

14. H. Office for Civil Rights. Standards for privacy of individually identifiable health information. 
final rule. Federal Register. 2002; 67(157):53181. [PubMed: 12180470] 

15. Doyle, P.; Lane, J.; Theeuwes, J.; Zayatz, L. Confidentiality, Disclosure and Data Access: Theory 
and Practical Applications for Statistical Agencies. Elsevier Science; 2004. 

16. Neamatullah I, Douglass MM, Lehman LH, Reisner A, Villarroel M, Long WJ, Szolovits P, Moody 
GB, Mark RG, Clifford GD. Automated de-identification of free-text medical records. BMC 
medical informatics and decision making. 2008; 8(1):32. [PubMed: 18652655] 

17. Murphy SN, Weber G, Mendis M, Gainer V, Chueh HC, Churchill S, Kohane I. Serving the 
enterprise and beyond with informatics for integrating biology and the bedside (i2b2). Journal of 
the American Medical Informatics Association. 2010; 17(2):124–130. [PubMed: 20190053] 

18. Dwork, C. Encyclopedia of Cryptography and Security. Springer; 2011. Differential privacy; p. 
338-340.

19. Mohammed N, Jiang X, Chen R, Fung BC, Ohno-Machado L. Privacy-preserving heterogeneous 
health data sharing. Journal of the American Medical Informatics Association. 2013; 20(3):462–
469. [PubMed: 23242630] 

Johnson et al. Page 28

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cms.hhs.gov/hipaa/


20. Goldberger A, Amaral L, Glass L. PhysioBank, PhysioToolkit, and PhysioNet: Components of a 
new research resource for complex physiologic signals. Circulation. Jun; 2000 101(23):e215–e220. 
[PubMed: 10851218] 

21. Saeed M, Lieu C, Raber G, Mark RG. MIMIC II: a massive temporal icu patient database to 
support research in intelligent patient monitoring. Comput Cardiol. 2002; 29:641–4. [PubMed: 
14686455] 

22. Saeed M, Villarroel M, Reisner AT, Clifford G, Lehman LH, Moody G, Heldt T, Kyaw TH, Moody 
B, Mark RG. Multiparameter intelligent monitoring in intensive care (MIMIC II): a public-access 
intensive care unit database. Crit Care Med. May; 2011 39(5):952–960. [PubMed: 21283005] 

23. U. Food and D. Administration. Registration listing. Jun. 2015 [Online] Available: http://
www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/HowtoMarketYourDevice/
RegistrationandListing/ucm134495.htm

24. Lesh, K.; Weininger, S.; Goldman, JM.; Wilson, B.; Himes, G. hcmdss-mdpnp. IEEE; 2007. 
Medical device interoperability-assessing the environment; p. 3-12.

25. Charles D, King J, Patel V, Furukawa MF. Adoption of electronic health record systems among 
U.S. non-federal acute care hospitals: 2008-2012. ONC Data Brief. 2013; (9)

26. Black N, Payne M. Directory of clinical databases: improving and promoting their use. Quality and 
Safety in Health Care. 2003; 12(5):348–352. [PubMed: 14532366] 

27. Cooke CR, Iwashyna TJ. Using existing data to address important clinical questions in critical care. 
Critical care medicine. 2013; 41(3):886. [PubMed: 23328262] 

28. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional 
disability among survivors of severe sepsis. Jama. 2010; 304(16):1787–1794. [PubMed: 
20978258] 

29. Finney JM, Walker AS, Peto TE, Wyllie DH. An efficient record linkage scheme using graphical 
analysis for identifier error detection. BMC medical informatics and decision making. 2011; 11(1):
7. [PubMed: 21284874] 

30. McShea M, Holl R, Badawi O, Riker RR, Silfen E. The eicu research institute-a collaboration 
between industry, health-care providers, and academia. Engineering in Medicine and Biology 
Magazine, IEEE. 2010; 29(2):18–25.

31. Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute physiology and chronic health 
evaluation (apache) iv: Hospital mortality assessment for todays critically ill patients*. Critical 
care medicine. 2006; 34(5):1297–1310. [PubMed: 16540951] 

32. Zimmerman JE, Kramer AA. Outcome prediction in critical care: the Acute Physiology and 
Chronic Health Evaluation models. Current Opinion in Critical Care. 2008; 14:491–497. [PubMed: 
18787439] 

33. U. D. of Health, H. Services. ICD 9 CM The International Classification of Diseases 9 Rev: 
Clinical Modification; Vol 1: Diseases: Tabular List; Vol 2: Diseases: Alphabetic Index; Vol 3: 
Procedures: Tabular List and Alphabetic Index. US Government Printing Office; 1980. 

34. O'malley KJ, Cook KF, Price MD, Wildes KR, Hurdle JF, Ashton CM. Measuring diagnoses: Icd 
code accuracy. Health services research. 2005; 40(5p2):1620–1639. [PubMed: 16178999] 

35. Pestian, JP.; Brew, C.; Matykiewicz, P.; Hovermale, D.; Johnson, N.; Cohen, KB.; Duch, W. 
Proceedings of the Workshop on BioNLP 2007: Biological, Translational, and Clinical Language 
Processing. Association for Computational Linguistics; 2007. A shared task involving multi-label 
classification of clinical free text; p. 97-104.

36. Bos L, Donnelly K. Snomed-CT: The advanced terminology and coding system for ehealth. Stud 
Health Technol Inform. 2006; 121:279–290. [PubMed: 17095826] 

37. Elkin, PL.; Brown, SH.; Husser, CS.; Bauer, BA.; Wahner-Roedler, D.; Rosenbloom, ST.; Speroff, 
T. in Mayo Clinic Proceedings. Vol. 81. Elsevier; 2006. Evaluation of the content coverage of 
snomed CT: ability of snomed clinical terms to represent clinical problem lists; p. 741-748.

38. McDonald CJ, Huff SM, Suico JG, Hill G, Leavelle D, Aller R, Forrey A, Mercer K, DeMoor G, 
Hook J, et al. Loinc, a universal standard for identifying laboratory observations: a 5-year update. 
Clinical chemistry. 2003; 49(4):624–633. [PubMed: 12651816] 

Johnson et al. Page 29

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/HowtoMarketYourDevice/RegistrationandListing/ucm134495.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/HowtoMarketYourDevice/RegistrationandListing/ucm134495.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/HowtoMarketYourDevice/RegistrationandListing/ucm134495.htm


39. Whetzel P, Noy N, Shah N, Alexander P, Nyulas C, Tudorache T, Musen M. Bioportal: enhanced 
functionality via new web services from the national center for biomedical ontology to access and 
use ontologies in software applications. Nucleic Acids Res. Jul.2011 39

40. D'Amore JD, Mandel JC, Kreda DA, Swain A, Koromia GA, Sundareswaran S, Alschuler L, Dolin 
RH, Mandl KD, Kohane IS, et al. Are meaningful use stage 2 certified ehrs ready for 
interoperability? findings from the smart c-CDa collaborative. Journal of the American Medical 
Informatics Association. 2014; 21(6):1060–1068. [PubMed: 24970839] 

41. Nouira K, Trabelsi A. Intelligent monitoring system for intensive care units. Journal of medical 
systems. 2012; 36(4):2309–2318. [PubMed: 21505862] 

42. Imhoff M, Bauer M, Gather U, Löhlein D. Statistical pattern detection in univariate time series of 
intensive care on-line monitoring data. Intensive care medicine. 1998; 24(12):1305–1314. 
[PubMed: 9885885] 

43. West M, Harrison PJ, Migon HS. Dynamic generalized linear models and bayesian forecasting. 
Journal of the American Statistical Association. 1985; 80(389):73–83.

44. Becker C, Gather U. The largest nonidentifiable outlier: A comparison of multivariate 
simultaneous outlier identification rules. Computational Statistics & Data Analysis. 2001; 36(1):
119–127.

45. Nizami S, Green JR, McGregor C. Implementation of artifact detection in critical care: a 
methodological review. Biomedical Engineering, IEEE Reviews in. 2013; 6:127–142.

46. Tsien CL, Fackler JC. Poor prognosis for existing monitors in the intensive care unit. Critical care 
medicine. 1997; 25(4):614–619. [PubMed: 9142025] 

47. Chambrin MC, Ravaux P, Calvelo-Aros D, Jaborska a, Chopin C, Boniface B. Multicentric study 
of monitoring alarms in the adult intensive care unit (ICU): a descriptive analysis. Intensive Care 
Medicine. Dec; 1999 25(12):1360–6. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/
10660842. [PubMed: 10660842] 

48. Li Q, Mark RG, Clifford GD. Robust heart rate estimation from multiple asynchronous noisy 
sources using signal quality indices and a Kalman filter. Physiological measurement. Jan; 2008 
29(1):15–32. [PubMed: 18175857] 

49. Clifford GD, Behar J, Li Q, Rezek I. Signal quality indices and data fusion for determining clinical 
acceptability of electrocardiograms. Physiol Meas. 2012; 33(9):1419. [PubMed: 22902749] 

50. Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng. 1985; 32(3):
230–236. [PubMed: 3997178] 

51. Hamilton PS, Tompkins WJ. Quantitative investigation of QRS detection rules using the MIT/BIH 
arrhythmia database. Biomedical Engineering, IEEE Transactions on. 1986; (12):1157–1165.

52. Zong, W.; Moody, G.; Jiang, D. Computers in Cardiology. Vol. 30. IEEE, 2003; 2003. A robust 
open-source algorithm to detect onset and duration of QRS complexes; p. 737-740.

53. Behar J, Oster J, Li Q, Clifford GD. ECG signal quality during arrhythmia and its application to 
false alarm reduction. Transactions on Biomedical Engineering. 2013; 60(6):1660–1666.

54. Cortes C, Vapnik V. Support-vector networks. Machine Learning. Sep; 1995 20(3):273–297.

55. Li Q, Clifford GD. Signal quality and data fusion for false alarm reduction in the intensive care 
unit. Journal of electrocardiology. 2012; 45(6):596–603. [PubMed: 22960167] 

56. Tipping ME. Sparse bayesian learning and the relevance vector machine. The journal of machine 
learning research. 2001; 1:211–244.

57. Morgado E, Alonso-Atienza F, Santiago-Mozos R, Barquero-Pérez Ó, Silva I, Ramos J, Mark R. 
Quality estimation of the electrocardiogram using cross-correlation among leads. Biomedical 
engineering online. 2015; 14(1):59. [PubMed: 26091857] 

58. Breiman, L.; Friedman, J.; Stone, CJ.; Olshen, RA. Classification and regression trees. CRC press; 
1984. 

59. Quinlan, JR. C4. 5: programs for machine learning. Elsevier; 2014. 

60. Cohen WW. Fast effective rule induction. Proceedings of the twelfth international conference on 
machine learning. 1995:115–123.

Johnson et al. Page 30

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ncbi.nlm.nih.gov/pubmed/10660842
http://www.ncbi.nlm.nih.gov/pubmed/10660842


61. Barachant A, Andreev A, Congedo M. The riemannian potato: an automatic and adaptive artifact 
detection method for online experiments using riemannian geometry. TOBI Workshop lV. 
2013:19–20.

62. Tsien CL, Kohane IS, McIntosh N. Building ICU artifact detection models with more data in less 
time. Proceedings of the AMIA Symposium American Medical Informatics Association. 
2001:706.

63. Imhoff M, Kuhls S, Gather U, Fried R. Smart alarms from medical devices in the or and icu. Best 
Practice & Research Clinical Anaesthesiology. 2009; 23(1):39–50. [PubMed: 19449615] 

64. Cvach M. Monitor alarm fatigue: an integrative review. Biomedical Instrumentation & Technology. 
2012; 46(4):268–277. [PubMed: 22839984] 

65. Drew BJ, Harris P, Zègre-Hemsey JK, Mammone T, Schindler D, Salas-Boni R, Bai Y, Tinoco A, 
Ding Q, Hu X. Insights into the problem of alarm fatigue with physiologic monitor devices: a 
comprehensive observational study of consecutive intensive care unit patients. 2014

66. Zong W, Moody G, Mark R. Reduction of false arterial blood pressure alarms using signal quality 
assessement and relationships between the electrocardiogram and arterial blood pressure. Medical 
and Biological Engineering and Computing. 2004; 42(5):698–706. [PubMed: 15503972] 

67. Clifford, Gari D.; Silva, Ikaro; Moody, Benjamin; Li, Qiao; Kella, Danesh; Shahin, Abdullah; 
Kooistra, Tristan; Perry, Diane; Mark, Roger G. Computing in Cardiology. 2015; 42:273–276.

68. Plesinger, F.; Klimes, P.; Halamek, J.; Jurak, P. Computing in Cardiology Conference (CinC), 
2015. IEEE; 2015. False alarms in intensive care unit monitors: Detection of life-threatening 
arrhythmias using elementary algebra, descriptive statistics and fuzzy logic. 

69. Antink, CH.; Leonhardt, S. Computing in Cardiology Conference (CinC), 2015. IEEE; 2015. 
Reducing false arrhythmia alarms using robust interval estimation and machine learning. 

70. Fallet, S.; Yazdani, S.; Vesin, JM. Computing in Cardiology Conference (CinC), 2015. IEEE; 2015. 
A multimodal approach to reduce false arrhythmia alarms in the intensive care unit. 

71. Clifford GD, Long WJ, Moody GB, Szolovits P. Robust parameter extraction for decision support 
using multimodal intensive care data. Philosophical transactions Series A, Mathematical, physical, 
and engineering sciences. Jan; 2009 367(1887):411–429.

72. Metnitz PGH, Moreno RP, Almeida E, Jordan B, Bauer P, Campos RA, Iapichino G, Edbrooke D, 
Capuzzo M, Le Gall JR. SAPS 3–From evaluation of the patient to evaluation of the intensive care 
unit. Part 1: Objectives, methods and cohort description. Intensive Care Medicine. Oct; 2005 
31(10):1336–44. [PubMed: 16132893] 

73. Tukey JW. Exploratory data analysis. 1977

74. Barnett, V.; Lewis, T. Outliers in statistical data. Vol. 3. Wiley; New York: 1994. 

75. Fialho A, Celi L, Cismondi F, Vieira S, Reti S, Sousa J, Finkelstein S, et al. Disease-based 
modeling to predict fluid response in intensive care units. Methods Inf Med. 2013; 52(6):494–502. 
[PubMed: 23986268] 

76. Aleks N, Russell SJ, Madden MG, Morabito D, Staudenmayer K, Cohen M, Manley GT. 
Probabilistic detection of short events, with application to critical care monitoring. Advances in 
Neural Information Processing Systems. 2009:49–56.

77. Quinn JA, Williams CK, McIntosh N. Factorial switching linear dynamical systems applied to 
physiological condition monitoring. Pattern Analysis and Machine Intelligence, IEEE Transactions 
on. 2009; 31(9):1537–1551.

78. Georgatzis K, Williams CK. Discriminative switching linear dynamical systems applied to 
physiological condition monitoring. arXiv preprint arXiv:1504.06494. 2015

79. Hug CW, Clifford GD, Reisner AT. Clinician blood pressure documentation of stable intensive care 
patients: an intelligent archiving agent has a higher association with future hypotension. Critical 
care medicine. May; 2011 39(5):1006–1014. [PubMed: 21336136] 

80. Snow, R.; O'Connor, B.; Jurafsky, D.; Ng, AY. Proceedings of the conference on empirical methods 
in natural language processing. Association for Computational Linguistics; 2008. Cheap and fast
— but is it good?: evaluating non-expert annotations for natural language tasks; p. 254-263.

81. Zhu T, Johnson AEW, Behar J, Clifford GD. Crowd-sourced annotation of ECG signals using 
contextual information. Annals of Biomedical Engineering. 2014; 42(4):871–884. [PubMed: 
24368593] 

Johnson et al. Page 31

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



82. Kohler BU, Hennig C, Orglmeister R. The principles of software QRS detection. Engineering in 
Medicine and Biology Magazine, IEEE. 2002; 21(1):42–57.

83. Jakob S, Korhonen I, Ruokonen E, Virtanen T, Kogan A, Takala J. Detection of artifacts in 
monitored trends in intensive care. Computer methods and programs in biomedicine. 2000; 63(3):
203–209. [PubMed: 11064143] 

84. Yang P, Dumont GA, Ansermino JM. Sensor fusion using a hybrid median filter for artifact 
removal in intraoperative Heart Rate monitoring. Journal of clinical monitoring and computing. 
2009; 23(2):75–83. [PubMed: 19199059] 

85. Allen J, Murray A. Assessing ECG signal quality on a coronary care unit. Physiological 
measurement. 1996; 17(4):249. [PubMed: 8953623] 

86. Kaiser W, Findeis M. Novel signal processing methods for exercise ECG. Special issue on 
Electrocardiography in Ischemic Heart Disease, Proceedings of IJBEM. 2000; 2

87. Chen L, McKenna T, Reisner A, Reifman J. Algorithms to qualify respiratory data collected during 
the transport of trauma patients. Physiological measurement. 2006; 27(9):797. [PubMed: 
16868347] 

88. Johnson AEW, Behar J, Andreotti F, Clifford GD, Oster J. Multimodal heart beat detection using 
signal quality indices. Physiological measurement. 2015; 36(8):1665. [PubMed: 26218060] 

89. Harvey, AC. Forecasting, structural time series models and the Kalman filter. Cambridge university 
press; 1990. 

90. Sittig DF, Factor M. Physiologic trend detection and artifact rejection: a parallel implementation of 
a multi-state Kalman filtering algorithm. Computer Methods and Programs in Biomedicine. 1990; 
31(1):1–10. [PubMed: 2311364] 

91. Feldman JM, Ebrahim MH, Bar-Kana I. Robust Sensor Fusion improves Heart Rate estimation: 
clinical evaluation. Journal of clinical monitoring. 1997; 13(6):379–384. [PubMed: 9495290] 

92. Ebrahim MH, Feldman JM, Bar-Kana I. A Robust Sensor Fusion method for Heart Rate 
estimation. Journal of clinical monitoring. 1997; 13(6):385–393. [PubMed: 9495291] 

93. Tarassenko, L.; Townsend, N.; Clifford, G.; Mason, L.; Burton, J.; Price, J. Intelligent Sensor 
Processing (Ref No 2001/050), A DERA/IEE Workshop on. IET; 2001. Medical signal processing 
using the software monitor; p. 3/1-3/4.

94. Challa S, Koks D. Bayesian and dempster-shafer fusion. Sadhana. 2004; 29(2):145–174.

95. Wartzek T, Brueser C, Walter M, Leonhardt S. Robust Sensor Fusion of Unobtrusively Measured 
Heart Rate. IEEE Journal of Biomedical and Health Informatics. 2013; 18:654–660.

96. Oster J, Behar J, Johnson AEW, Sayadi O, Nemati S, Clifford GD. Semi-supervised ECG beat 
Classification and Novelty Detection based on Switching Kalman Filters. Biomedical Engineering, 
IEEE Transactions on. 2014 vol. in submission. 

97. Eddy DM. Variations in physician practice: the role of uncertainty. Health affairs. 1984; 3(2):74–
89. [PubMed: 6469198] 

98. Little, RJ.; Rubin, DB. Statistical analysis with missing data. John Wiley & Sons; 2014. 

99. Vesin A, Azoulay E, Ruckly S, Vignoud L, Rusinovà K, Benoit D, Soares M, Azeivedo-Maia P, 
Abroug F, Benbenishty J, et al. Reporting and handling missing values in clinical studies in 
intensive care units. Intensive care medicine. 2013; 39(8):1396–1404. [PubMed: 23685609] 

100. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, Wood AM, Carpenter JR. 
Multiple imputation for missing data in epidemiological and clinical research: potential and 
pitfalls. BMJ. 2009; 338

101. Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, Bonow RO, Huang CC, 
Deo RC. Phenomapping for novel classification of heart failure with preserved ejection fraction. 
Circulation. 2014 CIRCULATIONAHA–114. 

102. Waljee AK, Mukherjee A, Singal AG, Zhang Y, Warren J, Balis U, Marrero J, Zhu J, Higgins PD. 
Comparison of imputation methods for missing laboratory data in medicine. BMJ open. 2013; 
3(8):e002847.

103. Kim SH, Yang HJ, Kim SH, Lee GS. Physiocover: Recovering the missing values in 
physiological data of intensive care units. International Journal of Contents. 2014; 10(2):47–58.

Johnson et al. Page 32

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



104. Long Q, Johnson BA. Variable selection in the presence of missing data: resampling and 
imputation. Biostatistics. 2015:kxv003.

105. Moreno RP, Metnitz PGH, Almeida E, Jordan B, Bauer P, Campos RA, Iapichino G, Edbrooke D, 
Capuzzo M, Le Gall JR. SAPS 3–From evaluation of the patient to evaluation of the intensive 
care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. 
Intensive Care Medicine. Oct; 2005 31(10):1345–55. [PubMed: 16132892] 

106. Schafer JL, Graham JW. Missing data: our view of the state of the art. Psychological methods. 
2002; 7(2):147. [PubMed: 12090408] 

107. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the em 
algorithm. Journal of the royal statistical society Series B (methodological). 1977; 39:1–38.

108. Rubin, DB. Proceedings of the survey research methods section of the American Statistical 
Association. Vol. 1. American Statistical Association; 1978. Multiple imputations in sample 
surveys-a phenomenological bayesian approach to nonresponse; p. 20-34.

109. Rubin, DB. Multiple imputation for nonresponse in surveys. John Wiley & Sons; 2004. 

110. Chevret S, Seaman S, Resche-Rigon M. Multiple imputation: a mature approach to dealing with 
missing data. Intensive care medicine. 2015; 41(2):348–350. [PubMed: 25578679] 

111. Clifton, L.; Clifton, DA.; Pimentel, M.; Watkinson, PJ.; Tarassenko, L., et al. Engineering in 
Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. 
IEEE; 2012. Gaussian process regression in vital-sign early warning systems; p. 6161-6164.

112. Lasko TA. Nonstationary Gaussian Process Regression for Evaluating Clinical Laboratory Test 
Sampling Strategies. Proceedings of the AAAI Conference on Artificial Intelligence. Jan.2015 
2015:1777–1783. [PubMed: 26097785] 

113. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, 
Douglas IS, Jaeschke R, et al. Surviving sepsis campaign: international guidelines for 
management of severe sepsis and septic shock, 2012. Intensive care medicine. 2013; 39(2):165–
228. [PubMed: 23361625] 

114. Lindenauer PK, Lagu T, Shieh MS, Pekow PS, Rothberg MB. Association of diagnostic coding 
with trends in hospitalizations and mortality of patients with pneumonia, 2003-2009. Jama. 2012; 
307(13):1405–1413. [PubMed: 22474204] 

115. Halpern, Y.; Choi, Y.; Horng, S.; Sontag, D. AMIA Annual Symposium Proceedings. Vol. 2014. 
American Medical Informatics Association; 2014. Using anchors to estimate clinical state 
without labeled data; p. 606

116. Elkan, C.; Noto, K. Proceedings of the 14th ACM SIGKDD international conference on 
Knowledge discovery and data mining. ACM; 2008. Learning classifiers from only positive and 
unlabeled data; p. 213-220.

117. Gjø rup T, Kelbaek HS, Nielsen DL, Kreiner S, Godtfredsen J. Reproducibility of 
electrocardiographic interpretation in patients with suspected myocardial infarction. A controlled 
study of the effect of a training trial. Tech Rep. 1994; 1

118. Bond R, Finlay D, Clifford GD, Drew B, Breen C, Guldenring D, Gallagher AG. Eye tracking 
technology and the 12-lead electrocardiogram: Where the experts look? 39th Annual Conference 
of the International Society for Computerized Electrocardiography. 2014

119. Salerno SM, Alguire PC, Waxman HS. Competency in interpretation of 12-lead 
electrocardiograms: a summary and appraisal of published evidence. Ann Intern Med. 2003; 
138(9):751–760. [PubMed: 12729431] 

120. Clifford, G.; Azuaje, F.; McSharry, P. Advanced methods and tools for ECG data analysis. 
Boston: Artech House; 2006. 

121. Dawid AP, Skene AM. Maximum likelihood estimation of observer error-rates using the EM 
algorithm. J R Stat Soc Ser C Appl Stat. 1979; 28(1):20–28.

122. Raykar, V.; Yu, S.; Zhao, L.; Jerebko, A.; Florin, C.; Valadez, G.; Bogoni, L.; Moy, L. 
Proceedings of the 26th Annual International Conference on Machine Learning. ACM; 2009. 
Supervised learning from multiple experts: Whom to trust when everyone lies a bit; p. 889-896.

123. Raykar VC, Yu S, Zhao LH, Valadez GH, Florin C, Bogoni L, Moy L, Blei D. Learning from 
crowds. J Mach Learn Res. 2010:1297–1322.

Johnson et al. Page 33

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



124. Zhu, T.; Behar, J.; Papastylianou, T.; Clifford, GD. Comput Cardiol. Vol. 41. IEEE; 2014. 
Crowdlabel: A Crowd-sourcing Platform for Electrophysiology. 

125. Welinder, P.; Perona, P. Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 
IEEE Computer Society Conference on. IEEE; 2010. Online crowdsourcing: rating annotators 
and obtaining cost-effective labels; p. 25-32.

126. Welinder P, Branson S, Perona P, Belongie SJ. The multidimensional wisdom of crowds. 
Advances in neural information processing systems. 2010:2424–2432.

127. Zhu T, Dunkley N, Behar J, Clifton DA, Clifford GD. Fusing continuous-valued medical labels 
using a Bayesian model. arXiv preprint arXiv:1503.06619. 2015

128. Holzinger, A.; Röcker, C.; Ziefle, M. Smart Health. Springer; 2015. From smart health to smart 
hospitals; p. 1-20.

129. Power GS, Harrison DA. Why try to predict icu outcomes? Current opinion in critical care. 2014; 
20(5):544–549. [PubMed: 25159474] 

130. Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE. APACHE-acute physiology 
and chronic health evaluation: a physiologically based classification system. Critical Care 
Medicine. 1981; 9:591–597. [PubMed: 7261642] 

131. Knaus WA, Zimmerman JE, Wagner DP, Draper EA. APACHE II: a severity of disease 
classification system. Critical Care Medicine. 1985; 13:818–829. [PubMed: 3928249] 

132. Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, Sirio CA, Murphy 
DJ, Lotring T, Damiano A. The APACHE III prognostic system. risk prediction of hospital 
mortality for critically ill hospitalized adults. Chest. 1991; 100(6):1619–1636. [PubMed: 
1959406] 

133. LeGall JR, Loirat P, Alperovitch A, Glaser P, Granthil C, Mathieu D, Mercier P, Thomas R, 
Villers D. A simplified acute physiology score for ICU patients. Critical Care Medicine. 1984; 
12(11):975–977. 1984, pT: J. [PubMed: 6499483] 

134. LeGall JR, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS-II) based on 
a european north-american multicenter study. JAMA. Dec 22; 1993 270(24):2957–2963. 1993, 
pT: J. [PubMed: 8254858] 

135. Lemeshow S, Teres D, Pastides H. A method for predicting survival and mortality of ICU patients 
using objectively derived weights. Critical Care Medicine. 1985; 13:519–525. [PubMed: 
4006490] 

136. Lemeshow S, Teres D, Klar J. Mortality probability model (MPM II) based on an international 
cohort of intensive care unit patients. JAMA. 1993; 270:2478–2486. [PubMed: 8230626] 

137. Higgins TL, Teres D, Copes WS, Nathanson BH, Stark M, Kramer AA. Assessing contemporary 
intensive care unit outcome: an updated Mortality Probability Admission Model (MPM0-III). 
Critical Care Medicine. Mar; 2007 35(3):827–35. [Online]. Available: http://
www.ncbi.nlm.nih.gov/pubmed/17255863. [PubMed: 17255863] 

138. Johnson AEW, Kramer AA, Clifford GD. A new severity of illness scale using a subset of acute 
physiology and chronic health evaluation data elements shows comparable predictive accuracy. 
Critical care medicine. 2013; 41(7):1711–1718. [PubMed: 23660729] 

139. Dybowski R, Weller P, Chang R, Gant V. Prediction of outcome in critically ill patients using 
artificial neural network synthesised by genetic algorithm. Lancet. Apr; 1996 347(9009):1146–
50. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/8609749. [PubMed: 8609749] 

140. Clermont G, Angus D, DiRusso S, Griffin M, Linde-Zwirble W. Predicting hospital mortality for 
patients in the intensive care unit: A comparison of artificial neural networks with logistic 
regression models. Critical Care Medicine. 2001; 29(2):291–296. [PubMed: 11246308] 

141. Wong LS, Young JD. A comparison of ICU mortality prediction using the APACHE II scoring 
system and artificial neural networks. Anaesthesia. Nov; 1999 54(11):1048–54. [Online]. 
Available: http://www.ncbi.nlm.nih.gov/pubmed/10540093. [PubMed: 10540093] 

142. Silva I, Moody GB, Scott DJ, Celi LA, Mark RG. Predicting In-Hospital Mortality of ICU 
Patients: The PhysioNet/Computing in Cardiology Challenge 2012. Computing in Cardiology. 
2012; 39:245–248. [PubMed: 24678516] 

Johnson et al. Page 34

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ncbi.nlm.nih.gov/pubmed/17255863
http://www.ncbi.nlm.nih.gov/pubmed/17255863
http://www.ncbi.nlm.nih.gov/pubmed/8609749
http://www.ncbi.nlm.nih.gov/pubmed/10540093


143. Johnson AEW, Dunkley N, Mayaud L, Tsanas A, Kramer AA, Clifford GD. Patient Specific 
Predictions in the Intensive Care Unit Using a Bayesian Ensemble. Computing in Cardiology. 
2012; 39:249–252.

144. Citi L, Barbieri R. Physionet 2012 challenge: predicting mortality of ICu patients using a 
cascaded SVM-glm paradigm. Comput Cardiol. 2012; 39:257–60.

145. Pirracchio R, Petersen ML, Carone M, Rigon MR, Chevret S, van der Laan MJ. Mortality 
prediction in intensive care units with the super icu learner algorithm (sicula): a population-based 
study. The Lancet Respiratory Medicine. 2015; 3(1):42–52. [PubMed: 25466337] 

146. Mayer CC, Bachler M, Hörtenhuber M, Stocker C, Holzinger A, Wassertheurer S. Selection of 
entropy-measure parameters for knowledge discovery in heart rate variability data. BMC 
bioinformatics. 2014; 15(Suppl 6):S2.

147. Saria S, et al. Integration of early physiological responses predicts later illness severity in preterm 
infants. Science translational medicine. 2010; 2(48):48–65.

148. Ghassemi MM, Richter SE, Eche IM, Chen TW, Danziger J, Celi LA. A data-driven approach to 
optimized medication dosing: a focus on heparin. Intensive care medicine. 2014; 40(9):1332–
1339. [PubMed: 25091788] 

149. Ghassemi MM, Westover MB, Badawi RG, Mark Omar, Nemati S. Personalized medication 
dosing via sequential regression: A focus on heparin. American Journal of Respiratory and 
Critical Care. 2015 vol. In Press. 

150. Nemati S, Adams R. Identifying outcome-discriminative dynamics in multivariate physiological 
cohort time series. Advanced State Space Methods for Neural and Clinical Data. 2015; 283

151. Nachimuthu, SK.; Wong, A.; Haug, PJ. AMIA Annual Symposium Proceedings. Vol. 2010. 
American Medical Informatics Association; 2010. Modeling glucose homeostasis and insulin 
dosing in an intensive care unit using dynamic bayesian networks; p. 532

152. Smith A, West M, Gordon K, Knapp M, Trimble I. Monitoring kidney transplant patients. The 
Statistician. 1983; 32:46–54.

153. Gather U, Imhoff M, Fried R. Graphical models for multivariate time series from intensive care 
monitoring. Statistics in medicine. 2002; 21(18):2685–2701. [PubMed: 12228885] 

154. Williams C, Quinn J, Mcintosh N. Factorial switching kalman filters for condition monitoring in 
neonatal intensive care. Advances in Neural Information Processing Systems. 2005:1513–1520.

155. van der Heijden M, Velikova M, Lucas PJ. Learning bayesian networks for clinical time series 
analysis. Journal of biomedical informatics. 2014; 48:94–105. [PubMed: 24361389] 

156. Xing Z, Pei J, Keogh E. A brief survey on sequence classification. ACM SIGKDD. 2010; 12(1):
40–48.

157. Liao TW. Clustering of time series dataa survey. Pattern recognition. 2005; 38(11):1857–1874.

158. Rennie, JD.; Jaakkola, T. Proceedings of the 28th annual international ACM SIGIR conference on 
Research and development in information retrieval. ACM; 2005. Using term informativeness for 
named entity detection; p. 353-360.

159. Lehman, L.; Kyaw, T.; Clifford, G.; Mark, R. Computers in Cardiology, 2007. IEEE; 2007. A 
temporal search engine for a massive multi-parameter clinical information database; p. 637-640.

160. Lehman, L.; Saeed, M.; Moody, G.; Mark, R. in Computers in Cardiology, 2008. IEEE; 2008. 
Similarity-based searching in multi-parameter time series databases; p. 653-656.

161. Sow DM, Sun J, Biem A, Hu J, Blount M, Ebadollahi S. Real-time analysis for short-term 
prognosis in intensive care. IBM Journal of Research and Development. 2012; 56(5):3–1.

162. Nemati, S.; Ghassemi, MM. Big Data (Big Data), 2014 IEEE International Conference on. IEEE; 
2014. A fast and memory-efficient algorithm for learning and retrieval of phenotypic dynamics in 
multivariate cohort time series; p. 41-44.

163. Avent RK, Charlton JD. A critical review of trend-detection methodologies for biomedical 
monitoring systems. Crit Rev Biomed Eng. 1990; 17(6):621–59. [PubMed: 2180635] 

164. Saeed M, Mark R. A novel method for the efficient retrieval of similar multiparameter 
physiologic time series using wavelet-based symbolic representations. AMIA Annu Symp Proc. 
2006:679–83. eng. [PubMed: 17238427] 

Johnson et al. Page 35

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



165. Hauskrecht M, Batal I, Valko M, Visweswaran S, Cooper GF, Clermont G. Outlier detection for 
patient monitoring and alerting. Journal of Biomedical Informatics. 2013; 46(1):47–55. 
[PubMed: 22944172] 

166. Saria S, et al. Learning individual and population level traits from clinical temporal data. NIPS, 
Predictive Models in Personalized Medicine workshop. 2010 DOI: 10.1.1.232.390. 

167. Schulam P, Wigley F, Saria S. Clustering longitudinal clinical marker trajectories from electronic 
health data: Applications to phenotyping and endotype discovery. 2015

168. Ross J, Dy J. Nonparametric mixture of gaussian processes with constraints. Proceedings of the 
30th International Conference on Machine Learning (ICML-13). 2013:1346–1354.

169. Lehman LH, Adams R, Mayaud L, Moody G, Malhotra A, Mark R, Nemati S. A physiological 
time series dynamics-based approach topatient monitoring and outcome prediction. Biomedical 
and Health Informatics, IEEE Journal of. 2014; PP(99):1–1.

170. Marlin, BM.; Kale, DC.; Khemani, RG.; Wetzel, RC. Proceedings of the 2nd ACM SIGHIT 
International Health Informatics Symposium. ACM; 2012. Unsupervised pattern discovery in 
electronic health care data using probabilistic clustering models; p. 389-398.

171. Nemati S, Adams R. Supervised learning in dynamic bayesian networks. Tech Rep. 2014

172. Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives. 
Pattern Analysis and Machine Intelligence, IEEE Transactions on. 2013; 35(8):1798–1828.

173. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. 
Cognitive modeling. 1988; 323:533–536. DOI: 10.1038/323533a0

174. Phadia, E. Prior Processes and their Applications: Nonparametric Bayesian Estimation. Springer; 
2013. 

175. Shi, J.; Choi, T. Gaussian Process Regression Analysis for Functional Data. Chapman and Hall; 
2011. 

176. Clifton L, Clifton DA, Pimentel MA, Watkinson PJ, Tarassenko L. Gaussian processes for 
personalized e-health monitoring with wearable sensors. Biomedical Engineering, IEEE 
Transactions on. 2013; 60(1):193–197.

177. Orphanidou C, Bonnici T, Charlton P, Clifton D, Vallance D, Tarassenko L. Signal quality indices 
for the electrocardiogram and photoplethysmogram: Derivation and applications to wireless 
monitoring. IEEE Journal of Biomedical and Health Informatics. 2015; 19(3):832–838. 
[PubMed: 25069129] 

178. Clifton DA, Clifton L, Hugueny S, Wong D, Tarassenko L. An extreme function theory for 
novelty detection. Selected Topics in Signal Processing, IEEE Journal of. 2013; 7(1):28–37.

179. Clifton L, Clifton D, Pimentel M. Gaussian Processes for Personalised e-Health Monitoring with 
Wearable Sensors. Biomedical Engineering IEEE Transactions on. 2011; (c):1–4.

180. Clifton, D.; Hugueny, S.; Tarassenko, L., et al. Machine learning for signal processing (MLSP), 
2011 IEEE International Workshop on. IEEE; 2011. Pinning the tail on the distribution: a 
multivariate extension to the generalised pareto distribution; p. 1-6.

181. Clifton L, Clifton DA, Zhang Y, Watkinson P, Tarassenko L, Yin H. Probabilistic novelty 
detection with support vector machines. IEEE Transactions on Reliability. 2014; 63

182. Clifton D, Wong D, Clifton L, Pullinger R, Tarassenko L. A large-scale clinical validation of an 
integrated monitoring system in the emergency department. IEEE Transactions on Information 
Technology in Biomedicine. 2013; 17(4):835–877.

183. Duerichen R, Pimentel M, Clifton L, Schweikard A, Clifton DA, et al. Multitask gaussian 
processes for multivariate physiological time-series analysis. Biomedical Engineering, IEEE 
Transactions on. 2015; 62(1):314–322.

184. Pimentel, MA.; Clifton, DA.; Tarassenko, L. Machine Learning for Signal Processing (MLSP), 
2013 IEEE International Workshop on. IEEE; 2013. Gaussian process clustering for the 
functional characterisation of vital-sign trajectories; p. 1-6.

185. Behar J, Johnson AE, Oster J, Clifford G. An echo state neural network for foetal ECG extraction 
optimised by random search. NIPS. 2013

186. Ghassemi M, Lehman LH, Snoek J, Nemati S. Global optimization approaches for parameter 
tuning in biomedical signal processing: A focus of multi-scale entropy. Tech Rep. 2014

Johnson et al. Page 36

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



187. Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning 
algorithms. Advances in Neural Information Processing Systems. 2012:2951–2959.

188. Fan J, Mei K, Peng J, Zheng N, Gao L. Hierarchical classification of large-scale patient records 
for automatic treatment stratification. 2015

189. Kale, DC.; Gong, D.; Che, Z.; Liu, Y.; Medioni, G.; Wetzel, R.; Ross, P. Data Mining (ICDM), 
2014 IEEE International Conference on. IEEE; 2014. An examination of multivariate time series 
hashing with applications to health care; p. 260-269.

190. Lasko TA, Denny JC, Levy MA. Computational phenotype discovery using unsupervised feature 
learning over noisy, sparse, and irregular clinical data. PloS one. 2013; 8(6):e66341. [PubMed: 
23826094] 

191. Wiens J, Guttag J, Horvitz E. Patient risk stratification for hospital-associated c. diff as a time-
series classification task (accepted for publication). Neural Information Processing Systems 
Foundation (NIPS). 2012

192. Liu TF, Shafer RW. Web resources for HIV type 1 genotypic-resistance test interpretation. 
Clinical Infectious Diseases. 2006; 42(11):1608–1618. [PubMed: 16652319] 

193. Beerenwinkel N, Däumer M, Oette M, Korn K, Hoffmann D, Kaiser R, Lengauer T, Selbig J, 
Walter H. Geno2pheno: Estimating phenotypic drug resistance from HIV-1 genotypes. Nucleic 
Acids Research. 2003; 31(13):3850–3855. [PubMed: 12824435] 

194. Prosperi MC, Altmann A, Rosen-Zvi M, Aharoni E, Borgulya G, Bazso F, Sönnerborg A, 
Schülter E, Struck D, Ulivi G, et al. Investigation of expert rule bases, logistic regression, and 
non-linear machine learning techniques for predicting response to antiretroviral treatment. 
Antivir Ther. 2009; 14(3):433–42. [PubMed: 19474477] 

195. Laabei M, Recker M, Rudkin JK, Aldeljawi M, Gulay Z, Sloan TJ, Williams P, Endres JL, Bayles 
KW, Fey PD, et al. Predicting the virulence of MRSA from its genome sequence. Genome 
Research. 2014; 24(5):839–849. DOI: 10.1101/gr.165415.113 [PubMed: 24717264] 

196. Rishishwar L, Petit RA, Kraft CS, Jordan IK. Genome sequence-based discriminator for 
vancomycin-intermediate staphylococcus aureus. Journal of bacteriology. 2014; 196(5):940–948. 
[PubMed: 24363339] 

197. Drouin A, Giguere S, Sagatovich V, Deraspe M, Laviolette F, Marchand M, Corbeil J. Learning 
interpretable models of phenotypes from whole genome sequences with the set covering 
machine. Neural Information Processing Systems (NIPS), Computational Biology workshop. 
2014

198. Niehaus, KE.; Walker, TM.; Crook, DW.; Peto, TE.; Clifton, DA., et al. Biomedical and Health 
Informatics (BHI), 2014 IEEE-EMBS International Conference on. IEEE; 2014. Machine 
learning for the prediction of antibacterial susceptibility in mycobacterium tuberculosis; p. 
618-621.

199. Lehman, Lw; Saeed, M.; Long, W.; Lee, J.; Mark, R. AMIA Annual Symposium Proceedings. 
Vol. 2012. American Medical Informatics Association; 2012. Risk stratification of icu patients 
using topic models inferred from unstructured progress notes; p. 505

200. Ghassemi M, Pimentel MA, Naumann T, Brennan T, Clifton DA, Szolovits P, Feng M. A 
multivariate timeseries modeling approach to severity of illness assessment and forecasting in 
ICu with sparse, heterogeneous clinical data. 2015

201. Ghassemi M, Mark R, Nemati S. A visualization of evolving clinical sentiment using vector 
representations of clinical notes. Tech Rep. 2015

202. Collins SA, Cato K, Albers D, Scott K, Stetson PD, Bakken S, Vawdrey DK. Relationship 
between nursing documentation and patients mortality. American Journal of Critical Care. 2013; 
22(4):306–313. [PubMed: 23817819] 

203. Mandl KD, Kohane IS. Escaping the EHR trap - the future of health IT. New England Journal of 
Medicine. 2012; 366(24):2240–2242. [PubMed: 22693995] 

204. Celi LA, Mark RG, Stone DJ, Montgomery RA. “big data” in the intensive care unit closing the 
data loop. American journal of respiratory and critical care medicine. 2013; 187(11):1157–1160. 
[PubMed: 23725609] 

Johnson et al. Page 37

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



205. Holzinger, A.; Jurisica, I. Interactive Knowledge Discovery and Data Mining in Biomedical 
Informatics. Springer; 2014. Knowledge discovery and data mining in biomedical informatics: 
The future is in integrative, interactive machine learning solutions; p. 1-18.

206. Deng, J.; Dong, W.; Socher, R.; Li, LJ.; Li, K.; Fei-Fei, L. Computer Vision and Pattern 
Recognition 2009 CVPR 2009 IEEE Conference on. IEEE; 2009. Imagenet: A large-scale 
hierarchical image database; p. 248-255.

207. Moody GB, Mark RG. The impact of the mit-bih arrhythmia database. Engineering in Medicine 
and Biology Magazine, IEEE. 2001; 20(3):45–50.

208. Black N. High-quality clinical databases: breaking down barriers. The Lancet. 1999; 353(9160):
1205–1206.

Johnson et al. Page 38

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 1. 
Overview of the primary challenges in critical care. The three challenges that are presented 

to researchers in this field are discussed in turn: the compartmentalization of the data, which 

results in disparate datasets that are difficult to acquire and interrogate; the corruption of the 

data during collection, which necessitates non-trivial corrective work; and the complexity 

inherent in the systems monitored.
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Fig 2. 
Example of a false alarm which incorrectly asserted the patient was in asystole. The signals 

shown are the photoplethysmogram (PPG, top in green), the electrocardiogram lead V 

(ECG, middle in blue), and the electrocardiogram lead II (ECG, bottom in red). The alarm 

likely triggered univariately on ECG lead V. At least two methods reviewed in this section 

could have prevented this false alarm: the use of signal quality on lead V or a multimodal 

data fusion approach which incorporated ECG lead II, the PPG, or both.
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Fig 3. 
Example of low, sometimes zero respiratory rates. As a sustained breathing rate of zero for 

hours is incompatible with life, the data here may represent: i) undersampling of true 

respiratory distress with intermittent apnea, ii) erroneous data corresponding to sensor fault, 

or iii) manually entered data intended to represent poor physiologic state.
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Fig 4. 
Example of a Gaussian Process (GP) regression inferring the value of missing data on an 

unevenly sampled time series of hematocrit values. The raw values are plotted as red circles 

against the mean of the GP (solid green line) and the 95% confidence intervals (dashed 

green lines).
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Fig 5. 
Supervised learning in dynamic Bayesian networks. Graphical model representation of the 

switching vector autoregressive (switching VAR) is depicted in panel (a). Panels (b) shows 

the unrolled representation (with respect to time and inference steps) of the two models, with 

an added logistic regression layer (elliptic nodes) which utilize the marginals over the 

discrete latent variables as features for time-series classification [an example of inferred 

marginals is shown at the bottom of the panel (b)]. These unrolled structures, which 

resemble recurrent neural networks, allow for efficient supervised learning and inference via 

error backpropagation.
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